SOME SYMMETRIC ($71,15,3$) DESIGNS WITH AN INVOLUTORY ELATION

Mirjana Garapić
University of Zagreb, Croatia

Abstract

Symmetric designs for $(71,15,3)$ with the semi-standard automorphism group $G \cong E_{8} \cdot F_{21}$ have been investigated. There were constructed exactly three nonisomorphic designs, two of them with an involutory elation.

1. Introduction

In [1], we have proved that exactly six nonisomorphic triplanes for $(71,15,3)$ exists having the automorphism group $G \cong E_{8} \cdot F_{21}$ acting nonsemistandardly. The group G is a faithful extension of an elementary abelian group E_{8} of order 8 by a Frobenius group of order 21. Here we shall confine our attention to the semi-standard automorphism group situation. We use the method from [2] and this group G to "construct" the triplanes for $(71,15,3)$ under this assumption. We have found that there exist triplanes with these parameters nonisomorphic to the triplanes in [1], admitting an elation of order 2 and also another class of triplanes without that property. Hence, the property of admitting an involutory elation yields a new approach to the construction and the classification of symmetric design for $(71,15,3)$.

2. Notation and basic definitions

Suppose G is an authomorphism group of a symmetric $D=(v, k, \lambda)$ design. Actually, G has orbits of lengths $a_{1}, a_{2}, \ldots, a_{c}$ on points and orbits of lengths $b_{1}, b_{2}, \ldots, b_{c}$ on blocks of D respectively.

[^0]DEFINITION 1. An automorphism group G is said to be semi-standard if, after possibly renumbering the orbits we have $a_{i} \leq a_{j}$ and $b_{i} \leq b_{j}$ for $i \leq j$ and if $a_{i}=b_{i}$ for all $i=1,2, \ldots, c$.

We also say that a group G acts semistandardly. In the oposite case, we say G acts non-semistandardly.

DEFINITION 2. Let $\alpha \neq 1$ be an automorphism on a symmetric $2-(v, k, \lambda)$ design. We say that α is an elation if there exists an α-fixed block b containing exactly $k \alpha$-fixed points and if α fixes a set of k blocks having exactly one α fixed point of b in common.

Notation and other definitions can be found in [1].

3. Results of the investigation in the SEMI-STANDARD GROUP SITUATION

Now, suppose the group $G \cong E_{8} \cdot F_{21}$ is an automorphism group of a symmetric $2-(71,15,3)$ design. This group G is generated by the set of three elements of order two, three and seven respectively. (For details of the action of generators see [1].) It was proved in [1] that an involution had seven or fifteen points, an automorphism of order three fixed five points and an automorphism of order seven fixed exactly one point. In the case where G acts semistandardly it was proved that G had three orbits on the points(blocks) having lengths $1,14,56$. Here we have constructed symmetric designs D_{5}, D_{6} and D_{7}, all of them nonisomorphic. (See the method in [2].) Without loss of generality the constructed designs have the following block orbit representatives:

The first block orbit representative of D_{5}, D_{6} and D_{7} :

$$
1_{1} 2_{1} 2_{2} 2_{3} 2_{4} 2_{5} 2_{6} 2_{7} 2_{8} 2_{9} 2_{10} 2_{11} 2_{12} 2_{13} 2_{14}
$$

The second block orbit representative of D_{5}, D_{6} and D_{7} :

$$
1_{1} 2_{1} 2_{2} 3_{8} 3_{9} 3_{11} 3_{18} 3_{19} 3_{21} 3_{25} 3_{33} 3_{38} 3_{45} 3_{51} 3_{53}
$$

The third block orbit representatives for

$$
\begin{aligned}
& D_{5}: \quad 2_{5} 2_{7} 2_{8} 3_{8} 3_{9} 3_{11} 3_{15} 3_{16} 3_{26} 3_{27} 3_{30} 3_{35} 3_{48} 3_{52} 3_{55} \\
& D_{6}: \\
& 2_{5} 2_{7} 2_{8} 3_{8} 3_{9} 3_{11} 3_{15} 3_{27} 3_{28} 3_{32} 3_{37} 3_{42} 3_{46} 3_{49} 3_{52} \\
& D_{7}: \\
& 2_{5}
\end{aligned} 2_{7} 2_{8} 3_{10} 3_{12} 3_{13} 3_{16} 3_{25} 3_{26} 3_{30} 3_{33} 3_{35} 3_{48} 3_{51} 3_{55}
$$

Here the intersection numbers of all triples of blocks for D_{5}, D_{6} and D_{7} have been calculated but the constructed designs D_{6} and D_{7} do not differ in this characteristic. Hence we have used the method of spreads (see [1]) to prove the nonisomorphism of designs D_{5}, D_{6} and D_{7}. We proved that all of them are mutually nonisomorphic as well as nonisomorphic to the designs constructed
in [1]. Compare the results of investigation in the Table 1 with the results in [1].

Table 1: $\quad D_{i} \quad b_{*} \quad\left(r_{1}, r_{2}, r_{3}\right) \quad\left(s_{1}, s_{2}, s_{3}\right)$

D_{5}	1	$(35,63,69)$	$(56,52,100)$
D_{6}	1	$(35,51,63)$	$(56,160,86)$
D_{7}	1	$(35,51,63)$	$(56,160,70)$

Here, b_{*} is the number of special blocks of a design D_{i}, r_{i} means the number of blocks of a reduced structure I_{b} / R where b is an element of the i-th orbit of blocks of D_{i} and s_{i} means the number of spreads with respect to the block b in the i-th orbit of blocks of D_{i}.

It was interesting to investigate the acting of involution $f=\rho^{*}$ fixing fifteen points of the constructed designs D_{5}, D_{6} and D_{7}. (See the permutation ρ^{*} in [1]). Here we have proved that f was not an automorphism on D_{5} but f acted on D_{6} and D_{7} as an elation.

Now the first orbit of blocks of D_{6} and D_{7} contains just one G-fixed block containing exactly fifteen f-fixed points. The second orbit consists of fourteen blocks which all have the point 1_{1} in common. We find that the blocks incident with the point 1_{1} are all the f-fixed blocks. Here a pair of points of these blocks is either fixed or interchanged by f. The third orbit of blocks of D_{6} and D_{7} contains further fifty-six blocks of these designs. By verification it turns out that this permutation f breaks up this orbit of blocks in twenty-eight pairs of blocks interchanged by f for both D_{6} and D_{7}. As one can see, the permutation f is an elation on the symmetric designs D_{6} and D_{7} respectively. This automorphism f is different from, and commutes with the automorphisms provided by the group G and it was found under this assumption. We have seen that the permutation f was not an automorphism on D_{1}, it acted as an automorphism on the symmetric designs D_{2} and D_{3} (see in [1]) but it was not an elation on designs D_{2} and D_{3}.

We have investigated only the symmetric $(71,15,3)$ designs with the automorphism group $G \cong E_{8} \cdot F_{21}$. We did not check whether it was possible to produce still more symmetric $(71,15,3)$ designs with an involutory elation in another case. Thus we have the following result:

Theorem 3.1. There exist at least two non-isomorphic symmetric $(71,15,3)$ designs admitting an involutory elation. Both of them are non-selfdual.

References

[1] M.Garapić, Triplanes for $(71,15,3)$ admitting a solvable group of order 168 acting nonsemistandardly, Glasnik Matematički 29(49)(1994), 17-24.
[2] Z.Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatories 90(1992), 275-277.

Zavod za matematiku, informatiku i nacrtnu geometriju
Rudarsko-geološko-naftni fakultet
Pierottijeva 6
10000 Zagreb
Croatia
Received: 210.01.1999.
Revised: 22.06.2000

[^0]: 2000 Mathematics Subject Classification. 05B05.
 Key words and phrases. symmetric design, triplane, automorphism group, fixed point (block).

