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EXTENSION DIMENSION OF INVERSE LIMITS

Sibe Mardešić

University of Zagreb, Croatia

Abstract. Recently L.R. Rubin and P.J. Schapiro have considered
inverse sequences X of metrizable spaces Xi, whose extension dimension
dimXi ≤ P , i.e., P ∈ AE(Xi), where P is an arbitrary polyhedron (or
CW -complex). They proved that dimX ≤ P , where X = lim X. The
present paper generalizes their result to inverse sequences of stratifiable
spaces, giving at the same time a more conceptual proof.

1. Introduction

By a polyhedron P we mean the geometric realization |K| of a simplicial
complex K endowed with the CW- topology. We say that the extension di-
mension of a space X does not exceed P , and we write dimX ≤ P , provided
every mapping f : A→ P from a closed subset A ⊆ X to P admits an exten-
sion to all of X , i.e., P is an absolute extensor for X , P ∈ AE(X). Formally,
extension dimension (for compacta) was first introduced in a 1994 paper by
A. Dranishnikov [9]. It was further studied by A. Dranishnikov and J. Dydak
[10] and other authors.

A classical theorem of dimension theory asserts that, for normal spaces
X , the covering dimension dimX ≤ n if and only if dimX ≤ Sn (see e.g.,
Theorem 3.2.10 of [12]). If G is an abelian group andK = K(G,n) is an Eilen-
berg - MacLane complex, then for paracompact spaces X , the cohomological
dimension dimGX ≤ n if and only if dimX ≤ |K|. This follows from the
work of H. Cohen [7], P.J. Huber [13], E.G. Sklyarenko [19] and Y. Kodama
[14].
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It is well known that for inverse systems X = (Xλ, pλλ′ ,Λ) of compact
Hausdorff spaces with dimXλ ≤ n the inverse limit X has dimension dimX ≤
n (see e.g., Theorem 3.3.6 of [12]). The following general proposition is also
easily proved (see Theorem 2.2 of [8]).

Proposition 1. Let X = (Xλ, pλλ′ ,Λ) be an inverse system of compact
Hausdorff spaces with inverse limit X and let P be a polyhedron. If dimXλ ≤
P , for every λ ∈ Λ, then also dimX ≤ P .

Much deeper is a 1959 result of K. Nagami [16] (also see Theorem 4.1.22
of [12]), which asserts that the limit X of an inverse sequence X = (Xi, pii+1)
of metrizable spacesXi with dimension dimXi ≤ n has dimension dimX ≤ n.
Its generalization to an arbitrary polyhedron P and inverse sequences of
metrizable spaces such that dimXi ≤ P , for every i ∈ N, was recently proved
by L.R. Rubin and P.J. Schapiro [18]. The case of separable metric spaces was
obtained earlier by A. Chigogidze [6]. In this theorem (as well as in Nagami’s
theorem) the assumption that the spaces Xi are metrizable cannot be re-
placed by the weaker condition that the spaces Xi be paracompact. Indeed,
in 1980 M.G. Charalambous exhibited an inverse sequence of paracompact
0-dimensional spaces Xi, whose limit X is a normal space and dimX > 0 [5].

The purpose of the present paper is to generalize the Rubin – Schapiro
theorem to inverse sequences of stratifiable spaces and, more important, to
give a more conceptual proof. The following is our main result.

Theorem 1. Let P be a polyhedron and let X = (Xi, pii+1) be an inverse
sequence of stratifiable spaces with limit X. If dimXi ≤ P , for all i, then also
dimX ≤ P .

The proof of Theorem 1 is a modification of the “natural” proof of Propo-
sition 1. Therefore, we first outline that proof.

Proof of Proposition 1. Let A ⊆ X be a closed set and let f : A→ P
be a mapping. Choose an open covering V of P such that any two V-near map-
pings into P are homotopic. Consider the inverse system A = (Aλ, pλλ′ ,Λ),
where Aλ = pλ(A) (pλ : X → Xλ are the natural projections) and pλλ′ : Aλ′ →
Aλ are the restrictions to Aλ′ of pλλ′ : Xλ′ → Xλ. It is readily seen that A
is the limit of A with projections pλ : A → Aλ, which are the restrictions to
A of the projections pλ : X → Xλ. Since A is compact and A is an inverse
system of compact spaces, p = (pλ) : A → A is a resolution (see Theorem 1
of I.6.1 in [15]). Therefore, by a characterization of resolutions (see I.6.2 of
[15]), there exist a λ ∈ Λ and a mapping gλ : Aλ → P such that the mapping
g = gλpλ : A → P is V-near to f . Clearly, g factors through Aλ and, by the
choice of V , it is homotopic to f . Since dimXλ ≤ P , gλ extends to a mapping
hλ : Xλ → P . Therefore, hλpλ : X → P is an extension of g to all of X . Now
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the homotopy extension theorem implies that also f admits an extension to
all of X . �

Remark 1. Note that whenever a mapping g : A → P factors through
some Aλ, then it also factors through all Aλ′ , where λ′ ranges through a
cofinal subset of Λ. Indeed, it suffices to consider indices λ′ ≥ λ and put
gλ′ = gλpλλ′ .

In the case of an inverse system X = (Xλ, pλλ′ ,Λ) of non-compact spaces
with limit X and projections pλ : X → Xλ we must replace factorization of
mappings by the more general notion of a filtered factorization of mappings,
defined as follows. Let X = (Xλ, pλλ′ ,Λ) be an inverse system of spaces with
limit X and projections pλ : X → Xλ. Let U ⊆ X be a non -empty open set
and let g : U → P be a mapping. By a filtered factorization of g through X

we mean a family of open sets Gλ ⊆ Xλ, λ ∈ Λ, and a family of mappings
gλ : Gλ → P which satisfy the following conditions.

(1.1) p−1
λλ′(Gλ) ⊆ Gλ′ , λ < λ′,

(1.2)
⋃

λ∈Λ

p−1
λ (Gλ) = U,

(1.3) g|p−1
λ (Gλ) = gλpλ|p−1

λ (Gλ).

Condition (1.1) implies

(1.4) p−1
λ (Gλ) ⊆ p−1

λ′ (Gλ′ ), λ ≤ λ′,

which together with (1.2) shows that the sets p−1
λ (Gλ) form an increasing

filtration of U . On the other hand, (1.3) gives factorizations of g restricted
to members of that filtration. Some of the sets Gλ can be empty, but not all
because of (1.2).

Remark 2. If the projections pλ are surjective, condition (1.3) implies

(1.5) gλ′ |p−1
λλ′(Gλ) = gλpλλ′ |p−1

λλ′(Gλ), λ ≤ λ′.

The key step in the proof of Theorem 1 is the following theorem which
could prove useful in other situations as well.

Theorem 2. Let X = (Xi, pii+1) be an inverse sequence of paracompact
perfectly normal spaces with limit X and surjective projections pi : X → Xi.
Let P be a polyhedron, V an open covering of P and U ⊆ X an open set. Then
every mapping f : U → P admits a mapping g : U → P , which is V-near to f
and admits a filtered factorization through X.

In [17] Rubin has established a more general version of his result with
Schapiro by replacing the condition dimXi ≤ P , i ∈ N, by the weaker condi-
tion dim X ≤ P . For an inverse system X = (Xλ, pλλ′ ,Λ) the latter condition
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means that, for every λ ∈ Λ, closed set Aλ ⊆ Xλ and mapping fλ : Aλ → P ,
there exists a λ′ ≥ λ such that the mapping fλpλλ′ |p−1

λλ′(Aλ) extends to all
of Xλ′ . The analogous result for inverse sequences of stratifiable spaces is
established in Theorem 4. The proof also uses Theorem 2.

2. Preliminaries

We now recall some well-known notions and facts from geometric and
general topology needed in our proofs.

If U is an open covering of a space X , let N(U) denote the corresponding
nerve. A mapping f : X → |N(U|) is called canonical if f−1(St (U,N(U))) ⊆
U , for every U ∈ U . An open covering is normal if it admits a canonical
mapping. In a paracompact space every open covering is normal. Every
polyhedron P admits an open covering V such that any two V-near mappings
into P are homotopic (see e.g., Theorem 2.6 of [3]). Every open covering V
of a polyhedron P admits a triangulation K such that the closed stars of K
refine V (see e.g., Theorem 4, Appendix 1 of [15]). Two mappings f, g into the
geometric realization |K| of a simplicial complex K are said to be contiguous,
denoted by f ≡ g, provided every point x ∈ X admits a simplex σ ∈ K such
that f(x), g(x) ∈ |σ|, where |σ| denotes the closure of σ in |K|.

Every paracompact space is normal. Paracompact perfectly normal spa-
ces (open sets are Fσ-sets) are hereditarily paracompact, i.e., all of their
subsets are paracompact (see e.g., Exercise 5. 139 in [1]). A T1-space X is
stratifiable provided with every open set U ⊆ X one can associate a sequence
of open sets Un ⊆ X in such a way that the following conditions be fulfilled.

(S1) Un ⊆ U ,

(S2)
⋃∞

n=1 Un = U ,

(S3) U ⊆ V ⇒ Un ⊆ Vn.

Stratifiable spaces were introduced in 1961 by J. Ceder [4] as a gener-
alization of metrizable spaces. Every stratifiable space is paracompact and
perfectly normal. Every subset of a stratifiable space is stratifiable. Hence,
stratifiable spaces are hereditarily paracompact. The direct sum of an ar-
bitrary collection of stratifiable spaces is stratifiable. The direct product of
a countable collection of stratifiable spaces is stratifiable. Consequently, the
limit of an inverse sequence of stratifiable spaces is a stratifiable space. All
polyhedra are stratifiable spaces. Polyhedra are absolute neighborhood ex-
tensors (ANE’s) for stratifiable spaces [3]. It easily follows that polyhedra
have the homotopy extension property for stratifiable spaces, i.e., if P is a
polyhedron, X is a stratifiable space and A ⊆ X is a closed set, then every
mapping f : (X × 0) ∪ (A× I) → P extends to all of X × I .
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3. Filtered factorizations of mappings

This section is devoted to the proof of Theorem 2. For this we need some
lemmas.

Lemma 1. Let X,X ′ be topological spaces and let p : X → X ′ be a sur-
jective mapping. Let U = (Uγ , γ ∈ Γ) be a collection of non-empty open sets
in X and let U ⊆ X be their union. Similarly, let U ′ = (U ′

γ , γ ∈ Γ′) be a
collection of non-empty open sets in X ′ and let U ′ ⊆ X ′ be their union. If
Γ′ ⊆ Γ and

(3.6) p−1(U ′
γ) ⊆ Uγ , for γ ∈ Γ′,

then the inclusion Γ′ ↪→ Γ induces a simplicial injection s : N(U ′) → N(U)
between the corresponding nerves. Furthermore, if f : U → |N(U)| and
f ′ : U ′ → |N(U ′)| are canonical mappings, then f |p−1(U ′) and sf ′p|p−1(U ′)
are contiguous mappings into N(U).

Proof. Let the vertices U ′
γ0
, . . . , U ′

γn
, γ0, . . . , γn ∈ Γ′, span a simplex of

N(U ′). Then U ′
γ0

∩ . . . ∩ U ′
γn

6= ∅. Since p : X → X ′ is a surjection, it follows
that

(3.7) ∅ 6= p−1(U ′
γ0

∩ . . .∩U ′
γn

) = p−1(U ′
γ0

)∩ . . .∩ p−1(U ′
γn

) ⊆ Uγ0
∩ . . .∩Uγn

and thus, the vertices Uγ0
= s(Uγ′

0
), . . . , Uγn

= s(Uγ′

n
) span a simplex of

N(U).

We will now prove that the mappings f |p−1(U ′) and sf ′p|p−1(U ′) are
contiguous. Let x ∈ p−1(U ′) and let Uγ0

, . . . , Uγn
be the vertices of the simplex

σ ∈ N(U) which contains f(x) in its interior. Similarly, let U ′
γ′

0

, . . . , U ′
γ′

m
be

the vertices of the simplex σ′ ∈ N(U ′) which contains f ′p(x) in its interior.
Since s is a simplicial injection, the point sf ′p(x) lies in the interior of the
simplex σ′′ ∈ N(U), whose vertices are Uγ′

0
, . . . , Uγ′

m
. It thus suffices to show

that the vertices Uγ0
, . . . , Uγn

, Uγ′

0
, . . . , Uγ′

m
span a simplex of N(U), i.e., that

(3.8) Uγ0
∩ . . . ∩ Uγn

∩ Uγ′

0
∩ . . . ∩ Uγ′

m
6= ∅.

Note that

(3.9) f(x) ∈ St (Uγ0
, N(U)) ∩ . . . ∩ St (Uγn

, N(U)).

Since f is a canonical mapping, f−1(St (Uγ , N(U)) ⊆ Uγ and thus, (3.9)
implies

(3.10) x ∈ Uγ0
∩ . . . ∩ Uγn

.

Similarly,

(3.11) f ′p(x) ∈ St (U ′
γ′

0

, N(U ′)) ∩ . . . ∩ St (U ′
γ′

m
, N(U ′))

and (3.6) implies

(3.12) x ∈ p−1(U ′
γ′

0

) ∩ . . . ∩ p−1(U ′
γ′

m
) ⊆ Uγ′

0
∩ . . . ∩ Uγ′

m
.
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Clearly, (3.10) and (3.12) yield (3.8). �

Lemma 2. Let X = (Xi, pii+1) be an inverse sequence of hereditarily
paracompact spaces with limit X and surjective projections pi : X → Xi, i ∈ N.
Let U ⊆ X be an open set and let f : U → P be a mapping into a polyhedron
P = |K|. Then there exist open sets Ui ⊆ Xi such that

(3.13) p−1
ii+1(Ui) ⊆ Ui+1,

(3.14)
⋃

i∈N
p−1

i (Ui) = U.

Moreover, there exist maps hi : Ui → |K|, i ∈ N, such that

(3.15) hipii+1|p−1
ii+1(Ui) ≡ hi+1|p−1

ii+1(Ui),

(3.16) hipi|p−1
i (Ui) ≡ f |p−1

i (Ui).

Proof. Let Γ be the set of all vertices of K for which

(3.17) Uγ = f−1(St (γ,K)) 6= ∅.
Consider the open covering U = (Uγ , γ ∈ Γ) of U and note that Γ is a subset
of the set K0 of all the vertices of K. For i ∈ N and γ ∈ Γ consider the open
subset Uiγ of Xi, defined as the union of all open sets V ⊆ Xi, for which

p−1
i (V ) ⊆ Uγ . Let Γi ⊆ Γ be the set of all γ ∈ Γ, for which Uiγ 6= ∅. Clearly,

Γi ⊆ Γ and

(3.18) p−1
i (Uiγ) ⊆ Uγ ⊆ U, for γ ∈ Γi.

Put Ui = (Uiγ , γ ∈ Γi) and

(3.19) Ui =
⋃

γ∈Γi

Uiγ .

To prove (3.13) note that pi = pii+1pi+1 implies

(3.20) p−1
i+1(p

−1
ii+1(Uiγ)) = p−1

i (Uiγ) ⊆ Uγ .

Since Ui+1γ contains all open subsets of V ⊆ Xi+1 satisfying p−1
i+1(V ) ⊆ Uγ ,

formula (3.20) shows that

(3.21) p−1
ii+1(Uiγ) ⊆ Ui+1γ .

Note that (3.21) implies Γi ⊆ Γi+1. Indeed, if γ ∈ Γi, i.e., Uiγ 6= ∅, then

p−1
ii+1(Uiγ) 6= ∅, because the surjectivity of pi implies the surjectivity of pii+1.

Consequently, Ui+1γ 6= ∅, i.e., γ ∈ Γi+1. Finally, (3.21), (3.19) for i and i+ 1
and the inclusion Γi ⊆ Γi+1 yield (3.13).

To establish (3.14) first note that (3.18) and (3.19) imply ∪i p
−1
i (Ui) ⊆ U .

To prove the converse inclusion consider a point x ∈ U and choose γ ∈ Γ so
that x ∈ Uγ . Since X = lim X and Uγ is open, there is an i ∈ N and there
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is an open set V ⊆ Xi such that pi(x) ∈ V and p−1
i (V ) ⊆ Uγ . Therefore,

∅ 6= V ⊆ Uiγ and γ ∈ Γi. Moreover,

(3.22) x ∈ p−1
i (V ) ⊆ p−1

i (Uiγ) ⊆ p−1
i (Ui).

Let us now see that N(U) can be viewed as a subcomplex of K and f
can be viewed as a canonical mapping f : U → |N(U)| ⊆ |K|. To verify the
first assertion it suffices to see that the inclusion Γ ↪→ K0 induces a simplicial
injection s : N(U) → K. Indeed, if Uγ0

, . . . , Uγn
span a simplex of N(U), then

Uγ0
∩ . . . ∩ Uγn

6= ∅ and thus,

(3.23) f−1(St (γ0,K) ∩ . . . ∩ St (γn,K)) 6= ∅,

which implies St (γ0,K)∩ . . .∩St (γn,K) 6= ∅. Consequently, the vertices γ0 =
s(Uγ0

), . . . , γn = s(Uγn
) span a simplex ofK. Also note that f(U) ⊆ |N(U)| ⊆

|K|. Indeed, if x ∈ U and the vertices γ0, . . . , γn span a simplex σ ∈ K which
contains f(x) in its interior, then f(x) lies in St (γ0,K)∩ . . .∩ St (γn,K) and
therefore, x ∈ Uγ0

∩ . . . ∩ Uγn
. Consequently, Uγ0

∩ . . . ∩ Uγn
6= ∅. However,

this implies that γ0, . . . , γn ∈ Γ and Uγ0
, . . . , Uγn

are vertices which span a
simplex of N(U). Moreover, for γ ∈ Γ, (3.17) implies

(3.24) f−1(St (Uγ , N(U)) ⊆ f−1(St (γ,K)) = Uγ ,

which shows that f : U → |N(U)| is a canonical mapping.

In order to define the mappings hi : Ui → |K| we first choose, for every
i ∈ N, a canonical mapping gi : Ui → |N(Ui)|. Such mappings exist because
Xi is hereditarily paracompact and thus, Ui is paracompact. We then apply
Lemma 1 to the spaces X,Xi, the mapping pi, the open coverings U of U and
Ui of Ui and the canonical mappings f : U → |N(U)| and gi : Ui → |N(Ui)|.
We obtain a simplicial injection si : N(Ui) → N(U) induced by the inclusion
Γi ↪→ Γ. Define the desired mapping hi : Ui → |N(U)| ⊆ P by

(3.25) hi = sigi.

One obtains (3.16) as an immediate consequence of the assertion of
Lemma 1. To prove (3.15), apply Lemma 1 to the surjection pii+1, to the col-
lections Ui+1 and Ui and to the canonical mappings gi+1 : Ui+1 → |N(Ui+1)|
and gi : Ui → |N(Ui)|. One obtains a simplicial injection sii+1 : N(Ui) →
N(Ui+1), induced by the inclusion Γi ↪→ Γi+1, such that

(3.26) sii+1gipii+1|p−1
ii+1(Ui) ≡ gi+1|p−1

ii+1(Ui).

Also note that si+1sii+1 : N(Ui) → N(U) is a simplicial mapping induced by
the inclusions Γi ↪→ Γi+1 ↪→ Γ. Consequently, it coincides with si : N(Ui) →
N(U). Note that the compositions of two contiguous mappings with the same
simplicial mapping are contiguous mappings. Therefore, (3.25) and (3.26)
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yield

(3.27)
hipii+1|p−1

ii+1(Ui) = si+1sii+1gipii+1|p−1
ii+1(Ui) ≡

si+1gi+1|p−1
ii+1(Ui) = hi+1|p−1

ii+1(Ui). �

Remark 3. Note that the set Uiγ was defined as the maximal open set

V having the property that p−1
i (V ) is contained in Uγ. Rubin and Schapiro

[18] defined such an open set as the Uγ- response to pi and denoted it by
resp(Uγ , pi). We use this construction also in the proof of Theorem 3, where
Vi = resp(V, pi).

Lemma 3. Let X = (Xi, pii+1) be an inverse sequence of perfectly normal
spaces with limit X and projections pi : X → Xi. Let U ⊆ X and Ui ⊆ Xi be
open sets which satisfy (3.13) and (3.14). Then there exist open sets Gi ⊆ Xi

such that

(3.28) Gi ⊆ Ui,

(3.29) p−1
ii+1(Gi) ⊆ Gi+1,

(3.30)
⋃

i∈N
p−1

i (Gi) = U.

Proof. In a perfectly normal space Y each open set V is a cozero-set,
i.e., it is of the form φ−1(0, 1], for some mapping φ : Y → [0, 1] (see e.g.,
Corollary 1.5.12 of [11]). It is therefore easy to see that, for every i ∈ N, the
open set Ui can be represented as the union of a sequence of open subsets
V 1

i , V
2
i , . . . of Xi such that

(3.31) V n
i ⊆ V n

i ⊆ V n+1
i ,

(3.32) Ui =
⋃

j∈N
V j

i .

We define the open sets Gi ⊆ Xi by induction on i. In addition to
conditions (3.28) and (3.29) we also require that

(3.33) p−1
ik (V k

i ) ⊆ Gk, for 1 ≤ i ≤ k.

Since V 1
1 ⊆ U1 and X1 is normal, it is possible to choose an open set

G1 in X1 for which G1 ⊆ U1 and V 1
1 ⊆ G1. Now assume that we have

already defined sets G1, . . . , Gi in accordance with (3.28), (3.29) and (3.33).
We choose as Gi+1 an open set in Xi+1 such that Gi+1 ⊆ Ui+1 and Gi+1

contains the closed sets p−1
ii+1(Gi) and p−1

ji+1(V
i+1
j ), where 1 ≤ j ≤ i+1. Since

this is a finite collection of closed sets contained in Ui+1, the existence of Gi+1

is a consequence of the normality of Xi+1. Clearly, the sets Gi constructed in
this way satisfy (3.28), (3.29) and (3.33). It remains to prove that they also
satisfy (3.30).
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Given a point x ∈ U , (3.14) shows that there exists an index i ∈ N such
that x ∈ p−1

i (Ui). Therefore, by (3.32), there exists an integer j ≥ 1 such

that pi(x) ∈ V j
i and thus, pi(x) ∈ V k

i , for k ≥ j. If also k ≥ i, one has
pi(x) = pikpk(x) and thus,

(3.34) pk(x) ∈ p−1
ik (pi(x)) ⊆ p−1

ik (V k
i ).

By (3.33), pk(x) ∈ Gk and thus, x is contained in p−1
k (Gk) ⊆ ∪ip

−1
i (Gi).

Consequently, U is contained in the left side of (3.30). The opposite inclusion
is an immediate consequence of Gi ⊆ Ui and of (3.14). �

Remark 4. The natural analogues of Lemmas 2 and 3 hold also for in-
verse systems indexed by cofinite directed sets Λ.

Lemma 4. Let X be a normal space and K a simplicial complex. Let
A ⊆ X be a closed set and let V, U ⊆ X be open sets such that A ⊆ V ⊆
V ⊆ U . If h : U → |K| and g : V → |K| are mappings such that h|V and g
are contiguous mappings, then there exists a mapping k : U → |K|, which is
contiguous to h and is such that

(3.35) k|A = g|A,

(3.36) k|U\V = h|U\V.

Proof. By normality of X choose an open set H ⊆ X such that A ⊆
H ⊆ H ⊆ V . Choose a mapping φ : X → [0, 1] such that φ(A) = 1 and
φ(X\H) = 0. Then define k : U → |K| by

(3.37) k(x) =

{
φ(x)g(x) + (1 − φ(x))h(x), x ∈ V,
h(x), x ∈ U\H.

Note that, for every point x ∈ V , the points g(x) and h(x) belong to a closed
simplex |σ| from K. Therefore, φ(x)g(x) + (1 − φ(x))h(x) is a well-defined
point of |σ|. Moreover, the two expressions in (3.37) assume the same values
on V ∩ (U\H), which shows that k is a well-defined mapping. Finally, for
x ∈ A, φ(x) = 1 and thus, k(x) = g(x). Similarly, for x ∈ U\V , φ(x) = 0 and
thus, k(x) = h(x). �

Proof of Theorem 2. Choose a triangulation K of P such that its
closed stars form a closed covering which refines V . Since paracompact per-
fectly normal spaces are hereditarily paracompact, we can apply Lemma 2
to X = (Xi, pii+1), X , pi, U and f : U → |K|. We thus obtain open sets
Ui ⊆ Xi and mappings hi : Ui → |K| such that (3.13)–(3.16) hold. The
first two of these relations enable us to apply Lemma 3 and obtain open sets
Gi ⊆ Xi such that (3.28), (3.29), and (3.30) are fulfilled.
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We will now define, by induction on i, a sequence of mappings gi : Ui →
|K|. Consider the open sets V1 = ∅,
(3.38) Vj+1 = Gj+1 ∩ p−1

jj+1(Uj), j ∈ N,

and note that

(3.39) p−1
jj+1(Gj) ⊆ Vj+1 ⊆ Vj+1 ⊆ Uj+1, j ∈ N,

For i = 1 put g1 = h1. Assume that we have already defined mappings
g1, . . . , gi and that they satisfy the following conditions.

(3.40) gj+1|p−1
jj+1(Gj) = gjpjj+1|p−1

jj+1(Gj), 1 ≤ j < i,

(3.41) gj |(Uj\Vj) = hj |(Uj\Vj), 1 ≤ j ≤ i,

(3.42) gj+1|(Uj+1\p−1
jj+1(Vj)) ≡ hj+1|(Uj+1\p−1

jj+1(Vj)), 1 ≤ j < i.

To define gi+1 apply Lemma 4 to the sets from (3.39) (for j = i) and
to the mappings hi+1 : Ui+1 → |K| and hipii+1|Vi+1. Note that the lat-
ter mapping is defined because Vi+1 ⊆ p−1

ii+1(Ui). Moreover, by (3.15),
hi+1|Vi+1 ≡ hipii+1|Vi+1. One obtains a mapping ki+1 : Ui+1 → |K| such
that

(3.43) ki+1|p−1
ii+1(Gi) = hipii+1|p−1

ii+1(Gi),

(3.44) ki+1|(Ui+1\Vi+1) = hi+1|(Ui+1\Vi+1).

(3.45) ki+1 ≡ hi+1.

Now note that Vi ⊆ Gi ⊆ Ui. Furthermore, by (3.41), gi|(Ui\Vi) = hi|(Ui\Vi)
and therefore,

(3.46) gipii+1|(p−1
ii+1(Ui)\p−1

ii+1(Vi)) = hipii+1|(p−1
ii+1(Ui)\p−1

ii+1(Vi)).

We define gi+1 : Ui+1 → |K| by the formula

(3.47) gi+1(x) =

{
gipii+1(x), x ∈ p−1

ii+1(Gi),
ki+1(x), x ∈ Ui+1\p−1

ii+1(Vi).

Note that the sets p−1
ii+1(Gi) and Ui+1\p−1

ii+1(Vi) are closed subsets of Ui+1 and

their intersection S is contained in the set p−1
ii+1(Ui)\p−1

ii+1(Vi). Therefore, by

(3.46), gipii+1|S = hipii+1|S. On the other hand, S ⊆ p−1
ii+1(Gi). Therefore,

(3.43) shows that also ki+1|S = hipii+1|S. Consequently, the mapping gi+1 is
well defined. Clearly, (3.40) holds because of the first line in (3.47). In order
to verify (3.41), note that p−1

ii+1(Vi) ⊆ p−1
ii+1(Gi) ⊆ Vi+1 and thus, Ui+1\Vi+1 ⊆

Ui+1\p−1
ii+1(Vi). Therefore, (3.44) and (3.47) show that (3.41) holds also for

j = i+ 1. Finally, (3.42) holds for j = i because of (3.45) and (3.47).
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We now define the mapping g : U → |K| by putting

(3.48) g|p−1
i (Gi) = gipi|p−1

i (Gi), i ∈ N.

Since pi = pii+1pi+1, it follows that

(3.49) p−1
i (Gi) = p−1

i+1(p
−1
ii+1(Gi)) ⊆ p−1

i+1(Gi+1)

However, by (3.40), gi+1pi+1|p−1
i (Gi) = gipi|p−1

i (Gi) and thus,

(3.50) gi+1pi+1|p−1
i (Gi) = gipi|p−1

i (Gi),

which shows that g is well defined on U = ∪i p
−1
i (Gi). Continuity of g is a

consequence of the fact that g on p−1
i (Gi) is given by the continuous mapping

gipi and the sets p−1
i (Gi), i ∈ N, form an open covering of U .

It remains to prove that, for every x ∈ U , the points f(x) and g(x)
belong to a closed star of K. By (1.2) and (3.48), it suffices to prove that, for
x ∈ p−1

i (Gi), the points f(x) and gipi(x) belong to a closed star of K. We
will prove this assertion by induction on i. The assertion is true for i = 1,
because g1(p1(x)) = h1(p1(x)) and, by (3.16), f |p−1

i (U1) ≡ h1p1|p−1
i (U1). Let

us now prove the assertion for i + 1 assuming that it holds for i. By (3.47),
gi+1pi+1(x) equals gipi(x) or ki+1pi+1(x). In the first case, the induction
hypothesis implies that f(x) and gipi(x) belong to a closed star of K. In
the second case, (3.45), the points ki+1pi+1(x) and hi+1pi+1(x) belong to a
closed simplex of K. However, by (3.16), f(x) and hi+1pi+1(x) also belong to
a closed simplex of K. Consequently, ki+1pi+1(x) and f(x) belong to a closed
star of K. �

4. Proof of the main theorem

We shall see that Theorem 2 essentially reduces the proof of Theorem 1
to the following theorem.

Theorem 3. Let X = (Xi, pii+1) be an inverse sequence of paracompact
perfectly normal spaces with limit X and surjective projections pi : X → Xi.
Let P be a polyhedron, let A ⊆ X be a closed set and U ⊆ X an open set,
A ⊆ U , and let g : U → P be a mapping which admits a filtered factorization
through X. If dimXi ≤ P , for every i ∈ N, then there exists a mapping
h : X → P , which extends g|A.

Proof of Theorem 3. Let a filtered factorization of g : U → P be
given by open sets Gi ⊆ Xi and by mappings gi : Gi → P , which satisfy
the analogues of (3.6)–(3.8). Consider the open set V = X\A and let Vi ⊆ Xi

be the maximal open set for which p−1
i (Vi) ⊆ V . Note that

(4.51) p−1
ii+1(Vi) ⊆ Vi+1,

(4.52)
⋃

i

p−1
i (Vi) = V.
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An application of Lemma 3 to V and Vi yields open sets Hi ⊆ Xi such that

(4.53) Hi ⊆ Vi,

(4.54) p−1
ii+1(Hi) ⊆ Hi+1,

(4.55)
⋃

i

p−1
i (Hi) = V.

Note that, for every i,

(4.56) pi(A) ∩Hi = ∅.
Indeed, since Hi is an open set, pi(A)∩Hi 6= ∅ implies that also pi(A)∩Hi 6= ∅
and thus, ∅ 6= A ∩ p−1

i (Hi) ⊆ A ∩ V , which is a contradiction.

We will now define, by induction on i, a sequence of closed sets Ci ⊆ Xi

and a sequence of mappings hi : Ci → P , which have the following properties.

(4.57) Hi ⊆ Ci ⊆ Gi ∪Hi,

(4.58) Gi ∩ pi(A) ⊆ IntCi,

(4.59) p−1
ii+1(Ci) ⊆ Ci+1,

(4.60) hi+1|p−1
ii+1(Ci) = hipii+1|p−1

ii+1(Ci),

(4.61) hi|(Ci\Hi) = gi|(Ci\Hi).

We begin the induction by putting C1 = G1 ∪ H1. We define h1 on G1

by h1|G1 = g1. We then extend it to C1 using the fact that dimX1 ≤ P and
thus also dimC1 ≤ P . Now assume that we have already defined the sets
C1, . . . , Ci and the mappings h1, . . . , hi. In order to define Ci+1, note that

(4.54) and (4.56) (for i+1) yield p−1
ii+1(Hi)∩ pi+1(A) = ∅. Therefore, one can

find an open set W ⊆ Xi+1 such that

(4.62) pi+1(A) ⊆W,

(4.63) W ⊆ Xi+1\ p−1
ii+1(Hi).

Put

(4.64) Ci+1 = p−1
ii+1(Ci) ∪ (Gi+1 ∩W ) ∪Hi+1.

Cleary, (4.59) is fulfilled. (4.57) for i + 1 is a consequence of (4.57) for i, of
(4.54) and of the analogous relation for Gi and Gi+1. Furthermore, (4.58)
holds because

(4.65) Gi+1 ∩ pi+1(A) ⊆ Gi+1 ∩W ⊆ IntCi+1.

We define hi+1 on p−1
ii+1(Ci) by (4.60). We also put

(4.66) hi+1|(Gi+1 ∩W ) = gi+1|(Gi+1 ∩W ).
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In order to verify that (4.66) is compatible with (4.60), we will show that both
formulas on the intersection

(4.67) S = p−1
ii+1(Ci) ∩ (Gi+1 ∩W )

yield the same mapping gipii+1|S. Indeed, p−1
ii+1(Hi) ∩ (Gi+1 ∩W ) ⊆

p−1
ii+1(Hi) ∩W = ∅ and thus, S ⊆ p−1

ii+1(Gi)∩(Gi+1 ∩W ) ⊆ p−1
ii+1(Gi). By Re-

mark 2, gi+1|p−1
ii+1(Gi) = gipii+1|p−1

ii+1(Gi). Therefore, (4.66) yields hi+1|S =

gi+1|S = gipii+1|S. On the other hand, by (4.63), S ⊆ p−1
ii+1(Ci)\p−1

ii+1(Hi) =

p−1
ii+1(Ci\Hi) and

(4.68) hipii+1|p−1
ii+1(Ci\Hi) = gipii+1|p−1

ii+1(Ci\Hi),

because pii+1(p
−1
ii+1(Ci\Hi)) ⊆ Ci\Hi and by (4.61), hi|(Ci\Hi) = gi|(Ci\Hi).

Hence, definition (4.60) yields hi+1|S = hipii+1|S = gipii+1|S. Finally,
dimCi+1 ≤ P , because dimXi+1 ≤ P . Therefore, hi+1 extends to all of
Ci+1.

To verify (4.61) for i+ 1, note that

(4.69) Ci+1\Hi+1 ⊆ (p−1
ii+1(Ci)\Hi+1) ∪ (Gi+1 ∩W ).

By (4.66), hi+1 coincides with gi+1 on the second summand. Now note that,
by (4.60), hi+1|p−1

ii+1(Ci) = hipii+1|p−1
ii+1(Ci). Since p−1

ii+1(H i) ⊆ Hi+1, we see
that

(4.70) p−1
ii+1(Ci)\Hi+1 ⊆ p−1

ii+1(Ci\Hi) ⊆ p−1
ii+1(Gi).

However, by (4.61) for i, we conclude that on the first summand hipii+1

coincides with gipii+1. On the other hand, gi+1|p−1
ii+1(Gi) = gipii+1|p−1

ii+1(Gi)
and thus, (4.70) shows that on the first summand gi+1 also coincides with
gipii+1.

Now note that (4.57) and (4.58) imply

(4.71)
⋃

i

p−1
i (IntCi) = X.

Indeed, (4.55) and Hi ⊆ IntCi imply that the left side of (4.71) contains
V = X\A. Moreover, since A ⊆ U , (4.58) and (1.2) imply that the left side
of (4.71) also contains A.

We now define a mapping h : X → P by putting h(x) = hipi(x), for
x ∈ p−1

i (Ci). Notice that x ∈ p−1
i (Ci) implies pi+1(x) ∈ p−1

ii+1(Ci) and thus,
by (4.60), hi+1pi+1(x) = hipii+1pi+1(x) = hipi(x), which shows that h is
well defined. It is a continuous mapping, because it is given by continuous
mappings on the open sets p−1

i (IntCi) which form a covering of X .

It remains to prove that h|A = g|A. First note that, by (4.53) and (4.52),
p−1

i (Hi) ⊆ p−1
i (Vi) ⊆ V = X\A and thus, Hi ∩ pi(A) = ∅. Moreover, by

(4.58), Gi ∩ pi(A) ⊆ Ci. Therefore, Gi ∩ pi(A) ⊆ Ci\Hi. Consequently, by
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(4.61), hi|(Gi ∩ pi(A)) = gi|(Gi ∩ pi(A)). Let a ∈ A be an arbitrary point.
There is an i such that a ∈ p−1

i (Gi) and thus, pi(a) ∈ Gi ∩ pi(A). By (4.58),
we conclude that pi(a) ∈ Ci and thus, h(a) = hipi(a). Since hi|(Gi ∩pi(A)) =
gi|(Gi ∩ pi(A)), we see that h(a) = gipi(a). On the other hand, a ∈ p−1

i (Gi)
implies that also g(a) = gipi(a). Consequently, h(a) = g(a). �

We precede the proof of Theorem 1 by a simple technical lemma.

Lemma 5. Let X = (Xi, pii+1) be an inverse sequence of stratifiable
spaces with limit X. Then there exists a sequence X∗ = (X∗

i , p
∗
ii+1) with

limit X∗ and surjective projections p∗i : X∗ → X∗
i such that X∗

i is the direct
sum of Xi and of a discrete space Di, the mapping p∗ii+1|Xi+1 = pii+1 and
the natural inclusion X → X∗ embeds X as a closed subset of X∗.

Proof. We construct X∗
i and p∗ii+1 by induction on i beginning with

X∗
1 = X1. By definition, X∗

i+1 = Xi+1 tDi+1, where Di+1 is a discrete space
which admits a surjection Di+1 → (Xi\pii+1(Xi+1))∪Di. If a point x∗ ∈ X∗

does not belong to X , then there is an i for which p∗(x∗) ∈ Di and therefore,
it has a neighborhood which misses X . Hence, X is closed in X∗. �

Proof of Theorem 1. We will first prove the assertion under the ad-
ditional assumption that the projections pi : X → Xi are surjective. Consider
a closed set A ⊆ X and a mapping f : A→ P . We must show that f extends
to all of X . Note that X is stratifiable and therefore, the homotopy extension
theorem applies. Consequently, it suffices to produce a mapping g : A → P ,
which is homotopic to f and extends to all of X . Choose an open covering
V of P such that any two V-near mappings into P are homotopic. It suffices
to find a mapping g : A → P , which is V-near to f and extends to all of X .
Since polyhedra are ANE’s for stratifiable spaces, the mapping f extends to
an open neighborhood U of A, f : U → P . This enables us to apply Theo-
rem 2 and obtain a mapping g : U → P such that g and f are V-near and g
admits a filtered factorization through X. However, Theorem 3 implies that
g|A extends to all of X .

The case of arbitrary projections pi is reduced to the case of surjective
projections using Lemma 5. Indeed, members X∗

i of the sequence X∗ are
stratifiable and dimX∗

i ≤ P . Since the projections p∗i are surjective, the
already established case of the theorem yields the conclusion that dimX∗ ≤ P .
However, X is a closed subset of X∗, and therefore, the latter relation shows
that also dimX ≤ P . �

Corollary 1. If X = (Xi, pii+1) is an inverse sequence of polyhedra Xi

of dimension dimXi ≤ n, then the limit X has dimension dimX ≤ n.

Remark 5. In the proof of Theorem 1 for metrizable spaces [18] the first
axiom of countability played an important role. In general, stratifiable spaces
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do not satisfy that axiom. An easy example is given by a simplicial com-
plex which consists of infinitely many 1-simplexes exiting out of one common
vertex.

Theorem 4. Let P be a polyhedron and let X = (Xi, pii+1) be an in-
verse sequence of stratifiable spaces with limit X. If dim X ≤ P , then also
dimX ≤ P .

The proof of Theorem 4 is a variation of the proof of Theorem 1. First
note that dim X ≤ P implies dim X∗ ≤ P . Therefore, it suffices to consider
the case when the projections pi : X → Xi are surjective. This enables us
to reduce the problem of extending f : A → P to all of X to the problem of
extending g|A to all of X , where g : U → P is a mapping which is defined on
an open neighborhood U of A and admits a filtered factorization through X.
In other words we need the following variation of Theorem 3.

Theorem 5. Let X = (Xi, pii+1) be an inverse sequence of paracompact
perfectly normal spaces with limit X and surjective projections pi : X → Xi.
Let P be a polyhedron, let A ⊆ X be a closed set and U ⊆ X an open set,
A ⊆ U , and let g : U → P be a mapping which admits a filtered factorization
through X. If dim X ≤ P , then there exists a mapping h : X → P , which
extends g|A.

The proof of Theorem 5 is a variation of the proof of Theorem 3. In
particular, the sets V, Vi and Hi are defined as in the previous case. One
then defines, by induction on i, an increasing sequence of indices l(i) ∈ N, a
sequence of closed sets Cl(i) ⊆ Xl(i) and a sequence of mappings hl(i) : Cl(i) →
P which satisfy the analogues of (4.57)–(4.61), where i has been replaced by
l(i) and i + 1 by l(i + 1). To begin the induction we consider the mapping
g1 : G1 → P . Since dim X ≤ P , there exists an index l(1) ∈ N such that
g1p1l(1)|p−1

1l(1)(G1) extends to Cl(1) = p−1
1l(1)(G1)∪Hl(1). The induction step is

obtained by a similar variation of the induction step in the proof of Theorem
3. As in (4.71), the union of the open sets p−1

i (IntCl(i)) equals X and one

defines h by putting h(x) = hipi(x), where x ∈ p−1
i (Cl(i)). Finally, one

verifies as before that h|A = g|A. �

Remark 6. R.Cauty [2] proved that every CW- complex embeds as a re-
tract in a polyhedron. Therefore, for stratifiable spaces X, the homotopy ex-
tension property remains valid if one replaces polyhedra P by CW- complexes.
It readily follows that for a polyhedron P and a CW- complex Q of the same
homotopy type, the properties dimX ≤ P and dimX ≤ Q are equivalent.
Since CW- complexes have the homotopy type of polyhedra, one easily con-
cludes that Theorem 1 remains valid if one assumes that P is a CW- complex.
An analogous remark applies to Theorem 5.
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Remark 7. In the Fall of 1999 Professor Leonard R. Rubin visited Zagreb
and presented his work with Philip J. Schapiro to the Topology seminar of the
Mathematics Department. This visit gave the original impetus for the writing
of the present paper. In the proof of the main results there is some overlap
with ideas encountered in the Rubin – Schapiro proof.
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