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Abstract. The strict topology, on the space C(X, E) of all continu-
ous functions on a topological space X with values in a non-Archimedean
locally convex space E, is introduced and several of its properties are in-
vestigated. The dual spaces of C(X, E), under the strict topology and
under the bounding convergence topology, turn out to be certain spaces of
E′-valued measures.

1. Introduction

The strict topology was for the first time defined by Buck [3] on the space
Cb(X,E) of all bounded continuous functions on a locally compact space
X with values in a normed space E. Several other authors have extended
Buck’s results by taking as X a completely regular space or an arbitrary
topological space and as E either the scalar field or a locally convex space or
even an arbitrary topological vector space. In the case of non-Archimedean
valued functions Prolla [17], p.198, has defined on Cb(X,E) the strict topol-
ogy β assuming that X is locally compact zero-dimensional and E a non-
Archimedean normed space. In [9] the author has defined the strict topology
βo on Cb(X,E) taking as X a topological space and as E a non-Archimedean
locally convex space. In case X is locally compact zero-dimensional and E
a non-Archimedean normed space, βo coincides with β by [9], Proposition
2.5. As is shown in [14], Theorem 3.2, the strict topology βo is a weighted
topology.
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In this paper we introduce in section 5 the strict topology βb on the space
C(X,E) of all continuous functions from a topological space X to a non-
Archimedean locally convex space E. We show in Proposition 5.5 that βb is
the finest weighted topology ωV such that CVo(X,E) = C(X,E) algebraically.
We prove in section 6 that the dual space of (C(X,E), βb) is a certain space
of E′-valued measures. We show that βb has almost all of the properties that
βo has. We also characterize in Theorem 6.3 the dual space of C(X,E) under
the topology of uniform convergence on the so called bounding subsets of X .

2. Preliminaries

Throughout this paper, K is a complete non-Archimedean valued field
whose valuation is non-trivial. By a seminorm, on a vector space E over K,
we mean a non-Archimedean seminorm. Similarly by a locally convex space
or a normed space we mean non-Archimedean such spaces. For E a locally
convex space over K, we denote by cs(E) the collection of all continuous
seminorms on E. By E′ we denote the topological dual space of E, while,

for E Hausdorff, Ê is the completion of E. For E,F locally convex spaces
over K, E ⊗ F is the projective tensor product of E,F . For any unexplained
terms, concerning non-Archimedean spaces, we refer to [18].

Let now X be a topological space and E a Hausdorff locally convex space
over K. The space of all continuous E-valued functions on X is denoted by
C(X,E). The subspace of all bounded members of C(X,E) is denoted by
Cb(X,E). In case E is the scalar field K, we write Cb(X) and C(X) instead
of Cb(X,K) and C(X,K), respectively. If f is a function from X to E, A
a subset of X and p a seminorm on E, we define the extended real number
pA(f) by

pA(f) = sup{p(f(x)) : x ∈ A}.
In case E is a normed space, we define

ωA(f) = sup{‖f(x)‖ : x ∈ A}, ‖f‖ = ωX(f)

The strict topology β0 on Cb(X,E) (see [9]) is the locally convex topology
on Cb(X,E) generated by the seminorms pφ(f) = pX(φf) where p ∈ cs(E)
and φ ∈ KX bounded and vanishing at infinity. The support of a function
f ∈ EX or f ∈ KX is the closure of the set {x : f(x) 6= 0}. We denote by τc
the topology of uniform convergence on the compact subsets of X . In case X
is zero-dimensional, βoX and υoX is the Banaschewski compactification and
the N-repletion of X , respectively (N is the set of all positive integers).

Let K(X) denote the algebra of all clopen (i.e closed and open) subsets
of X . We denote by M(X,E ′) (see [11] ) the space of all finitely-additive
E′-valued measures m on K(X) for which m(K(X)) is an equicontinuous
subset of E′. For every m ∈ M(X,E ′) there exists p ∈ cs(E) such that
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‖m‖p = mp(X) <∞, where, for A ∈ K(X),

mp(A) = sup{|m(B)s| : B ∈ K(X), B ⊂ A, p(s) ≤ 1}.
As is shown in [11],

mp(A ∪B) = max{mp(A),mp(B)}.
We denote by Mp(X,E

′) the set of all m ∈M(X,E′) for which mp(X) <∞.
An element m of M(X,E′) is called tight if there exists p ∈ cs(E) such that
mp(X) < ∞ and, for each ε > 0, there exists a compact subset D of X such
that mp(A) < ε if A is disjoint from D. In this case we also say that mp is
tight.

Let now m ∈M(X,E′) and let A ∈ K(X). Consider the collection ΩA of
all α = {A1, A2, ..., An;x1, x2, ..., xn} where {A1, ..., An} is a clopen partition
of A and xi ∈ Ai. The collection ΩA becomes a directed set by defining
α1 ≥ α2 iff the partition of A in α1 is a refinement of the one in α2. If f is
an E-valued function on X and α = {A1, ..., An;x1, ..., xn} in ΩA, we define

ωα(f,m) =
n∑

i=1

m(Ai)f(xi).

If the limit

lim
α∈ΩA

ωα(f,m)

exists, then we say that f is m-integrable over A and we denote this limit by∫
A
fdm. The integral of f over the empty set is taken to be zero. We say

that f is m-integrable if it is m-integrable over every A ∈ K(X). We write

m(f) =

∫
fdm for

∫

X

fdm.

(see [11]). By [9], Proposition 3.2, if m is tight, then every f ∈ Cb(X,E) is
m-integrable and the mapping f 7→ m(f) is an element of the dual space of
(Cb(X,E), βo). Conversely, every βo-continuous linear form on Cb(X,E) is
given by a unique tight element of M(X,E ′).

Next we recall the definition of a non-Archimedean weighted space. A
Nachbin family on X is a collection V of non-negative upper semicontinuous
(u.s.c) functions on X such that:
1) For each x ∈ X , there exists v ∈ V with v(x) > 0.
2) For v1, v2 ∈ V and d a positive number, there exists v ∈ V with dv1, dv2 ≤
v.

We say that a Nachbin family V1 is coarser than another one V2, or that
V2 is stronger than V1 , and write V1 � V2, if for every v ∈ V1 there exists
w ∈ V2 such that v ≤ w. If V1 is both coarser and stronger than V2 , then we
say that V1 is equivalent to V2 and write V1

∼= V2. For a non-negative function



286 A. K. KATSARAS

v on X , f ∈ EX and p a seminorm on E, we define the extended real number
pv(f) by

pv(f) == sup{v(x)p(f(x)) : x ∈ X}.
In case f is K-valued, we define

ωv(f) = sup{v(x)|f(x)| : x ∈ X}.

The weighted space CV (X,E) is defined to be the space of all f ∈ C(X,E)
for which pv(f) < ∞ for each v ∈ V and each p ∈ cs(E). The corresponding
weighted topology ωV on CV (X,E) is the locally convex topology defined by
the seminorms pv, p ∈ cs(E), v ∈ V . As usual, we denote by CVo(X,E) the
subspace of CV (X,E) which consists of all f such that, for each v ∈ V and
each p ∈ cs(X,E) , the function x 7→ v(x)p(f(x)) vanishes at infinity on X .
We write CV (X) and CVo(X) when E = K.

Throughout the paper, X is a topological space and E a Hausdorff non-
Archimedean locally convex space over K.

3. Bounding sets

Following Govaerts [8] we say that a subset A of X is bounding if every
f ∈ C(X) is bounded on A.

The following Proposition characterizes the bounding sets.

Proposition 3.1. Assume that X is a zero-dimensional Hausdorff topo-
logical space.. For a subset A of X, the following are equivalent:
(1) Every f in C(X,E) is bounded on A.
(2) A is bounding.
(3) The closure B = clvoXA of A, in the N-repletion of X, is compact.

Proof. It is clear that (1) implies (2). Also (2) implies (3) by [8] Propo-
sition 1. (3) ⇒ (1). Assume that, for some continuous E-valued function g
on X and some continuous seminorm p on E, the function x 7→ p(g(x)) is not
bounded on A. Let R+ be the set of nonnegative real numbers and consider
on R+ the ultrametric d(a, b) = max{a, b} if a 6= b and d(a, a) = 0. Then R+

is ultranormal, i.e. every two disjoint closed subsets of R+ are separated by
disjoint clopen sets. Since R+ is metrizable with nonmeasurable cardinal, it
is realcompact (see [7] 15.24). Also R+ is complete and noncompact. Thus by
[2], Theorem 9, the R+-repletion of X coincides with υoX . Since the function
h : X → R+, h(x) = p(g(x)) is continuous, there exists a continuous extension
h̄ : υ0X → R+. Since B = clvoXA is compact, we get that h(A) is bounded
in R+, a contradiction.

The following Proposition refers to an arbitrary topological space (not
necessarily zero-dimensional).
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Proposition 3.2. For a subset A of a topological space X, the following
are equivalent:
(1) Every f ∈ C(X,E) is bounded on A.
(2) A is bounding.

Proof. Let τ0 be the zero-dimensional topology generated by the clopen
subsets of X (we refer to τ0 as the zero-dimensional topology corresponding to
the topology of X). Since a function f , from X to a zero-dimensional space, is
continuous iff it is τ0-continuous, we may assume that X is zero-dimensional
(not necessarily Hausdorff). If now X is Hausdorff, then (1) is equivalent
to (2) by the preceeding Proposition. If X is not Hausdorff, consider the
equivalence relation ∼ on X defined by : x ∼ y iff f(x) = f(y) for each
f ∈ C(X,E). Let Y = X/ ∼ and consider on Y the quotient topology. If
Q : X → Y is the quotient map, then Q maps clopen sets onto clopen sets.
Indeed, let V ⊂ X be clopen and let D = Q(V ). If x ∈ Q−1(D), then x ∼ y
for some y ∈ V . But then, if φ is the K-characteristic function of V , we have
φ(x) = φ(y) = 1 and so x ∈ V , i.e. Q−1(D) = V , which implies that D is
open. Also, if V c is the complement of V , then Q(V c) is open and hence D
is clopen. It follows now that Y is zero-dimensional. Also Y is Hausdorff.
Indeed, if Q(x) 6= Q(y), then f(x) 6= f(y), for some f ∈ C(X,E). Since E
is Hausdorff and zero-dimensional, there are clopen disjoint neighborhoods
W1,W2 of f(x) and f(y) respectively. If Vi = f−1(Wi), i = 1, 2, then Q(V1)
and Q(V2) are disjoint neighborhoods of Q(x) and Q(y), respectively. Assume
now (2). Then D = Q(A) is a bounding subset of Y . By the preceeding
Proposition, every g ∈ C(Y,E) is bounded on D. If u ∈ C(X,E) and if
g : Y → E, g(Q(x)) = u(x), then g is bounded on D and so u is bounded on
A. Since (1) clearly implies (2), the result follows.

Proposition 3.3. Assume that either X or E has non-measurable car-
dinal. If A is a bounding subset of X, then f(A) is totally bounded in E for
every f ∈ C(X,E).

Proof. Taking on X the corresponding zero-dimensional topology, we
may assume that X is zero-dimensional (not necessarily Hausdorff). Assume
first that X is Hausdorff. Then B = clvoXA is compact. Let p ∈ cs(E) and

let Ep = E/ker p with the corresponding norm-topology. Let φ → Êp be
the canonical map and let h = φ ◦ f . We claim that h(A) is totally bounded

in Êp. Assume the contrary. Denoting by |Z| the cardinal number of a set
Z, we have that |h(X)| ≤ |X | and |h(X)| ≤ |Ep| ≤ |E|. Our hypothesis
implies that h(X) has nonmeasurable cardinal. Also, the closure G of h(A)

in Êp has nonmeasurable cardinal since h(X)N has nonmeasurable cardinal
and every element of G is the limit of a sequence in h(X). Thus G is a
realcompat, noncompact ultranormal space and hence the G-repletion of X
coincides with υoX by [2], Theorem 7. Let h̄ : υ0X → G be a continuous
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extension of h. Since B is compact, h̄(B) is compact and so h(A) is totally
bounded, a contradiction. So, h(A) is totally bounded in Ep and therefore
f(A) is p-totally bounded in E. This proves the result when X is Hausdorff.
In case X is not Hausdorff, let Y , Q be as in the proof of Proposition 3.2. If
g : Y → E, g(Qx) = f(x) and if D = Q(A), then D is bounding in Y and so
g(D) = f(A) is totally bounded in E. This clearly competes the proof.

4. The Topology of Uniform Convergence on Bounding Sets

For p ∈ cs(E) and A a bounding subset of X , pA (as it is defined in Sec.
2) is a seminorm on C(X,E). We denote by τu,b the locally convex topology
on C(X.E) generated by the seminorms pA, p ∈ cs(E), A a bounding subset
of X . We refer to τu,b as the topology of uniform convergence on the bounding
subsets of X .

For the rest of this section, we assume that either X or E has non-
measurable cardinal.

Theorem 4.1. Assume that E is complete and consider the following
condition:
(∗) If f : X → E is such that f |A is continuous if A is bounding and f(A)
is totally bounded in E, then f is continuous on X.
Then: (a) The space (C(X,E), τu,b) = G is complete when (∗) is satisfied.
(b) If X is ultranormal and E is a Fréchet space, then completeness of G
implies that (∗) holds.

Proof. (a) Assume that (∗) is satisfied and let (fα) be a Cauchy net
in G. For x ∈ X , (fα(x)) is a Cauchy net in E and thus the limit f(x) =
limfα(x) exists. If A is a bounding subset of X , then fα → f uniformly on
A and thus the restriction of f to A is continuous. Also, given p ∈ cs(X,E),
there exists α0 such that pA(fα − fα0

) ≤ 1 for all α ≥ α0. Since fα0
(A) is

totally bounded, there exists a finite suset S of E such that

fα0
(A) ⊂ S +W, W = {s ∈ E : p(s) ≤ 1}.

It follows now that f(A) ⊂ S+W , which proves that f(A) is totally bounded.
By our hypothesis, f is continuous and clearly fα → f .

(b) Suppose that G is complete and thatX is ultranormal and E a Fréchet
space. Let p ∈ cs(E) and let A be a closed bounding subset ofX . If g : A→ E
is continuous and g(A) is totally bounded in E, then there exists a continuous
function h : X → E with h(X) ⊂ g(A) ∪ {0} and pA(g − h) ≤ 1. Indeed,
there are x1, x2, . . . , xn in A such that the sets V1, . . . , Vn, Vk = {s ∈ E :
p(s − g(xk)) ≤ 1}, are pairwise disjoint and cover g(A). The sets Wk =
g−1(Vk), k = 1, . . . , n, are closed in A (and thus in X) and cover A. Since X
is ultranormal, there are pairwise disjoint clopen sets A1, . . . , An in X with
Wk ⊂ Ak. Now it suffices to take as h the function

∑n
k=1 φkg(xk), where φk

is the K-characteristic function of Ak.
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Let now f : X → E be such that, for each bounding subset A of X ,
f(A) is totally bounded and f |A is continuous. Let (pn) be an increasing
sequence of continuous seminorms on E, generating its topology, and let A ⊂
X be bounding. Then Ā is bounding. As we have shown above, there exists
g1 ∈ C(X,E), with g1(X) ⊂ f(Ā) ∪ {0}, such that (p1)Ā(g1 − f)) ≤ 1.
Clearly (f − g1)(Ā) is totally bounded in E. Proceeding by induction, we get
a sequence (gn) in C(X,E) such that, for each n, (pn)Ā(hn − f) ≤ 1/n and
gn(X) ⊂ (f − hn−1)(Ā) ∪ {0}, where hn =

∑n
k=1 gk. Clearly (pn)X (gn+1) ≤

1/n. Now, for each x ∈ X , the series
∑∞

n=1 gn(x) converges. Define h =∑∞
n=1 gn. Then hn → h uniformly and so h is continuous on X . Also, h = f

on A. In fact, given m, we have that

(pm)A(f − h) ≤ max{(pm)A(f − hn), (pm)A(hn − h)}.
For n ≥ m, we have (pm)A(f − hn) ≤ 1/n and

(pm)A(hn − h) = (pm)A(
∑

k>n

gk) ≤ 1/n.

It follows that (pm)A(f − h) = 0 and so f = h on A since E is Hausdorff.
Consider next the family Φ of all bounding subsets of X . For each A ∈ Φ

there exists fA ∈ C(X,E) such that fA = f on A. Directing Φ by set
inclusion, we get a net (fA)A∈Φ in G. It is easy to see that this net is Cauchy
in G and hence converges in G to some g ∈ C(X,E). Since g(x) = lim fA(x) =
f(x), we have that f = g and the result follows.

Next we look at the dual space of (C(X,E), τu,b).

Proposition 4.2. For every non-empty bounding subset A of X, every
p ∈ cs(E) and every f ∈ C(X,E), there are pairwise disjoint clopen subsets
A1, . . . , An, covering A, and xi ∈ Ai such that p(f(x) − f(xi)) ≤ 1 for all
x ∈ Ai. Thus, for h =

∑n
1 φif(xi), where φi is the K-characteristic function

of Ai, we have that pA(f − h) ≤ 1.

Proof. Since f(A) is totally bounded, there are x1, . . . , xn in A such
that

f(A) ⊂ {f(x1), . . . , f(xn)} + {s ∈ E : p(s) ≤ 1}.
We may assume that the sets Zk = {s : p(s − f(xk)) ≤ 1}, k = 1, . . . , n, are
pairwise disjoint and cover f(A). Now it suffices to take Ak = f−1(Zk).

Definition A subset A of X is said to be a support of an m ∈M(X,E ′)
if m(U) = 0 for every clopen set U disjoint from A.

Recall that m is said to be τ -additive (see [11], Definition 3.1) if, for every
net (Vα) of clopen sets with Vα ↓ ∅, we have that m(Vα) → 0 in the topology
σ(E′, E). If m is τ -additive, then the set

supp m =
⋂

{V ∈ K(X) : m(U) = 0 if U ∩ V = ∅}
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is a support for m ([11], Theorem 3.5). If in addition X is zero-dimensional,
then supp m is the smallest closed support of m. Every tight element of
M(X,E′) is τ -addditive. Indeed, let p ∈ cs(E) be such that mp is tight and
let (Vα) be a net of clopen sets with Vα ↓ ∅. Given ε > 0, there exists a
compact subset D of X such that mp(V ) < ε if V is disjoint from D. Since
Vα ↓ ∅ and D is compact, there exists α1 such that D ⊂ V c

α1
. If now α ≥ α1,

then D ⊂ V c
α and so mp(Vα) < ε. It is now clear that m(Vα) → 0 weakly in

E′.
We say that an m ∈M(X,E ′) has bounding support if one of its support

sets is bounding. Now for p ∈ cs(E), we denote by Mb,p(X,E
′) the space of

all m ∈ Mp(X,E
′) which have bounding support. Set

Mb(X,E
′) =

⋃

p∈cs(E)

Mb,p(X,E
′).

Proposition 4.3. If m ∈ Mb,p(X,E
′), then every f ∈ C(X,E) is m-

integrable. Moreover, if A is a bounding support of m and if |λ| > 1, then for
every f ∈ C(X,E) we have

|
∫
fdm| ≤ |λ|mp(X)pA(f).

Thus m defines an element Lm of the dual space of G = (C(X,E), τu,b),
Lm(f) =

∫
fdm. If the valuation of K is dense or if it is discrete and p(E) ⊂

|K| = {|µ| : µ ∈ K}, then

|
∫
fdm| ≤ mp(X)pA(f).

Proof. Let µ ∈ K, µ 6= 0. Given f ∈ C(X,E), there exist x1, . . . , xn

in a bounding support A of m and pairwise disjoint clopen sets A1, . . . , An

covering A such that xk ∈ Ak and p(f(x) − f(xk)) ≤ |µ| if x ∈ Ak . Let
An+1 be the complement in X of the set

⋃n
k=1 Ak and choose xn+1 ∈ An+1

if An+1 6= ∅. If now {B1, . . . , BN} is a refinement of {A1, . . . , An+1} and if
yj ∈ Bj , then

|
N∑

j=1

m(Bj)f(yj) −
n∑

i=1

m(Ai)f(xi)| ≤ |µ|mp(X).

This proves that f is m-integrable over X . Clearly f is m-integrable over
every clopen subset of X . Choose now γ ∈ K with |γ| ≤ pA(f) ≤ |λγ|.
Given ε > 0, there exist (by the above argument) pairwise disjoint clopen sets
A1, . . . , An and xk ∈ Ak ∩A such that |

∫
fdm−∑n

i=1m(Ai)f(xi| < ε. Since

|m(Ai)f(xi| ≤ |λγ|mp(X) ≤ |λ|pA(f)mp(X),

we have

|m(f)| ≤ max{ε, |λ|pA(f)mp(X)}.
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Taking ε → 0, we get that |
∫
fdm| ≤ |λ|pA(f)mp(X). In case of a dense

valuation, we get the last assertion by taking |λ| → 1. Also, if the valuation
is discrete and p(E) ⊂ |K|, then pA(f) = |%|, for some % ∈ K. As above we
get that |

∫
fdm| ≤ |%|mp(X), and this completes the proof.

Proposition 4.4. If L ∈ (C(X,E), τu,b)
′, then there exists

m ∈Mb(X,E
′) such that L(f) = m(f) for all f ∈ C(X,E).

Proof. Let p ∈ cs(E) and let A be a closed bounding subset of X such
that

{f : pA(f) ≤ 1} ⊂ {f : L(f) ≤ 1}.
For each clopen subset D of X , define m(D) on E by m(D)s = L(φDs), where
φD is the K-characteristic function of D. Since |m(D)s| ≤ 1 if p(s) ≤ 1, it
follows that m ∈ Mp(X,E

′) and that mp(X) ≤ 1. Moreover, as it is easy
to see, m(D) = 0 if D is disjoint from A. Since now both L and Lm are
τu,b-continuous. it follows that L = Lm since they coincide on a τu,b-dence
subset of C(X,E) (by Proposition 4.2). This clearly completes the proof.

Combining Propositions 4.3 and 4.4, we get the following

Theorem 4.5. The mapping m 7→ Lm, from Mb(X,E
′) to the dual space

of (C(X,E), τu,b), is an algebraic isomorphism.

The next Theorem characterizes the equicontinuous subsets of the dual
space of G = (C(X,E), τu,b).

Theorem 4.6. For a subset H of the dual space Mb(X,E
′) of G, the

following are equivalent:
(1) H is equicontinuous.
(2) (a) There exists p ∈ cs(E) such that supm∈H mp(X) <∞.
(b) There exists a bounding subset A of X such that, for every m ∈ H and
every clopen subset D of X disjoint from A, we have m(D) = 0.

Proof. If H is equicontinuous, then there exists p ∈ cs(E) and a bound-
ing subset A of X such that {f : pA(f) ≤ 1} ⊂ Ho. It is easy to see that, for
allm ∈ H and allD disjoint from A, we havem(D) = 0 andmp(X) ≤ 1. Con-
versely, assume that (2) is satisfied. We may assume that mp(X) ≤ 1 for all
m ∈ H . Let now f ∈ C(X,E) with pA(f) ≤ 1. The set D = {x : p(f(x)) ≤ 1}
is clopen and contains A. Now, for m ∈ H , we have |

∫
fdm| = |

∫
D fdm| ≤ 1

and so f ∈ Ho. This completes the proof.

5. The Strict Topology βb

In this section we will introduce the strict topology βb on C(X,E). It
will turn out that βb is the finest of all Nachbin topologies ωV such that
CV0(X,E) = C(X,E) (algebraically). We will need some preliminary results.
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Lemma 5.1. Assume that E is non-trivial. Let v be a non-negative func-
tion on X and consider the following properties:
(1) pv(f) <∞ for every f ∈ C(X,E) and every p ∈ cs(E).
(2) ωv(f) <∞ for every f ∈ C(X).
(3) Av = {x ∈ X : v(x) 6= 0} is a bounding subset of X and v is bounded on
X.
(4) For every f ∈ C(X,E) and every p ∈ cs(E), pv(f) <∞ and the function
x 7→ v(x)p(f(x)) vanishes at infinity.
(5) For each g ∈ C(X), we have that ωv(g) < ∞ and the function
x 7→ v(x)|g(x)| vanishes at infinity.
(6) v is bounded, Av is bounding and v vanishes at infinity.
Then (1) ⇔ (2) ⇔ (3) and (4) ⇔ (5) ⇔ (6).

Proof. Clearly (1) implies (2).
(2) ⇒ (3) Taking as f the constant function 1, we get that v is bounded.

Assume that Av is not bounding and let g ∈ C(X) be not bounded on Av.
Then, there exists a sequence (λn) of non-zero elements of K , with |λn| → ∞,
and xn ∈ Av such that |λn| < |g(xn)| < |λn+1| for all n. Let Wn = {x :
|λn| ≤ |g(x)| < |λn+1|}. Let |λ| > 1 and choose, for each n, a µn ∈ K such
that |µn| ≤ v(xn) < |λµn|. Take f =

∑∞
n=1 µ

−1
n λnφn, where φn is the K-

characteristic function of Wn. Then, f is continuous and v(xn)|f(xn)| ≥ |λn|,
and so ‖f‖v = ∞, a contradiction.

(3) ⇒ (1). Let f ∈ C(X,E) and p ∈ cs(E). Since Av is bounded, there
exists d > supx∈Av

p(f(x)). Now pv(f) ≤ d‖v‖. This proves the equivalence
of (1), (2), (3).

Next we observe that (4) implies (5). Also, it is easy to see that (5)
implies (6). Finally, assume that (6) holds. From the equivalence of (3) and
(1), we get that pv(f) < ∞ for each p ∈ cs(E) and each f ∈ C(X,E). If
d > supx∈Av

p(f(x)), choose a compact set D such that v(x) < ε/d if x is
not in D. Now for x /∈ D we have that v(x)p(f(x)) < ε. This completes the
proof.

Lemma 5.2. If v is a bounded non-negative u.s.c. function on X and
0 < |λ| < 1, then there exists φ : X → K bounded such that |φ| is u.s.c. and
|φ| ≤ v ≤ |λ−1φ|. If v vanishes at infinity, so does φ.

Proof. We may assume that ‖v‖ < |λ|. Set

Dn = {x : v(x) ≥ |λn|}, An = Dn \Dn−1,

and let φn be the K-characteristic function of An. Let φ =
∑∞

n=1 λ
nφn. Then

|φ| is u.s.c.. Indeed, for ε real, set Bε = {x : |φ(x)| ≥ ε}. If ε > |λ|, then
Bε = ∅, while for ε ≤ 0 we have Bε = X . If 0 < ε ≤ |λ|, there exists positive
integer n such that |λ|n+1 < ε ≤ |λ|n. It is easy to see that Bε = Dn. This
proves that |φ| is u.s.c.. Let now x ∈ X . If φ(x) 6= 0, then x ∈ An for some
n, and so |φ(x)| = |λ|n ≤ v(x). Also, x /∈ Dn−1 and so v(x) < |λ|n−1, which
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implies that v(x) ≤ |λ−1φ(x)|. In case φ(x) = 0 we have v(x) = 0. This proves
that |φ| ≤ v ≤ |λ−1φ|. It is also clear that |φ| vanishes at infinity when v does.

Corollary 5.3. If V is a Nachbin family consisting of bounded func-
tions, then there exists a family Φ of bounded K-valued functions on X such
that |Φ| = {|φ| : φ ∈ Φ} is a Nachbin family equivalent to V .

Lemma 5.4. Let S0(X) be the family of all K-valued functions φ on X
such that |φ| is u.s.c., vanishes at infinity and has bounding support. Then
|S0(X)| is a Nachbin family on X

Proof. For φ1, φ2 in S0(X), let

φ : X → K, φ(x) =

{
φ1(x) + φ2(x) if |φ1(x)| 6= |φ2(x)|
φ1(x) otherwise

is in S0(X) and |φ| = max{|φ1|, |φ2|}. It is easy to see that |S0(X)| is a
Nachbin family.

Using the preceeding Lemmas, we get the following

Proposition 5.5. Assume that E is non-trivial and let V be a Nachbin
family on X The following are equivalent:
(1) CV0(X,E) = C(X,E) (algebraically).
(2) CV0(X) = C(X) (algebraically).
(3) V ≤ |S0(X)|.

By the preceeding Propositions, |S0(X)| is the finest (up to equivalence)
of all Nachbin families V on X such that CV0(X,E) = C(X,E) algebraically.

Definition. The strict topology on C(X,E) is the locally convex topol-
ogy βb generated by the seminorms pφ, φ ∈ S0(X), p ∈ cs(E), where

pφ(f) = sup{|φ(x)|p(f(x)) : x ∈ X}.
Proposition 5.6. If E is a polar space, then βb is a polar topology.

Proof. Let φ ∈ S0(X), p a polar seminorm on E and f ∈ C(X,E). If
pφ(f) > θ > 0, then p(φ(x)f(x)) > θ for some x ∈ X . Since p is polar,
there exists u ∈ E′, |u| ≤ p, such that |u(φ(x)f(x))| > θ. The function
ω : C(X,E) → K, ω(g) = u(φ(x)g(x)) is linear and |ω| ≤ pφ. Moreover
|ω(f)| > θ. This proves that pφ is polar.

Proposition 5.7. Let G be the space spanned by the functions gs, where
g is a characteristic function of a clopen subset of X and s ∈ E. Then G is
βb-dense in C(X,E).

Proof. Let f ∈ C(X,E), φ ∈ S0(X), p ∈ cs(E). Without loss of gener-
ality we may assume that ‖φ‖ ≤ 1. Since the function φf vanishes at infinity,
there exists a compact subset D of X such that p(φ(x)f(x)) ≤ 1 if x /∈ D. By
the compactness of D, there are x1, . . . , xn ∈ D and pairwise disjoint clopen
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sets A1, . . . , An covering D such that p(f(x) − f(xi)) ≤ 1 if x ∈ Ai Let now
gi be the K-characteristic function of Ai and let h =

∑n
i=1 gif(xi). Then

pφ(f − h) ≤ 1. This completes the proof.

For p ∈ cs(E), βb,p (resp. τu,b,p) is the topology on C(X,E) generated
by the seminorms pφ, φ ∈ S0(X) (resp. by pA, A a bounding subset of X).
Analogously, τc,p is the topology generated by the seminorms pA, A a compact
subset of X . Clearly a subset of C(X,E) is a βb-neighborhood of zero iff it
is a βb,p-neighborhood for some p ∈ cs(E). Analogous properties have the
topology τu,b and the toplogy τc of compact convergence.

For a sequence (Kn) of compact subsets of X and a sequence (dn) of
positive numbers, we denote by Wp(Kn, dn) the set

⋂∞
n=1{f ∈ C(X,E) :

pKn
(f) ≤ dn}. The proof of the following Proposition is analogous to the one

of Proposition 2.6 in [9].

Proposition 5.8. The collection of all sets of the form Wp(Kn, |λn|),
where 0 < |λn| < |λn+1|, |λn| → ∞, (Kn) an increasing sequence of compact
subsets of X such that

⋃
Kn is bounding in X, is a base at zero for the topology

βb,p.

Proposition 5.9. An absolutely convex subset W of C(X,E) is a βb,p-
neighborhood of zero iff the following is satisfied: There exists a bounding
subset A of X such that, for each d > 0, there is a compact subset D of A
and δ > 0 such that V ∩Wd ⊂W , where

V = {f : pD(f) ≤ δ}, Wd = {f : pA(f) ≤ d}.

Proof. Assume that W is a βb,p-neighborhood of zero. We may assume
that W = {f : pφ(f) ≤ 1} for some φ ∈ S0(X). Let A be the bounding
support of φ. Given d > 0, choose n > max{d, ‖φ‖}. There exists a compact
subset D of X such that |φ(x)| ≤ 1/n if x /∈ D. Taking D ∩ A instead of

D, we may assume that D ⊂ A. (Note that A = {x : φ(x) 6= 0}). If now
G = {f : pD(f) ≤ 1/n}, then Wd ∩ G ⊂ W . Conversely, assume that the
condition is satisfied for some bounding subset A of X . Let |λ| > 1 and let
V = {f : pA(f) ≤ 1}. There exist a decreasing sequence (δn) of positive
numbers and an increasing sequence (Kn) of compact subsets of X contained
in A such that Vn

⋂
λnV ⊂W , where Vn = {f : pKn

(f) ≤ δn}. Set

W1 = V1

⋂
(

∞⋂

n=1

(Vn+1 + λnV ).

With an argument analogous to the one used in [9], Theorem 2.8, we show
that W1 ⊂ W . Also, if 0 < |λ1| < min{1, δ1} and λn = λn−1 for n > 1, we
show that Wp(Kn, |λn|) ⊂W1. Thus the result follows from Proposition 5.8.

By the next Proposition, βb agrees with τc on τu,b-bounded sets.
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Proposition 5.10. (1) τc ≤ βb ≤ τu,b.
(2) βb = τc on τu,b-bounded sets.

Proof. (1) It is obvious.
(2) Let H be τu,b-bounded. We want to show that βb = τc on H . We may
assume that H is absolutely convex. It is then enough to show that every
βb,p-neighborhood of zero in H is also a τc,p-neighborhood. So, let W be a
βb,p- neighborhood of zero in C(X,E). There exists φ ∈ S0(X) such that
W1 = {f : pφ(f) ≤ 1} ⊂W . Since H is τu,b-bounded, there exists d > 0 such
that H ⊂ {f : pA(f) ≤ d} where A = suppφ. By the preceeding Proposition,
there exists δ > 0 and a compact set D such that

{f ∈ C(X,E) : pA(f) ≤ d}
⋂

{f : pD(f) ≤ δ} ⊂W1

and so H
⋂{f : pD(f) ≤ δ} ⊂W1. This completes the proof

As the following Proposition states, the topologies βb and τu,b have the
same bounded sets.

Proposition 5.11. βb and τu,b have the same bounded sets.

Proof. Assume that a subset H of C(X,E) is βb-bounded but not τu,b-
bounded. Let p ∈ cs(E) and A a bounding subset of X such that sup{pA(f) :
f ∈ H} = ∞. For |λ| > 1 we choose inductively a sequence (fn) in H and a
sequence (xn) in A such that p(f1(x1)) > |λ2| and

p(fk(xk)) > max{|λ|2k, sup{p(f(xi)) : f ∈ H, 1 ≤ i < k}}
for k > 1. Let φn be the K-charascteristic function of {x1, . . . , xn} and set φ =∑∞

n=1 λ
−nφn. It is easy to see that φ ∈ S0(X). Since |φ(xn)| = |∑∞

k=n λ
−k| =

|λ|−n, we have that p(φ(xn)fn(xn)) ≥ |λ|n and so supf∈H pφ(f) = ∞, a
contradiction.

Since β0 is defined on Cb(X,E) by the seminorms pφ, p ∈ cs(E) and φ a
K-valued function onX such that |φ| is u.s.c and vanishes at infinity (see [12]),
is clear that β0 is finer than the topology induced on Cb(X,E) by βb. The
next Proposition refers to the question of when these two topologies coincide
on Cb(X,E) .

Proposition 5.12. If X is zero-dimensional, then the following are equiv-
alent:
(1) Cb(X,E) = C(X,E).
(2) Cb(X) = C(X).
(3) υ0X is compact.
(4) Every countable subset of X is bounding.
(5) βb = β0 on Cb(X,E).

Proof. By Proposition 3.1, (1), (2) and (3) are equivalent. Also it is
clear that (3) implies (4) and it is easy to see that (4) implies (2).
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(2) ⇒ (5) It follows from the definitions of βb and β0 since (by (2)) every
subset of X is bounding.
(5) ⇒ (4). Let (xn) be a sequence of distinct elements of X and let φn be the
K-characteristic function of {x1, . . . , xn} Take 0 < |λ| < 1 and consider the
function φ =

∑∞
n=1 λ

nφn. Then |φ| is u.s.c. and vanishes at infinity. Thus,
if p ∈ cs(E), then W = {f ∈ Cb(X,E) : pφ(f) ≤ 1} is a β0-neighborhood of
zero. By our hypothesis, there exists q ∈ cs(E) and ω ∈ S0(X) such that

V = {f ∈ Cb(X,E) : qω(f) ≤ 1} ⊂W.

Since X is zero-dimensional, is easy to see that every xn is in the support A
of ω. This completes the proof.

Proposition 5.13. If every bounding subset of X is relatively compact,
then βb = τu,b. The converse is also true if X is Hausdorff and zero-
dimensional.

Proof. The condition is clearly sufficient since, in this case, τc = τu,b.
Conversely, assume that βb = τu,b and that X is zero-dimensional. Let A be
a bounding subset of X and choose a non-zero p ∈ cs(E). By our hypothesis,
there exist φ ∈ S0(X) and q ∈ cs(E) such that

{f : qφ(f) ≤ 1} ⊂ Z = {f : pA(f) ≤ 1}.
Choose s ∈ E with p(s) > 1 and a non-zero µ ∈ K with q(µs) ≤ 1. There
exists a compact subset D of X such that |φ(x)| < |µ| if x /∈ D. Now A ⊂ D.
If this is not the case, then there exists a clopen neighborhood V of an element
of A which is disjoint from D. If now ψ is the K-characteristic function of V ,
then f = ψs is not in Z which is a contradiction since qφ(f) ≤ 1.

Proposition 5.14. If every bounding σ-compact subset of X is relatively
compact, then βb = τc. The converse is also true if we assume that X is
Hausdorff and zero-dimensional.

Proof. Assume that the condition is sastisfied and let W be βb,p-
neighborhood of zero. There exist an increasing sequence (Kn) of compact
subsets of X , such that A =

⋃
Kn is bounding, and an increasing sequence

(dn) of positive real numbers, with dn → ∞, such that Wp(Kn, dn) ⊂W . By
our hypothesis, Ā is compact and

{f : pĀ(f) ≤ d1} ⊂Wp(Kn, dn).

Conversely, let βb = τc and assume that X is zero-dimensional. Let (An) be a
sequence of compact subsets of X such that A =

⋃
An is bounding. We may

assume that (An) is increasing. Let |λ| > 1 and set V = Wp(An, |λ|n). Since
V is a βb-neighborhood of zero, there exists (by our hypothesis) a compact
subset Z of X and q ∈ cs(E) such that {f : qZ(f) ≤ 1} ⊂ V . Now A ⊂ Z
and the result follows.

We get easily the following
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Proposition 5.15. If βb is bornological or barrelled, then βb = τu,b.

Proposition 5.16. If X is Hausdorff and zero dimensional, then the
following are equivalent:
(1) βb is metrizable.
(2) E is metrizable, every bounding subset of X is relatively compact and
there exists a fundamental sequence (Kn) of compact subsets of X, i.e. every
compact subset of X is contained in some Kn.

Proof. (1) ⇒ (2). Let (φn) be a sequence in S0(X) and let (pn)
be an increasing sequence of continuous seminorms on E such that the sets
Wn = {f : (pn)φn

(f) ≤ 1}, n = 1, 2, . . ., is a βb-base at zero. It is easy see
that the topology of E is generated by the sequence of seminorms (pn) and so
E is metrizable. Also, by the preceeding Proposition, βb = τu,b and so every
bounding subset of X is relatively compact, which implies that τc = βb. Let
now (qn) be a sequence of continuous seminorms on E and (Dn) an increasing
sequence of compact subsets of X such that the sets Zn = {f : (qn)Dn

(f) ≤
1}, n = 1, 2, . . ., is a base at zero for τc = βb. It is now easy to show that
every compact subset of X is contained in some Dn.

(2) ⇒ (1). Let (pn) be an increasing sequence of continuous seminorms
on E, generating its topology, and let (Kn) be an increasing fundamental
sequence of compact subsets of X . Set On = {f : (pn)Kn

(f) ≤ 1/n}. Then
(On) is a base at zero for τc. Since our hypothesis and Proposition 5.13 imply
that τc = τu,b = βb, the result follows.

We look next at the question of when the space (C(X,E), βb) is a semi-
Montel space (SM -space). We need the following Lemma whose proof is
analogous to the one of the Lemma 2.1 in [16].

Lemma 5.17. A subset H of C(X,E) is βb-compactoid iff it is τu,b-
bounded and τc-compactoid.

Proposition 5.18. If X is Hausdorff and zero-dimensional, then the
following are equivalent:
(1) (C(X), τc) is an SM -space.
(2) (C(X), τc) is nuclear.
(3) Every compact subset of X is finite.
(4) (C(X), βb) is an SM -space.

Proof. The equivalence of (1),( 2), (3) is proved in [6], Proposition 3.2.
(1) ⇒ (4). It follows from the preceeding Lemma since βb and τu,b have

the same bounded sets.
(4) ⇒ (1). Let D be an absolutely convex subset of C(X), which is τc-

bounded, M a compact subset of X and d > 0. Set W = {f : ωM (f) ≤ d} and
let |µ| ≥ supf∈D ωM (f). For each f ∈ D, set Vf = {x : |f(x)| ≤ |µ|} and let
gf = φff , where φf is the K-characteristic function of Vf . The set H = {gf :



298 A. K. KATSARAS

f ∈ D} is τu,b-bounded and hence βb-bounded. By our hypothesis, H is βb-
compactoid and hence τc-compactoid. Thus, for |λ| > 1, there are f1, . . . , fn

in D such that H ⊂ λco(gf1
, . . . , gfn

) + W . Now D ⊂ λco(f1, . . . , fn) + W
and so D is τc-compactoid. This completes the proof.

The following Theorem is analogous to Theorem 2.5 in [16] which refers
to β0.

Theorem 5.19. If X is Hausdorf and zero-dimensional, then the follow-
ing are equivalent:
(1) E is an SM -space and every compact subset of X is finite.
(2) (C(X), τc) and E are SM -spaces.
(3) (Cb(X), β0) and E are SM -spaces.
(4) (C(X,E), τc) is an SM -space.
(5) (Cb(X,E), β0) is an SM -space.
(6) (C(X), βb) and E are SM -spaces.
(7) (C(X,E), βb) is an SM -space.

Proof. By [16], Theorem 2.5, (1) - (5) are equivalent.
(4) ⇒ (7) It follows from Lemma 5.17 since τu,b and βb have the same

bounded sets.
(7) ⇒ (6) It is a consequence of the fact that both E and (C(X), βb)

are topologially isomorphic to certain subspaces of (C(X,E), βb) .
Finally (6) is equivalent to (2) in view of the preceeding Proposition.

Concerning the nuclearity of (C(X,E), βb), we have the following

Theorem 5.20. (C(X,E), βb) = G is nuclear iff both (C(X), βb) and E
are nuclear.

Proof. Assume that G is nuclear. Since E is topologically isomorphic
to a subspace of G and since G is polar, it follows that E is polar. Since,
for V = |S0(X)|, (C(X,E), βb) = CV0(X,E) and (C(X), βb) = CV0(X),
and since CV0(X) ⊗ E is topologically isomorphic to a dense subspace M
of CV0(X,E) (by [13], Proposition 4.2), it follows that (C(X), βb) ⊗ E is
topologically isomorphic to a dense subspace of (C(X,E), βb). Now the result
folows from the fact that a dense subspace, of a locally convex space H , is
nuclear iff H is nuclear and from the fact that the projective tensor product
of two locally convex spaces is nuclear iff each of the two spaces is nuclear
([6], Theorem 2.10).

6. The Dual Space of (C(X,E), βb)

For p a continuous seminorm on E, let Mt,b,p(X,E
′) denote the space of

all m ∈ Mp(X,E
′) with the property that there exists a bounding subset A

of X such that: (1) A is a support set for m. (2) For each ε > 0 there
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exists a compact subset D of A such that mp(V ) < ε for each clopen set V
disjoint from D.

Proposition 6.1. If m ∈Mt,b,p(X,E
′), then:

(a) Every f ∈ C(X,E) is m-integrable.
(b) The linear map Lm : C(X,E) → K, Lm(f) =

∫
fdm = m(f) is

βb,p-continuous.

Proof. Let A be a bounding subset of X such that (1) and (2) above
hold. Without loss of generality, we may assume that mp(X) ≤ 1. Let d > 0
and let f ∈ C(X,E) with pA(f) ≤ d. Without loss of generality, we may
assume that d = |γ| for some γ ∈ K. Given µ ∈ K, µ 6= 0, choose a compact
subset D of A such that mp(V ) < |µ| /d if V is disjoint from D. The set
Z = {x : p(f(x)) ≤ d} is clopen and contains A. By the compactness of D,
there are x1, . . . , xn and pairwise disjoint clopen sets A1, . . . , An, contained in
Z and covering D, such that xi ∈ Ai ∩D and p(f(x)− f(xi)) < |µ| if x ∈ Ai.
Let

An+1 = Z ∩ Ac
1 ∩ . . . ∩Ac

n and An+2 =

(
n+1⋃

k=1

Ak

)c

.

Choose xn+1 ∈ An+1 and xn+2 ∈ An+2 if these sets are non-empty (if
one of these sets is empty, we leave it out). If now {B1, . . . , BN} is a clopen
partition of X which is a refinement of {A1, . . . .An+2} and if yj ∈ Bj , then

|
N∑

j=1

m(Bj)f(yj) −
n+2∑

i=1

m(Ai)f(xi)| ≤ |µ|.

This proves that
∫
fdm exists. If moreover pD(f) ≤ 1, then

|
n∑

i=1

m(Ai)f(xi)| ≤ 1

and this implies that |
∫
fdm| ≤ max{|µ|, 1}. Taking 0 < |µ| < 1 we get

that

{f : pA(f) ≤ d, pD(f) ≤ 1} ⊂W = {f : |
∫
fdm| ≤ 1}.

This (by Propositioon 5.9) implies that Lm is βb,p-continuous.

Set

Mt,b(X,E
′) =

⋃

p∈cs(E)

Mt,b,p(X,E
′).

By the preceeding Proposition, everym ∈Mt,b(X,E
′) defines a βb-continuous

linear functional Lm on C(X,E). By the next Proposition, every βb-
continuous linear functional on C(X,E) is of the form Lm for some m ∈
Mt,b(X,E

′).
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Proposition 6.2. If L is a βb-continuous linear functional on C(X,E),
then L = Lm for some m ∈Mt,b(X,E

′).

Proof. The restriction of L to Cb(X,E) is β0-continuous. Thus, by [9],
Theorem 3.4, there exists m ∈ M(X,E ′) such that L(f) = m(f) for all f in
Cb(X,E). Let p ∈ cs(E) and φ ∈ S0(X)) be such that

W = {f ∈ C(X,E) : pφ(f) ≤ 1} ⊂ {f : |L(f)| ≤ 1}.
If V is clopen, p(s) ≤ 1, |µ| ≥ ‖φ‖ and if g is the K-characteristic function of
V , then f = µ−1gs ∈ W and so |m(V )s| ≤ |µ|. Thus mp(X) ≤ |µ|. Also, it is
easy to see that m(V ) = 0 if V is disjoint from the support A of φ. Next we
observe that, for γ 6= 0, there exists a compact set D such that |φ(x)| < |γ|
if x /∈ D. We may take D contained in A. It is now easy to see that, for V
disjoint from D, we have mp(V ) ≤ |γ|. This proves that m ∈ Mt,b(X,E

′).
Now, since for f = gs, g a characteristic function of a clopen set, we have that
L(f) = m(f), it folows that L = Lm by Proposition 5.7 since both L and Lm

are βb-continuous.

Combining Propositions 6.1 and 6.2, we have the following

Theorem 6.3. The map m 7→ Lm, from Mt,b(X,E
′) to the dual space of

(C(X,E), βb) is an algebraic isomorphism.

Proposition 6.4. A subset H of the dual space Mt,b(X,E
′) of

(C(X,E), βb) = G is βb,p-equicontinuous iff supm∈H mp(X) < ∞ and there
exists a bounding subset A of X, which is a common support for all m ∈ H,
such that for every ε > 0 there exists a compact subset D of A with mp(V ) < ε
for all m ∈ H and all clopen V disjoint from D.

Proof. Assume that H is βb,p-eqicontinuous and let φ ∈ S0(X) be such
that W = {f : pφ(f) ≤ 1} ⊂ H0. It is easy to see that mp(X) ≤ ‖φ‖ for
all m ∈ H and that the support A of φ is a support set for every m ∈ H .
Let now µ 6= 0 and let D be a compact subset of X such that |φ(x)| < |µ| if
x /∈ D. Clearly we may take D ⊂ A. Conversely, assume that the condition
is satisfied. Without loss of generality, we may assume that mp(X) ≤ 1 for
every m ∈ H . Let now d > 0 and choose µ with |µ| ≥ d. Let D be a compact
subset of A such that mp(V ) < |µ|−1, for all m ∈ H , if V is disjoint from D
and let

Z = {f : pD(f) ≤ 1, pA(f) ≤ d}
Let f ∈ Z and set

U = {x : p(f(x)) ≤ 1}, V = {x : p(f(x)) ≤ |µ|}.
For m ∈ H , we have |

∫
U∩V

fdm| ≤ 1 and |
∫

V ∩Uc fdm| ≤ 1 and so

|m(f)| = |
∫

V fdm| ≤ 1. Now the result follows from Proposition 5.9.
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Proposition 6.5. Let X be locally compact zero-dimensional and let m ∈
Mp(X,E

′) with a closed bounding support A such that mp is tight. Then
m ∈Mt,b(X,E

′).

Proof. Given ε > 0, there exists a compact subset D of X such that
mp(V ) < ε if V is disjoint from D. Since X is locally compact and zero-
dimensional, there exists a clopen compact set Y containing D. We will finish
the proof by showing that mp(V ) < ε for every clopen set V disjoint from
Y ∩ A. So let V be such a set. Since V ∩ Y is disjoint from A, we have that
mp(V ∩ Y ) = 0. Thus, mp(V ) = mp(V ∩ Y c) < ε. This completes the proof.

The following Proposition will be needed in the next section.

Proposition 6.6. Let H be a subset of M(X,E ′) consisting of measures
which are τ -additive, have a bounding support and with respect to which every
f ∈ C(X,E) is integrable. If the set

S(H) =
⋃

m∈H

supp m

is not bounding, then for every sequence (an) in K there exist f ∈ C(X,E)
and a sequence (mn) in H such that mn(f) = an for all n.

Proof. Let g ∈ C(X) be not bounded on S(H). Let |λ1| > 1. The set
A = {x : |g(x)| > |λ1|} must intersect the set D =

⋃
m∈Hsupp m. Hence

there exists m1 ∈ H for which supp m1 intersects A. Let |λ2| > max{2, |λ1|}
be such that supp m1 ⊂ {x : |g(x)| < |λ2|}. Now there exists a clopen set
U1 contained in {x : |λ1| < |g(x)| < |λ2|} and s1 ∈ E with m1(U1)s1 = 1.
Assume that we have already chosen m1, . . . ,mn in H , clopen sets U1, . . . , Un,
λ1, . . . , λn+1 in K and s1, . . . , sn in E. There exist mn+1 ∈ H , λn+2 ∈ K with
|λn+2| > max{n + 2, |λn+1|}, a clopen set Un+1 contained in {x : |λn+1| <
|g(x)| < |λn+2|} and sn+1 ∈ E such that supp mn+1 ⊂ {x : |g(x)| < |λn+2|}
and mn+1(Un+1)sn+1 = 1. Let (γn) be any sequence in K and consider the
function f =

∑∞
n=1 γnφnsn where φn is the K-characteristic function of Un.

It is easy to see that f is continuous. Moreover,

mn(f) = mn(

n∑

k=1

γkφksk) =

n∑

k=1

γkmn(Uk)sk.

Thus

m1(f) = γ1m1(U1)s1 = γ1, mn+1(f) =

n∑

k=1

γkmn+1(Uk)sk + γn+1.

It is now clear that we can choose (γn) so that mn(f) = an for all n.
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7. The Case of a Normed Space E

In this section we assume that E is a non-Archimedean normed space.
For f ∈ C(X,E), we set

Bf = {g ∈ C(X,E) : ‖g(x)‖ ≤ ‖f(x)‖ for all x ∈ X}.

Cearly Bf is τu,b-bounded.

Proposition 7.1. Let L be a linear functional on C(X,E) such that
L|Bf

is τc-continuous for every f ∈ C(X,E). Then, there exists a tight
element m of M(X,E′), with bounding support, such that L(f) = m(f) for
all f ∈ C(X,E).

Proof. For n a positive integer, let s ∈ E with ‖s‖ ≥ n. If f(x) = s for
all x ∈ X , then Dn = {g : ‖g‖ ≤ n} ⊂ Bf . Thus L|Dn

is τc-continuous. Since,
for E a normed space, β0 is the finest locally convex topology on Cb(X,E)
which coincides with τc on the sets Dn (by [9], Corollary 2.9), it follows that
L is β0-continuous on Cb(X,E) and hence there exists m ∈ Mp(X,E) (for
some p ∈ cs(E)) such that mp is tight and L(f) = m(f) when f ∈ Cb(X,E)
([9], Theorem 3.4).
Claim I: supp m is bounding. Indeed, assume the contrary and let g ∈ C(X)
be not bounded on A = supp m. There exists a sequence (λn) in K such that
0 < |λ1| < |λ2| < . . . < |λn| → ∞ and A ∩ Ak 6= ∅ where Ak = {x : |λk| ≤
|g(x)| < |λn+1|}. There exist a clopen subset Vk, contained in Ak, and sk ∈ E,
with ‖sk‖ ≤ 1 and m(Vk)sk = µk 6= 0. Set f =

∑∞
k=1 µ

−1
k λkφksk, where φk

is the K-characteristic function of Vk. Then, f is continuous. Moreover, if
fn =

∑n
k=1 µ

−1
k λkφksk, then fn ∈ Bf and fn → f with respect to τc. Hence,

L(f) = limL(fn). But, since fn is bounded, we have

L(fn) =
n∑

k=1

µ−1
k λkm(Vk)sk =

n∑

k=1

λk

and so |L(fn)| = |λn|. Thus |L(f)| = lim |λn| = ∞, a contradiction.
Claim II: L(f) = m(f) for all f ∈ C(X,E). Indeed, for
α = {A1, . . . , An;x1, . . . , xn} ∈ ΩX , set fα =

∑n
i=1 φAi

f(xi) where φAi
is the

K-characteristic function of Ai. Then m(f) = limm(fα). On the other hand,
fα → f with respect to τc. Indeed, let ε > 0 and let D be a compact subset of
X . There are pairwise disjoint clopen sets A1, . . . , An covering D and xi ∈ Ai

such that ‖f(x) − f(xi)‖ < ε if x ∈ Ai. Let An+1 be the complement of
the set

⋃n
i=1Ai and, in case An+1 is not empty, let xn+1 ∈ An+1. Then

α0 = {A1, . . . , An+1;x1, . . . , xn+1} ∈ ΩX . If α ≥ α0, then ωD(f − fα) ≤ ε,
which proves that fα → f with respect to τc. Since fα ∈ Bf , we get that
L(f) = limL(fα) = limm(fα) = m(f). This completes the proof.
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Corollary 7.2. If X is locally compact zero-dimensional and if L is a
linear functional on C(X,E), then L is βb-continuous iff L|Bf

is τc-continuous
for every f ∈ C(X,E).

Proof. If L is βb-continuous, then L|Bf
is τc-continuous, since Bf is τu,b-

bounded and thus τc = βb on Bf . On the other hand, if L|Bf
is τc-continuous

for every f ∈ C(X,E), then (by the preceeding Proposition) there exists m ∈
M(X,E′), which is tight and has a bounding support, such that L(f) = m(f)
for all f ∈ C(X,E). But then (by Proposition 6.5) m ∈ Mt,b(X,E

′) and so
is L is βb-continuous.

Let Gt,b(X,E
′) be the space of all m ∈ M(X,E ′) which are tight and

have bounding support.

Proposition 7.3. If m ∈ Gt,b(X,E
′), then every f ∈ C(X,E) is m-

integrable.

Proof. Let A=supp m. Given f ∈ C(X,E), choose d ≥ supx∈A ‖f(x)‖
and set W = {x : ‖f(x)‖ ≤ d}. Let φ be the K-characteristic function of
W and set g = φf, h = f − g. It is easy to see that h is m-integrable with∫
hdm = 0. Also g is m-integrable since it is bounded and m is tight. Thus

f = g + h is m-integrable.

Let now τ1 (resp τ2) be the finest locally convex topology (resp. the
finest polar topology) on C(X,E) which coincides with τc on each of the sets
Bf , f ∈ C(X,E). Since τ2 is the polar topolgy which corresponds to τ1, the
two topologies have the same dual space. This common dual space is contained
in Gt,b(X,E

′) by Proposition 7.1. On the other hand, let m ∈ Gt,b(X,E
′)

and let p be the norm of E. If A=supp m and f ∈ C(X,E), then there
exists µ ∈ K with |µ| ≥ supx∈A ‖f(x)‖. There is a compact set D such that
mp(U) < |µ|−1 if U is disjoint fromD. Let γ ∈ K be such thatmp(X) ≤ |γ|−1.
We claim that

{g : g ∈ Bf , ωD(g) ≤ |γ|} ⊂W = {g : |m(g)| ≤ 1}.
Indeed let g ∈ Bf , ωD(g) ≤ |γ|, and set

U = {x : ‖g(x)‖ ≤ |γ|}, V = {x : ‖f(x)‖ ≤ |µ|}.
Since

|
∫

V ∩U

gdm| ≤ 1 and |
∫

V ∩Uc

gdm| ≤ 1

we have that |m(g)| = |
∫

V
gdm| ≤ 1. This clearly proves that W is a τ1-

neighborhood of zero and so Lm is τ1-continuous . So we have the following

Proposition 7.4. (C(X,E), τi)
′ = Gt,b(X,E

′), for i = 1, 2.
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Theorem 7.5. Let X be locally compact zero-dimensional. Then:
(1) (C(X,E), βb)

′ = (C(X,E), τi)
′ = Mt,b(X,E

′), for i = 1, 2.
(2) A subset H of Mt,b(X,E

′) is βb-equicontinuous iff it is
τi-equicontinuous.
(3) If E is polar, then βb = τ2.
(4) In case E is a polar space, βb coincides with the finest polar topology
on C(X,E) which agrees with τc on τu,b- bounded sets.

Proof. (1) It follows from Propositions 6.5 and 7.4.
(2) Clearly βb ≤ τ1 and so every βb-equicontinuous is τ1-equicontinuous.
On the other hand, assume that H is τ1-equicontinuous.
Claim I: The set

S(H) =
⋃

m∈H

supp m

is bounding. Assume the contrary. Then, by Proposition 6.6, there exist
f ∈ C(X,E) and a sequence (mn) in H such that mn(f) = λn for all n,
where |λ| > 1. But then f is not absorbed by the polar H0 of H in C(X,E),
a contradiction.
Claim II: supm∈H ‖m‖ < ∞, where ‖m‖ = mp(X). Indeed, there exists a
compact subset D of X and γ ∈ K, 0 < |γ| ≤ 1, such that

{f : ω|D(f) ≤ |γ|, ‖f‖ ≤ 1} ⊂ H0

From this we get easily that ‖m‖ ≤ |γ|−1 for all m ∈ H .
Claim III For each γ 6= 0, there exists a compact subset D of S(H) such
that mp(U) ≤ |γ|, for all m ∈ H , if U is disjoint from D. Indeed, there exist
a compact subset Y and µ 6= 0, such that

O = {f : ωY (f) ≤ |µ|, ‖f‖ ≤ 1} ⊂ γH0.

We may choose Y clopen. Let now U be a clopen set disjoint from Y ∩S(H) =
D. Since U ∩ Y is disjoint from S(H), we have that mp(U ∩ Y ) = 0 for all
m ∈ H and so mp(U) = mp(U ∩Y c). If now φ is the K-characteristic function
of U ∩ Y c, then for each s ∈ E, with ‖s‖ ≤ 1, we have that φs ∈ O and
so |m(U ∩ Y c)s| ≤ |γ|. This implies that mp(U) = mp(U ∩ Y c) ≤ |γ|. Now
claims I, II, III above imply that H is βb-equicontinuous by Proposition 6.4
(3) It follows from (2) since the topology of a polar space coincides with
the topology of uniform convergence on the equiocontiuous subsets of its dual
space.
(4) Let τ3 be the finest polar topology which agrees with τc on τu,b-bounded
sets. Since every Bf , f ∈ C(X,E) is τu,b-bounded, it follows that τ3 ≤ τ2 and
so τ3 = βb = τ2 since βb ≤ τ3.
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