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ABSTRACT
Intraspecific variability of biological characteristics within entomopathogenic fungus Pandora neoaphidis was 
evaluated. Fifteen isolates of the fungus were obtained from 5 aphid species in Slovakia. Size of conidia, conidial 
germination, virulence, radial growth, and biomass production were evaluated. Conidial size varied considerably with 
exception of isolates originating from the same host population. Conidial germination was observed on all the surfaces 
tested and it was greatest at saturated humidity. Virulence, daily rate of radial growth and biomass production varied 
depending on isolates. Isolates obtained from the same host colonies during fungal epizootics shoved also significant 
differences in the characteristics, what may suggest that epizootics in aphid populations are caused by associations of 
strains and not by prevalence of a single virulent strain.
Keywords: Pandora neoaphidis; Acyrthosiphon pisum; intraspecific variability; isolate variability

ABSTRAKT
V práci sa hodnotila vnútrodruhová variabilita biologických vlastností entomopatogénnej huby Pandora neoaphidis. 
Hodnotilo sa 15 izolátov získaných z 5 druhov vošiek. Posudzovali sa nasledovné vlastnosti: veľkosť a klíčivosť 
konídií, virulencia, radiálny rast a produkcia biomasy izolátov. Zistili sa preukazné rozdiely vo veľkosti konídií, s 
výnimkou izolátov získaných z vošiek pochádzajúcich z rovnakých populácií. Konídie klíčili na všetkých hodnotených 
povrchoch, najvyššia klíčivosť bola pri 100% relatívnej vlhkosti. Virulencia izolátov, denná rýchlosť rastu a produkcia 
biomasy varírovala v závislosti od izolátu. Izoláty, ktoré boli získané z rovnakých kolónií vošiek počas epizoócií 
patogéna preukázali tiež významné rozdiely v hodnotených vlastnostiach. Toto poukazuje na skutočnosť, že epizoócie 
v populáciách vošiek sú vyvolávané asociáciou viacerých a nie prevalenciou jedného virulentného kmeňa patogéna.
Kľúčové slová: Pandora neoaphidis; Acyrthosiphon pisum; vnútrodruhová variabilita, variabilita izolátov



348 Journal of Central European Agriculture Vol 10 (2009) No 4

Marek BARTA, Ľudovít CAGÁŇ

DETAILED ABSTRACT 
V práci sa hodnotila vnútrodruhová variabilita 
biologických vlastností entomopatogénnej huby 
Pandora neoaphidis (Remaudière et Hennebert) Humber. 
Hodnotilo sa 15 izolátov získaných z 5 druhov vošiek: 
Myzus persicae (Sulzer), Microlophium carnosum 
(Buckton), Sitobion avenae (Fabricius), Uroleucon 
aeneum (Hille Ris Lambers) a Rhopalosiphum padi 
(Linnaeus). Mŕtve vošky boli nazbierané na viacerých 
lokalitách západného a stredného Slovenska. Posudzovali 
sa nasledovné vlastnosti izolátov: veľkosť a klíčivosť 
konídií, virulencia k Acyrthosiphon pisum Harris, 
radiálny rast a produkcia biomasy izolátov. Testovanie 
uvedených parametrov poukázalo na významné rozdiely 
medzi získanými izolátmi.  Zistili sa preukazné rozdiely 
vo veľkosti konídií, s výnimkou izolátov získaných z 
vošiek pochádzajúcich z rovnakých populácií. Konídie 
klíčili na všetkých hodnotených povrchoch (sklo, vodný 
agar, živinový agar) a najvyššia klíčivosť bola pri 100% 
relatívnej vlhkosti. V závislosti od izolátu sa virulencia 
vyjadrená hodnotou bola LC50 pohybovala od 24 do 233 
konídií/mm2, denná rýchlosť rastu bola 1,03-2,00 mm 
a produkcia biomasy varírovala medzi 1,63 a 8,72 g.l-1. 
Izoláty, ktoré boli získané z rovnakých kolónií vošiek 
počas epizoócií patogéna preukázali tiež významné 
rozdiely v hodnotených vlastnostiach. Toto poukazuje 
na skutočnosť, že epizoócie v populáciách vošiek sú 
pravdepodobne vyvolávané asociáciou viacerých a nie 
prevalenciou jedného virulentného kmeňa patogéna.

INTRODUCTION
The entomopathogenic fungus Pandora neoaphidis 
(Remaudière et Hennebert) Humber has been often 
considered the most important natural regulation agent 
of aphid colonies and has been long investigated as a 
potential biological control agent [23]. Augmentation 
of P. neoaphidis in field and greenhouse bioassays has 
been attempted but with limited success [27,35,36]. In 
general, a strain with high virulence is necessary to select 
for inoculative or inundative augmentation biocontrol 
strategies [23,29]. Conservation biocontrol strategies 
do not rely on inoculum release, but on providing of 
favourable conditions within agroecosystems to enhance 
entomopathogen activity [7]. For conservation biocontrol 
it is likely that a diverse range of fungal strains needs to 
be encouraged and these strains should be able to infect 
target or alternative hosts [23]. Recently, a three-tiered 
assay system has been devised for assessment of P. 
neoaphidis isolates against aphids within the program of 
biological control [28]. From practical point of view, both 
augmentation and conservation programs necessarily 

require information on intraspecific variability in 
pathogen population since the variability of fungal strains 
in agroecosystems may enhance its impact. In Slovakia, 
P. neoaphidis is the most common aphid pathogen in 
agroecosystems with ability to produce epizootics in host 
populations [2,3,6]. Variability of Slovak strains of this 
important aphid pathogen has not yet been tested. We 
obtained 15 isolates of P. neoaphidis from different aphid 
hosts and localities during our previous study of the 
fungal prevalence and effectiveness in aphid population. 
This paper presents information about intraspecific 
variability within selected phenotypic and physiological 
characteristics of the fungal isolates. 

MATERIAL AND METHODS
Fifteen isolates of P. neoaphidis (Table 1) obtained from 
various aphid species in Slovakia were involved in the 
bioassay. The small group of Slovak isolates originated 
from fungus-killed aphids collected in different parts 
of the country, mostly in the south-western Slovakia. 
Eight isolates were originally obtained from pest aphid 
species and 7 isolates originated from non-pest aphids. 
Majority of the isolates had a different origin, but there 
were also isolates obtained from aphid cadavers collected 
in the same colony during fungal epizootics. Altogether 
five characteristics of the isolates were evaluated: size 
of primary conidia, conidial germination on different 
surfaces, virulence against pea aphid, radial growth and 
biomass production of isolates.
Size of primary conidia. A piece of sporulating fungal mat 
taken from a fast growing margin of a culture was placed 
in the bottom of sterile Petri dish lined with water-soaked 
filter paper. Above the mycelium a cover glass was fixed 
in a distance of 2-3 mm. Conidia actively discharged 
from the mycelial piece were collected on the cover glass 
for 15 minutes. Two morphological characteristics, the 
conidial length (L) and the conidial diameter (D), were 
measured and a ratio of the length to the diameter (L/
D) was calculated. These parameters were measured 
for 4 x 25 conidia for each isolate using microscope (at 
magnification of 16 x 45) fitted with a scaled eyepiece. 
The same procedure of conidial measurement was also 
performed for primary spores collected directly from 
naturally killed aphids before a particular isolates were 
obtained. An average values were counted and obtained 
data were analysed by one-way ANOVA.
Germination of primary conidia. Conidia for the 
experiment were obtained from the sporulating fungal 
mat as described above. The conidia were collected on 
three surfaces: a sterile cover glass, a square piece (10 
x 10 mm) of pure water agar (WA) (2% agar), and on a 



BIOLOGICAL CHARACTERISTICS OF SLOVAK ISOLATES OF ENTOMOPATHOGENIC FUNGUS PANDORA NEOAPHIDIS 
(REMAUDIERE ET HENNEBERT) HUMBER (ZYGOMYCETES, ENTOMOPHTHORALES)

349J. Cent. Eur. Agric. (2009) 10:4, 347-356

square piece of YG agar (2% yeast extract, 3% glucose, 
1.5% agar) [30]. The conidia were incubated for 4 h at 
100% or 75% of relative humidity, at 20 ± 2°C, under 
constant illumination. The humidity was controlled by 
a method of saturated water solutions proposed by [37]. 
The germination experiment was carried out at five 
replicates (20 conidia per replicate were evaluated) for 
each isolate, surface and relative humidity regime. A type 
of germination, germ-tube formation or secondary spore 
formation, were recorded separately for each isolate. 
Radial growth rate of the isolates. Sabouraud dextrose 
agar with egg yolk and milk [22] was used when radial 
growth of isolates was measured. Five-mm diameter discs 
of unsporulated mycelium were cut from the plates using 
a sterile cork borer and individually placed upside down 
in the centre of 70 mm Petri dishes containing culture 

medium. Five replicates per each isolate were incubated 
at 20 ± 2°C under constant illumination for 30 days and 
examined within 5-day intervals to measure a diameter 
of fungal colonies. The daily rate of radial growth was 
calculated as (x – 5) / t, where x is a diameter of fungal 
colony (in mm) measured at the time t expressed in days 
and the parameter of 5 is a diameter (in mm) of the disk 
used for inoculation. The radial growth rate was compared 
among the isolates by one-way ANOVA.
Biomass production of the isolates. Fungal biomass was 
grown in a liquid medium [30] containing 1% yeast 
extract, 10% milk, and 1.6% glucose. Before the biomass 
production experiment was established a preculture had 
been grown. Five pieces were cut from fast growing 
margins of culture and added to 25 ml of medium in a 
100 ml flask. The submerge cultures were incubated at 20 

Table 1. List of P. neoaphidis isolates included into study with information on their origin (source, date and 
place of isolation with coordinates of locality (North latitude and East longitude)) 

Tabu�ka 1. Zoznam izolátov P. neoaphidis použitých v experimentoch s informáciou o ich pôvode (hostite�,
dátum a miesto nálezu so súradnicami lokality (severná šírka a východná d�žka)

Isolate
number 

Source of isolation: 
(Host aphid, host plant) 

Date of isolation, 
Locality with coordinates: 

1 Myzus persicae (Sulzer),  
Nicotiana tabacum L.

7.11. 2000, Ve�ký Kýr, 48°11’00” 18°09’30” 

2 Myzus persicae (Sulzer),  
Nicotiana tabacum L.

13.11. 2000, Komjatice, 48°09’20” 18°10’00” 

3 Myzus persicae (Sulzer),  
Nicotiana tabacum L.

17.11. 2000, Ve�ký Kýr, 48°11’00” 18°09’30” 

4 Myzus persicae (Sulzer),  
Brassica oleracea L.

5.12. 2000, Komjatice, 48°09’20” 18°10’00” 

5 Microlophium carnosum (Buckton),  
Urtica dioica L.

18.4. 2001, Dolná Malanta, 48°19’00” 18°07’00” 

6 Microlophium carnosum (Buckton),  
Urtica dioica L.

28.4. 2001, Dolná Malanta, 48°19’00” 18°07’00” 

7 Microlophium carnosum (Buckton),  
Urtica dioica L.

28.4. 2001, Dolná Malanta, 48°19’00” 18°07’00” 

8 Sitobion avenae (Fabricius),  
Triticum aestivum L.

21.5. 2001, Komjatice, 48°09’20” 18°10’00” 

9 Sitobion avenae (Fabricius),  
Triticum aestivum L.

21.5. 2001, Komjatice, 48°09’20” 18°10’00” 

10 Uroleucon aeneum (Hille Ris Lambers),  
Carduus nutans L.

13.6. 2002, Komjatice, 48°09’20” 18°10’00” 

11 Uroleucon aeneum (Hille Ris Lambers),  
Carduus nutans L.

22.6. 2002, Ve�ký Cetín, 48°13’00” 18°11’30” 

12 Microlophium carnosum (Buckton),  
Urtica dioica L.

17.6. 2002, Námestovo, 49°24’30” 19°29’00” 

13 Microlophium carnosum (Buckton),  
Urtica dioica L.

18.6. 2002, Slia�, 48°36’50” 19°08’00” 

14 Rhopalosiphum padi (L.),  
Zea mays L.

15.10. 2002, Vlkas, 48°07’30” 18°16’30” 

15 Rhopalosiphum padi (L.),  
Zea mays L.

21. 10. 2002, Komjatice, 48°09’20” 18°10’00” 
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± 2°C in the dark and agitated on rotary shaking machine 
(at 170 rpm) for 5 days. To establish a production culture 
7 ml of the preculture was added to 40 ml of medium in a 
100 ml flask. The cultures were incubated under the same 
conditions as the precultures for 5 days. The biomass was 
harvested by filtration and desiccated on filter paper at 
50°C for 60 minutes. The dry mass of mycelium was 
evaluated. The experiment was carried out at 6 replicates 
for each isolate and the means of harvested biomass were 
compared among the isolates by one-way ANOVA.
Virulence of the isolates. The bioassay for assessment 
of virulence against pea aphid, Acyrthosiphon pisum 
Harris, was carried out following the procedure 
originally designated by [15,21]. Colonies of single pea 
aphid clone were maintained on potted pea plants, Pisum 
sativum L., at 20 ± 2°C, 40-60% of relative humidity 
and under a photoperiod of L:D 16:8 h. Plates of tested 
isolates were used as a source of inoculum. Altogether 3 
replicates of 20 nymphs per isolate were used. Control 
variants (20 nymphs) were treated similarly, but aphids 
were not exposed to conidia. The control was used to 
check potential presence of naturally occurring fungal 
pathogens. A value of LC50 (a concentration of conidia 
killing 50% of the treated insects), which characterized 
the virulence of an isolate at the time of experiment, 
was estimated from regression line of probit mortality 
versus log-dose [9]. One-way ANOVA was performed 
on the LC50 values to determine if there were significant 
differences between isolates. Comparisons of means were 
performed using Tukey’s honestly significant different 
(HSD) test at the 5% level.

RESULTS
Size of primary spores of P. neoaphidis isolates and 
dimensions of in vivo-primary spores collected from 
killed aphids prior the fungus isolation are presented 
in the Table 2. Size of in vitro-primary spores varied 
among the isolates indicating a great morphological 
heterogeneity. One-way ANOVA showed significant 
difference among the morphological characteristics of in 
vitro produced primary spores at 99% confidence level 
(F2.51 = 76.35, P < 0.01 for length; F2.51 = 57.30, P < 0.01 
for diameter; and F2.51 = 40.45, P < 0.01 for the ratio of 
L/D). A multiple comparison procedure to determine 
which values were significantly different from which 
others revealed 9 homogenous groups for the length and 
the L/D ratio, and 7 homogenous groups for the spore 
diameter. These results confirmed a relevant biometrical 
heterogeneity among the isolates. Conidial dimensions 
of isolates that originated from the same host, site and 
date (isolates No. 6, 7 and 8, 9) were not significantly 

different. Certain degree of variability was detected in 
biometrics of conidia collected from aphid cadavers, as 
well (F2.04 = 2.69, P < 0.05 for length; F2.04 = 29.62, P < 
0.05 for diameter; and F2.04 = 7.45, P < 0.05 for the ratio 
of L/D).
Estimates of lethal concentrations of conidia (LC50) 
of Slovak P. neoaphidis isolates for the pea aphid are 
presented in the Table 2. The estimated LC50 values 
ranged from 24 to 233 conidia per mm2. This range 
indicates a rather great variability among the isolates and 
one-way ANOVA showed significant differences in the 
LC50 values among the isolates at 99% confidence level 
(F2.74 = 4.91, P < 0.01). Multiple range tests detected 4 
homogenous groups at the confidence level of 95%. 
Results on conidial germination experiment are shown in 
the Table 3. Generally, primary conidia of isolates could 
germinate on all surfaces and in both relative humidities 
being tested. However, a character of germination varied 
between surface types and relative humidity regimes. 
As for relative humidity it was evident that higher 
germination appeared at saturated atmosphere. At this 
level of humidity conidia of all the isolates germinated 
on each surface type, but no germination was recorded 
on nutrient agar (YG) for isolates 7, 13 and 15. At 75% 
relative humidity conidia did not germinate on a glass 
surface, or only few conidia germinated. On the contrary, 
conidia germinated well at 75% relative humidity on 
water agar and YG agar. 
P. neoaphidis isolates showed a good growth on the 
artificial culture medium. Daily rate of the radial growth 
ranged from 1.03 to 2.00 mm (Table 4). One-way ANOVA 
showed significant difference in radial growth rate among 
the isolates tested at 99% confidence level (F2.39 = 22.11, P 
< 0.01). Multiple range tests showed heterogeneity in the 
results and 9 homogenous groups were detected. Isolates 
of the same origin have also significantly different growth 
rate. 
Laboratory-scale bioassay was carried out to evaluate 
and quantitatively compare a fungal mass production of 
the isolates. Results of the experiment are shown in the 
Table 2. Average biomass production of P. neoaphidis 
isolates ranged between 1.63 and 8.72 g.l-1. The biomass 
production was significantly different among the isolates 
(F2.32 = 29.86, P < 0.01). Tukey’s HSD test identified 
heterogeneity in the results and 4 homogenous groups 
were determined. We found a strong positive correlation 
(+0.737; t3.67=3.93, P=0.001, df=28) between the average 
biomass production and the daily rate of radial growth. 

DISCUSSION
The size of conidia produced in vitro generally exceeded 
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Table 3. Germination of P. neoaphidis primary spores on three surfaces and at two humidity regimes 
Tabu�ka 3. Klí�enie primárnych konídií P. neoaphidis na rôznych povrchoch a vlhkostných režimoch 

Isolate 
number 

Germination
type 

100% relative humidity 75% relative humidity 

Glass WA YG Glass WA YG 

1
Germ tube 76% 0% 0% 0% 0% 0% 
Secondary conidium 23% 93% 85% 0% 100% 96% 
Total germination 99% 93% 85% 0% 100% 96% 

2
Germ tube 3% 1% 0% 0% 0% 0% 
Secondary conidium 1% 96% 10% 0% 90% 0% 
Total germination 4% 97% 10% 0% 90% 0% 

3
Germ tube 50% 0% 0% 0% 0% 0% 
Secondary conidium 0% 14% 27% 0% 83% 15% 
Total germination 50% 14% 27% 0% 83% 15% 

4
Germ tube 83% 0% 0% 0% 0% 0% 
Secondary conidium 0% 91% 84% 0% 97% 91% 
Total germination 83 91% 84% 0% 97% 91% 

5
Germ tube 4% 1% 0% 0% 0% 0% 
Secondary conidium 0% 43% 63% 0% 90% 51% 
Total germination 4% 44% 63% 0% 90% 51% 

6
Germ tube 54% 0% 1% 0% 0% 0% 
Secondary conidium 0% 96% 0% 0% 100% 0% 
Total germination 54% 96% 1% 0% 100% 0% 

7
Germ tube 19% 0% 0% 0% 0% 0% 
Secondary conidium 75% 63% 0% 0% 100% 58% 
Total germination 94% 63% 0% 0% 100% 58% 

8
Germ tube 28% 0% 0% 0% 0% 0% 
Secondary conidium 2% 81% 61% 7% 89% 0% 
Total germination 30% 81% 61% 7% 89% 0% 

9
Germ tube 35% 0% 0% 1% 0% 0% 
Secondary conidium 48% 95% 98% 0% 96% 92% 
Total germination 83% 95% 98% 1% 96% 92% 

10 
Germ tube 5% 8% 0% 0% 2% 0% 
Secondary conidium 60% 63% 34% 0% 81% 58% 
Total germination 65% 71% 34% 0% 83% 58% 

11 
Germ tube 10% 0% 0% 0% 0% 0% 
Secondary conidium 16% 26% 10% 0% 58% 41% 
Total germination 26% 26% 10% 0% 58% 41% 

12 
Germ tube 8% 5% 0% 1% 0% 0% 
Secondary conidium 7% 74% 59% 0% 92% 85% 
Total germination 15% 79% 59% 1% 92% 85% 

13 
Germ tube 42% 0% 0% 2% 2% 0% 
Secondary conidium 0% 96% 0% 0% 92% 0% 
Total germination 42% 96% 0% 2% 94% 0% 

14 
Germ tube 19% 0% 0% 9% 0% 0% 
Secondary conidium 0% 88% 1% 0% 87% 4% 
Total germination 19% 88% 1% 9% 87% 4% 

15 
Germ tube 21% 0% 0% 0% 0% 0% 
Secondary conidium 0% 89% 0% 0% 90% 1% 
Total germination 21% 89% 0% 0% 90% 1% 
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the ranges for conidia from aphids described by Keller 
[14] 22.7 – 25.0 x 8.5 – 15.0 µm, or the ranges by Bałazy 
[1] 21.0 – 32.0 x 11.0 – 14.0 µm. However, the L/D ratios 
corresponded with that published by Keller [14]. In other 
studies on intraspecific variation in P. neoaphidis strains 
the differences in conidial size were examined and very 
little variation was found [16]. On the other hand it is 
usually observed that primary conidia from cultures are 
obviously larger than those from insects [17]. We also 
found that in vivo-produced conidia are significantly 
smaller than in vitro produced conidia (F7.64 = 45.19, P 
< 0.01 for length; F7.64 = 21.52, P < 0.01 for diameter). 
Measurements of the in vivo-produced conidia were 
consistent with those presented by Keller [14] and Bałazy 
[1]. It is necessary to emphasize that variation in conidial 
morphology is typical for this species [1,14,24] and even 
it is considered as a complex of species [1,13]. 
For entomophthoralean fungi the bioassay procedures 
using sporulating cadavers or in vitro cultures as an 
inoculum source have been described in a number of 
studies [e.g. 15,20,21,22]. Generally, values of LC50 for 
Entomophthorales range from a few to tens conidia per 

mm2 [21]. Average virulence for all the Slovak isolates 
was 138 conidia per mm2. Several previous studies 
reported much lower LC50 values for P. neoaphidis than 
that presented in this work [e.g. 8,28,30]. Sierotzki et 
al. [30] state a value of 16 conidia per mm2 as a mean 
LC50 for 4 Swiss P. neoaphidis isolates. Out of the Slovak 
isolates 4 isolates had virulence to the pea aphid with LC50 
below a level of 50 conidia per mm2. On the contrary, 6 
isolates had the estimated LC50 of about 200 conidia per 
mm2. The relatively low virulence of the Slovak isolates 
could be attributed to the fact that neither of the isolates 
was originally obtained from A. pisum, the aphid used 
in the bioassay. However, Sierotzki et al. [30] found no 
significant difference in virulence among strains isolated 
from aphid species different or the same to the species 
used in bioassay. Shah et al. [28] presented results where 
isolate of P. neoaphidis obtained from Myzus persicae 
(Sulzer) was approximately 3-10 times more virulent 
to A. pisum than to its original host. The relatively low 
virulence in our study could also be a result of using 
nymphs in the bioassay. Nymphs can be less susceptible 
to the pathogens than adults because the invading conidia 

1

Table 4. Radial growth rate of the P. neoaphidis isolates 
Tabu�ka 4. Radiálny rast izolátov P. neopahidis 

Isolate
number 

Mean radial growth (a diameter of fungal colony in mm)  Daily rate 
of growth Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 

1 15 25 35 45 54 60 1.84 gh* 

2 7 13 18 25 30 39 1.13 ab 

3 8 11 17 30 39 45 1.32 bc 

4 8 13 21 27 40 49 1.47 def 

5 8 13 17 24 29 36 1.03 a 

6 12 23 33 42 51 61 1.86 h 

7 8 13 25 35 45 52 1.56 def 

8 13 18 24 33 43 54 1.62 fgh 

9 10 17 28 40 52 61 1.87 gh 

10 12 22 32 38 47 55 1.66 efg 

11 10 15 21 25 30 37 1.05 a 

12 11 19 27 37 47 30 1.50 cde 

13 10 14 22 27 34 40 1.16 a 

14 21 30 43 51 61 65 2.00 i 

15 8 12 21 30 38 46 1.38 cd 
* Means within column followed by the same letter are not significantly different (Tukey’s HSD test, p > 0.05) 
*Hodnoty s rovnakým písmenom v st�pci nie sú významne rozdielne (Tukeyov HSD test, p > 0.05) 
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could be shed with the old cuticle during ecdysis [15]. 
Virulence of isolates may also decrease significantly 
during long-term maintenance of cultures in vitro [16,21]. 
Each isolate used in our experiments was passaged 
through specimen of pea aphid and re-isolated not longer 
than 6 months prior to the bioassay. A great variation in 
virulence among the Slovak isolates was obvious. We 
even determined significant differences among isolates 
of the same provenance. This is for example the case of 
isolates 1 and 3 obtained from M. persicae during fungal 
epizootic. Virulence was also significantly different 
between isolates 6 and 7 obtained from Microlophium 
carnosum on Urtica dioica L. and isolates 8 and 9 obtained 
from a single colony of Sitobion avenae on a wheat ear. 
Apparent differences between isolates originating from 
the same host and collection site was detected using 
molecular analysis by Sierotzki et al. [30] and Rohel 
et al. [25]. Some degree of variation can be observed 
between values of LC50 for one strain with one test-insect 
species evaluated at different times [21,22]. A source of 
variability in the results can also come from heterogeneity 
in the groups of aphids submitted to given amounts of 
inoculum. The degree of aphid susceptibility to fungi 
can depend on numerous parameters, e.g. developmental 
stage and physiological state of the insects [15]. We tried 
to use as homogenous population of aphid as possible 
using a progeny of single mother aphid and a maximal 
standardization of rearing conditions.
Dependence of sporulation [34] and spore germination 
[15,30,31] on relative humidity near to or at saturation 
level was reported for P. neoaphidis. Our results confirmed 
the necessity of saturation for conidial germination. 
We assume that the higher proportion of germinating 
conidia recorded at 75% relative humidity on the surface 
of water agar and artificial medium was due to water 
present in the media, which compensated the low air 
humidity in the vicinity of conidia. While glass did not 
offered the alternative source of water the germination 
was absent or low. Airborne conidia are considered very 
short-lived propagules [12]. For infection to start, after 
conidia are produced and discharged, they must survive 
until contacting a new host. We observed that conidia 
deposited on glass and exposed to low humidity (75%) 
for 4 hours did not germinate. The germination did not 
occur although the conidia were subsequently exposed 
to 100% relative humidity. Uziel & Kenneth [32] also 
found that primary conidia could not tolerate prolonged 
exposure to low relative humidity. However, Brobyn et al. 
[5] demonstrated that P. neoaphidis conidia could survive 
a period of several days at relatively low humidity. 
Our results indicate that character of surface can influence 
a type of conidial germination. On the glass surface 

the germ-tube formation prevailed over the secondary 
conidium formation at saturated atmosphere, whereas 
secondary conidia were almost exclusively produced on 
the agarized surfaces at both humidity regimes. Recently, 
similar experiment has been carried out by Sierotzki et al. 
[30]. They found out secondary conidium production on 
agar substrate and germ-tube production on polystyrene 
surface. They observed a formation of secondary conidia 
on glass slides when water condensated on the slides 
and contacted the conidia. It was hypothesized that the 
presence or absence of free water, rather than physico-
chemical properties of the surface, was the trigger for 
differentiation into secondary conidia or germ-tubes. 
However, in our experiments water condensed on glass 
slides, but mostly germ-tubes were produced. Hajek et al. 
[11] observed that rather chemical stimuli and not changes 
in hydrophobicity of surface affected germination of 
conidia. Germination of conidia on various surfaces has 
been studied for a number of entomopathogenic fungi 
[e.g. 10,11,30,31,33] and influence of diverse physico-
chemical and nutritional parameters on stimulation and 
differentiation of conidial germination were evaluated. 
At optimal conditions (temperature and humidity) the 
process of germination can be affected by nutrients or 
chemical stimuli [4,19,26,33], by conidial density on the 
surface [10], or by rigidity of surface [11].
The evaluated growth parameters of Slovak isolates are 
close properties, what indicates the strong correlation 
between both of them. It is of interest that Slovak isolates 
of the same origin (isolates of numbers 6, 7 and 8, 9) 
produce significantly different amount of biomass at 
standard conditions. Isolates 6 and 7 also displayed 
significantly different parameters of radial growth, but 
variability of the radial growth between isolates 8 and 
9 was not significant. Sierotzki et al. [30] published that 
biomass production of Swiss isolates ranged between 
7.8 and 14.9 g.l-1. We used liquid medium of the same 
composition in the experiment, but the Slovak isolates 
yielded fewer amount of biomass. The Swiss isolates also 
showed significant differences in biomass production 
irrespective of isolate origin [30].
We evaluated phenotypic and physiological characters of 
P. neoaphidis isolates and the results revealed a significant 
intraspecific variation within this species. Intraspecific 
variability of entomophthoralean fungi used to be 
principally characterised by differences in pathogenicity 
[21]. Recently, molecular techniques have also been 
involved to analyse intraspecific variation in the fungal 
isolates [25,30]. The Slovak isolates varied significantly 
in all characteristics evaluated. Even, isolates obtained 
from single colonies during epizootics showed significant 
differences in the characteristics investigated, except 
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that of conidial size. This may indicate that epizootics 
in the field are caused by consortia of strains and not 
by prevalence of a single virulent strain. Within-field 
variability of P. neoaphidis strains has been discussed by 
Shah et al. [28]. Results of molecular analyses by Rohel 
et al. [25] and Sierotzki et al. [30] displaying variability 
in strains of different geographic origin and also isolates 
originating from the same field and host, support the 
supposition of association of more fungus strains during 
epizootics. The knowledge of different fungal strain co-
existence with variable physiological characteristics, 
including their virulence, during epizootics in host 
populations is important to understand epizoological 
processes of this fungus.  
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