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ON (m, n)–JORDAN CENTRALIZERS IN RINGS AND

ALGEBRAS
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Abstract. Let m ≥ 0, n ≥ 0 be fixed integers with m + n 6= 0 and
let R be a ring. It is our aim in this paper to investigate additive mapping
T : R → R satisfying the relation (m + n)T (x2) = mT (x)x + nxT (x) for
all x ∈ R.

This research is a continuation of our earlier work ([11]). Throughout, R

will represent an associative ring with center Z(R). Given an integer n ≥ 2,
a ring R is said to be n−torsion free, if for x ∈ R, nx = 0 implies x = 0.

As usual the commutator xy − yx will be denoted by [x, y] . We define [y, x]n
inductively as follows: [y, x]1 = [y, x] , [y, x]n+1 = [[y, x]n , x] . We shall use the
commutator identities [xy, z] = [x, z] y +x [y, z] and [x, yz] = [x, y] z +y [x, z] ,
for all x, y, z ∈ R. A mapping F, which maps a ring R into itself, is called
commuting on R in case [F (x), x] = 0 holds for all x ∈ R. Recall that a ring
R is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is
semiprime in case aRa = (0) implies a = 0. An additive mapping D : R → R,

where R is an arbitrary ring, is called a derivation if D(xy) = D(x)y +xD(y)
holds for all pairs x, y ∈ R, and is called a Jordan derivation in case D(x2) =
D(x)x + xD(x) is fulfilled for all x ∈ R. A derivation D is inner in case there
exists a ∈ R, such that D(x) = [a, x] holds for all x ∈ R. Every derivation
is a Jordan derivation. The converse is in general not true. A classical result
of Herstein ([8]) asserts that any Jordan derivation on a prime ring with
char(R) 6= 2 is a derivation. A brief proof of Herstein’s result can be found
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in [3]. Cusack ([7]) generalized Herstein’s result to 2−torsion free semiprime
rings (see also [4] for an alternative proof). We denote by Qr, C and RC

Martindale right ring of quotients, extended centroid, and central closure of a
semiprime ring R, respectively.For the explanation of Qr, C, and RC we refer
the reader to [2]. An additive mapping T : R → R is called a left centralizer
in case T (xy) = T (x)y holds for all pairs x, y ∈ R. In case R has the identity
element T : R → R is a left centralizer iff T is of the form T (x) = ax for
all x ∈ R, where a ∈ R is a fixed element. For a semiprime ring R all left
centralizers are of the form T (x) = qx for all x ∈ R, where q is a fixed element
of Qr (see Chapter 2 in [2]). An additive mapping T : R → R is called a left
Jordan centralizer in case T (x2) = T (x)xholds for all x ∈ R. The definition
of right centralizer and right Jordan centralizer should be self-explanatory.
We call T : R → R a two-sided centralizer in case T is both a left and a
right centralizer. In case T : R → R is a two-sided centralizer, where R is a
semiprime ring with extended centroid C, then there exists an element λ ∈ C

such that T (x) = λx for all x ∈ R (see Theorem 2.3.2 in [2]). Zalar ([14]) has
proved that any left (right) Jordan centralizer on a 2−torsion free semiprime
ring is a left (right) centralizer. Molnár ([9]) has proved that in case we have an
additive mapping T : A → A, where A is a semisimple H∗−algebra, satisfying
the relation T (x3) = T (x)x2 (T (x3) = x2T (x)) for all x ∈ A, then T is a left
(right ) centralizer. Let us recall that a semisimple H∗−algebra is a complex
semisimple Banach∗−algebra whose norm is a Hilbert space norm such that
(x, yz∗) = (xz, y) = (z, x∗y) is fulfilled for all x, y, z ∈ A (see [1]). For results
concerning centralizers in rings and algebras we refer to [10–13] where further
references can be found. Let X be a real or complex Banach space and let
L(X) and F (X) denote the algebra of all bounded linear operators on X

and the ideal of all finite rank operators in L(X), respectively. An algebra
A(X) ⊂ L(X) is said to be standard in case F (X) ⊂ A(X). Let us point out
that any standard operator algebra is prime, which is a consequence of Hahn-
Banach theorem. In case X is a real or complex Hilbert space we denote by
A∗ the adjoint operator of A ∈ L(X).

We proceed with the following definition.

Definition 1. Let m ≥ 0, n ≥ 0 be fixed integers with m + n 6= 0 and let

R be a ring. An additive mapping T : R → R will be called an (m, n)−Jordan

centralizer in case

(1) (m + n)T (x2) = mT (x)x + nxT (x)

holds for all x ∈ R.

Obviously, (1, 0)–Jordan centralizer is a left Jordan centralizer, (0, 1)–
Jordan centralizer is a right Jordan centralizer, and in case (1, 1)–Jordan
centralizer we have the relation

(2) 2T (x2) = T (x)x + xT (x), x ∈ R.
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Vukman ([11]) has proved that in case there exists an additive mapping
T : R → R, where R is a 2−torsion free semiprime ring, satisfying the relation
(2), then T is a two-sided centralizer. The above observations lead to the
following conjecture.

Conjecture 2. Let m ≥ 1, n ≥ 1 be some integers, let R be a semiprime

ring with suitable torsion restrictions, and let T : R → R be an (m, n)−Jordan

centralizer. In this case T is a two-sided centralizer.

In this paper we prove some results related to the above conjecture. First
we prove the following proposition.

Proposition 3. Let m ≥ 0, n ≥ 0 be some integers with m + n 6= 0, let

R be a ring and let T : R → R an (m, n)−Jordan centralizer. In this case we

have

2(m + n)2T (xyx)

= mnT (x)xy + m(2m + n)T (x)yx − mnT (y)x2 + 2mnxT (y)x

− mnx2T (y) + n(m + 2n)xyT (x) + mnyxT (x),

(3)

for all pairs x, y ∈ R.

Proof. The linearization of the relation (1) gives

(4) (m + n)T (xy + yx) = mT (x)y + mT (y)x + nxT (y) + nyT (x), x, y ∈ R.

Putting in the above relation (m + n)(xy + yx) for y we obtain

(m + n)2T (x2y + yx2 + 2xyx)

= m(m + n)T (x)(xy + yx) + m(m + n)T (xy + yx)x

+ n(m + n)xT (xy + yx) + n(m + n)(xy + yx)T (x), x, y ∈ R.

Applying first the relation (4) and then the relation (1) we obtain

2(m + n)2T (xyx) + (m + n)mT (x2)y + (m + n)mT (y)x2

+ (m + n)nx2T (y) + (m + n)nyT (x2)

= m(m + n)T (x)(xy + yx) + m(mT (x)y + mT (y)x + nxT (y) + nyT (x))x

+ nx(mT (x)y + mT (y)x + nxT (y) + nyT (x)) + n(m + n)(xy + yx)T (x),

x, y ∈ R.

2(m + n)2T (xyx) + m(mT (x)x + nxT (x))y + (m + n)mT (y)x2

+ (m + n)nx2T (y) + ny(mT (x)x + nxT (x))

= m(m + n)T (x)(xy + yx) + m(mT (x)y + mT (y)x + nxT (y) + nyT (x))x

+ nx(mT (x)y + mT (y)x + nxT (y) + nyT (x)) + n(m + n)(xy + yx)T (x),

x, y ∈ R.
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Collecting terms we arrive at

2(m + n)2T (xyx)

= mnT (x)xy + m(2m + n)T (x)yx − mnT (y)x2 + 2mnxT (y)x

− mnx2T (y) + n(m + 2n)xyT (x) + mnyxT (x), x, y ∈ R.

which completes the proof.

In particular for y = x the relation (3) reduces to the relation below which
will be considered latter on.

2(m + n)2T (x3)

= m(2m + n)T (x)x2 + 2mnxT (x)x + n(2n + m)x2T (x), x ∈ R.
(5)

The result below proves Conjecture 2 in case R is a prime ring.

Theorem 4. Let m ≥ 1, n ≥ 1 be fixed integers and let R be a prime

ring with char(R) 6= 6mn(m + n). Suppose T : R → R is a (m, n)−Jordan

centralizer. If Z(R) is nonzero, then T is a two-sided centralizer.

In the proof of Theorem 4 we shall use the result below proved by Brešar
and Hvala ([6]).

Theorem 5. Let n > 1 be an integer and let R be a prime ring such that

char(R) = 0 or char(R) ≥ n. Let f1, ..., fn : R → R be additive mappings

satisfying the relation

f1(x)xn−1 + xf2(x)xn−2 + ... + xn−1fn(x) = 0

for all x ∈ R. If Z(R) is nonzero, then there exist elements a1, a2, ..., an−1 ∈
RC + C and additive mappings ζ1, ..., ζn : R → C, such that

f1(x) = xa1 + ζ1(x),

fk(x) = − ak−1x + xak + ζk(x), k = 2, ..., n − 1,

fn(x) = − an−1x + ζn(x),

for all x ∈ R. Moreover, ζ1 + ... + ζn = 0.

Proof of Theorem 4. Putting (m+n)x2 for x in (1) and applying (1)
we obtain

(m + n)3T (x4) = m(m + n)2T (x2)x2 + n(m + n)2x2T (x2)

= m(m + n)(mT (x)x + nxT (x))x2

+ n(m + n)x2(mT (x)x + nxT (x))

= m2(m + n)T (x)x3 + mn(m + n)xT (x)x2

+ mn(m + n)x2T (x)x + n2(m + n)x3T (x).
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We have therefore

(m + n)3T (x4) = m2(m + n)T (x)x3 + mn(m + n)xT (x)x2

+ mn(m + n)x2T (x)x + n2(m + n)x3T (x), x ∈ R.
(6)

On the other hand, putting in the relation (3) y = (m + n)x2 and applying
(1), we obtain

2(m + n)3T (x4) = mn(m + n)T (x)x3 + m(2m + n)(m + n)T (x)x3

− mn(m + n)T (x2)x2 + 2mn(m + n)xT (x2)x

− mn(m + n)x2T (x2) + n(m + 2n)(m + n)x3T (x)

+ mn(m + n)x3T (x)

= 2m(m + n)2T (x)x3 − mn(mT (x)x + nxT (x))x2

+ 2mnx(mT (x)x + nxT (x))x − mnx2(mT (x)x + nxT (x))

+ 2n(m + n)2x3T (x)

= (2m(m + n)2 − m2n)T (x)x3 + mn(2m − n)xT (x)x2

+ mn(2n − m)x2T (x)x + (2n(m + n)2 − mn2)x3T (x),

x ∈ R.

We have therefore

2(m + n)3T (x4) = (2m(m + n)2 − m2n)T (x)x3 + mn(2m− n)xT (x)x2

+ mn(2n − m)x2T (x)x + (2n(m + n)2 − mn2)x3T (x).

(7)

By comparing (6) with (7) we obtain

mn(2n+m)T (x)x3−3mn2xT (x)x2−3m2nx2T (x)x+mn(2m+n)x3T (x) = 0,

for all x ∈ R, which reduces according to the requirements of the theorem to

(2n + m)T (x)x3 − 3nxT (x)x2 − 3mx2T (x)x + (2m + n)x3T (x) = 0, x ∈ R.

Now applying Theorem 5 one can conclude that

(2n + m)T (x) = xa1 + ζ1(x), x ∈ R,(8)

−3nT (x) = − a1x + xa2 + ζ2(x), x ∈ R,(9)

−3mT (x) = − a2x + xa3 + ζ3(x), x ∈ R,(10)

(2m + n)T (x) = − a3x + ζ4(x), x ∈ R,(11)

where a1,a2,a3 ∈ RC + C, and ζ1...ζ4 : R → C are additive mappings with
ζ1 + ... + ζ4 = 0. Combining the relations from (8) to (11) one obtains

(12) D1(x) + D2(x) + D3(x) = 0, x ∈ R,
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where Di(x) stands for [ai, x] . Note that Di are derivations. Combining
relations (8) and (11), and putting x2 for x we obtain

(13) 3(m + n)T (x2) = x2a1 − a3x
2 + ζ1(x

2) + ζ4(x
2), x ∈ R.

Left multiplication of the relation (9) by x and right multiplication of the
relation (10) by x gives

−3nxT (x) = − xa1x + x2a2 + ζ2(x)x, x ∈ R,(14)

−3mT (x)x = − a2x
2 + xa3x + ζ3(x)x, x ∈ R.(15)

Combining (13), (14) and (15) we obtain

3((m + n)T (x2) − mT (x)x − nxT (x))

= − xD1(x) − D2(x
2) − D3(x)x + ζ1(x

2) + ζ2(x)x

+ ζ3(x)x + ζ4(x
2), x ∈ R,

which reduces because of (1) to

− xD1(x) − D2(x)x − xD2(x) − D3(x)x + ζ1(x
2) + ζ2(x)x

+ ζ3(x)x + ζ4(x
2) = 0, x ∈ R.

Applying (12) in the above relation we obtain

D1(x)x + xD3(x) + ζ1(x
2) + ζ2(x)x + ζ3(x)x + ζ4(x

2) = 0, x ∈ R,

which gives

[D1(x)x + xD3(x), x] = 0, x ∈ R.

The above relation can be written in the form

D1(x)x2 + x(D3(x) − D1(x))x − x2D3(x) = 0, x ∈ R.

From the above relation it follows according to Corollary 3. 4.in [6] that
D1(x) = D3(x) = 0 for all x ∈ R, whence it follows that D2(x) = 0 because
of (12). In other words, we have

[a1, x] = [a2, x] = [a3, x] = 0, x ∈ R.

Now applying the above relation in (9) we obtain

3n [T (x), x] = [a1x, x] − [xa2, x] = [a1, x] x − x [a2, x] = 0, x ∈ R.

We have therefore 3n [T (x), x] = 0, x ∈ R, which reduces to

[T (x), x] = 0, x ∈ R

according to the requirements of the theorem. In other words, T is commuting
on R. Now, one can replace in (1) xT (x) by T (x)x, which gives (m+n)T (x2) =
(m + n)T (x)x, x ∈ R, whence it follows because of the requirements of the
theorem that

T (x2) = T (x)x
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holds for all x ∈ R. Of course, we have also

T (x2) = xT (x), x ∈ R.

In other words, T is a left and a right Jordan centralizer. By proposition 1.4.
in [14] T is a left and a right centralizer, which completes the proof of the
theorem.

An additive mapping D : R → R, where R is an arbitrary ring, is called
a Jordan triple derivation in case

D(xyx) = D(x)yx + xD(y)x + xyD(x)

holds for all pairs x, y ∈ R. One can easily prove that any Jordan derivation
on arbitrary 2−torsion free ring is a Jordan triple derivation (see [3] for the
details). Brešar ([5]) has proved that any Jordan triple derivation, which
maps a 2−torsion free semiprime ring into itself, is a Jordan derivation. These
observations and Proposition 3 lead to the definition and the conjecture below.

Definition 6. Let m ≥ 0, n ≥ 0 be some integers with m + n 6= 0, and

let R be an arbitrary ring. An additive mapping D : R → R is called an

(m, n)−Jordan triple centralizer in case

2(m + n)2T (xyx) = mnT (x)xy + m(2m + n)T (x)yx − mnT (y)x2

+ 2mnxT (y)x − mnx2T (y) + n(m + 2n)xyT (x)

+ mnyxT (x),

holds for all pairs x, y ∈ R.

Conjecture 7. Let m ≥ 1, n ≥ 1 be some integers, let R be a semiprime

ring with suitable torsion restrictions, and let T : R → R be an (m, n)−Jordan

triple centralizer. In this case T is a two-sided centralizer.

We proceed with the following result.

Theorem 8. Let X be Hilbert space over the real or complex field K,

let A(X) ⊂ L(X) be a standard operator algebra which is closed under the

adjoint operation, and let m ≥ 1, n ≥ 1 be some integers. Suppose there exists

an additive mapping T : A(X) → L(X) satisfying the relation

(16) 2(m+n)2T (A3) = m(2m+n)T (A)A2+2mnAT (A)A+n(2n+m)A2T (A)

for all A ∈ A(X). In this case T is of the form T (A) = λA, for all A ∈ A(X)
and some λ ∈ K. In particular, T is linear and continuous.

Let us point out that in the theorem above we obtain as a result the conti-
nuity of T under purely algebraic assumptions, which means that Theorem 8
might be of some interest from the automatic continuity point of view.
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Proof of Theorem 8. Let us first consider the restriction of T on
F (X). Let A be from F (X) and let P ∈ F (X), P ∗ = P be a projection
with AP = PA = A. We have also A∗P = PA∗ = A∗. From the relation (16)
one obtains

(17) 2(m+n)2T (P ) = m(2m+n)T (P )P +2mnPT (P )P +n(2n+m)PT (P ).

Right multiplication of the above relation by P gives

(18) T (P )P = PT (P )P.

Similarly,

(19) PT (P ) = PT (P )P.

Combining (18) and (19) we obtain

(20) T (P )P = PT (P ).

Applying (18), (19) and (20) in (17) we obtain

(21) T (P ) = T (P )P = PT (P ).

Putting A + P for A in the relation (16) one obtains

2(m + n)2T (A3 + 3A2 + 3A + P )

= m(2m + n)T (A + P )(A2 + 2A + P ) + 2mn(A + P )T (A + P )(A + P )

+ n(2n + m)(A2 + 2A + P )T (A + P )

which reduces to

2(m + n)2(3T (A2) + 3T (A))

= m(2m + n)(T (P )A2 + 2T (A)A + 2T (P )A + T (A))

+ 2mn(T (A)A + AT (P )A + T (P )A + AT (A) + T (A) + AT (P ))

+ n(2n + m)(2AT (A) + T (A) + A2T (P ) + 2AT (P )).

Putting in the above relation −A for A and comparing the relation so obtained
with the above relation we obtain

6(m + n)2T (A2) = m(2m + n)BA2 + 4m(m + n)T (A)A + 2mnABA

+ 4n(m + n)AT (A) + n(2n + m)A2B
(22)

and

(23) (m + n)T (A) = mBA + nAB

where B stands for T (P ). From the relation (23) one can conclude that T

maps F (X) into itself. Combining (22) with (23) we obtain

6(m + n)(mBA2 + nA2B)

= m(2m + n)BA2 + 4m(mBA + nAB)A + 2mnABA

+ 4nA(mBA + nAB) + n(2n + m)A2B
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which reduces to 5mnBA2 + 5mnA2B − 10mnABA = 0 and finally to

BA2 + A2B − 2ABA = 0,

which can be written in the form

(24) [[B, A] , A] = 0.

Let us denote by FP the set {A; A ∈ F (X), AP = PA}. The set FP is
an algebra which is closed under the adjoint operation. According to (20) one
can conclude that B ∈ FP . Let us prove that FP is semiprime. Suppose that

ACA = 0,

holds for some A ∈ FP and all C ∈ FP . Putting in the above relation C = A∗

and multiplying the relation so obtained from the left side by A∗, we obtain
(A∗A)∗(A∗A) = 0, whence it follows A∗A = 0, which gives A = 0. The
linearization of the relation (24) gives

[[B, A] , C] + [[B, C] , A] = 0.

Putting AC for A in the above relation we obtain

0 = [[B, A] , AC] + [[B, AC] , A]

= [[B, A] , A] C + A [[B, A] , C] + [[B, A] C + A [B, C] , A]

= A [[B, A] , C] + [[B, A] , A] C + [B, A] [C, A] + A [[B, C] , A]

= [B, A] [C, A] .

We have therefore
[B, A] [C, A] = 0.

The substitution CB for C in the above relation gives [B, A] C [B, A] = 0, for
all pairs A, C ∈ FP . Since FP is semiprime we have

[B, A] = 0

for all A ∈ FP . Now the relation (23) reduces to T (A) = BA = AB, which
gives

T (A2) = BA2 = A2B = (BA)A = A(AB) = T (A)A = AT (A).

Thus we have T (A2) = T (A)A = AT (A), for all A ∈ F (X). In other words,
T is a left and a right Jordan centralizer on F (X). Since F (X) is prime one
can conclude by Proposition 1.4 in [14] that T is a two-sided centralizer. One
can easily prove that T is of the form

T (A) = λA

for any A ∈ F (X) and some λ ∈ K (see [10] for the details). It remains
to prove that the above relation holds on A(X) as well. Let us introduce
T1 : A(X) → L(X) by T1(A) = λA and consider T0 = T − T1. The mapping
T0 is, obviously, additive and satisfies the relation (16). Besides, T0 vanishes
on F (X). Let A ∈ A(X), let P ∈ F (X), be an one-dimensional projection
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and S = A + PAP − (AP + PA). Note that S can be written in the form
S = (I − P )A(I − P ), where I denotes the identity operator on X. Since,
obviously, S − A ∈ F (X), we have T0(S) = T0(A). Besides, SP = PS = 0.

We have therefore the relation

2(m + n)2T0(S
3) = m(2m + n)T0(S)S2 + 2mnST0(S)S + n(2n + m)S2T0(S).

Applying the above relation and the fact that T0(P ) = 0, SP = PS = 0, we
obtain

m(2m + n)T0(S)S2 + 2mnST0(S)S + n(2n + m)S2T0(S)

= 2(m + n)2T0(S
3) = 2(m + n)2T0(S

3 + P ) = 2(m + n)2T0((S + P )3)

= m(2m + n)T0(S + P )(S + P )2 + 2mn(S + P )T0(S + P )(S + P )

+ n(2n + m)(S + P )2T0(S + P )

= m(2m + n)T0(S)(S2 + P ) + 2mn(S + P )T0(S)(S + P )

+ n(2n + m)(S2 + P )T0(S).

We have therefore

m(2m + n)T0(S)S2 + 2mnST0(S)S + n(2n + m)S2T0(S)

= m(2m + n)T0(S)(S2 + P ) + 2mn(S + P )T0(S)(S + P )

+ n(2n + m)(S2 + P )T0(S),

which reduces to
(25)
(2m+n)T0(A)P +2mPT0(A)S+2mST0(A)P +2mPT0(A)P +2mPT0(A) = 0.

Multiplying the above relation from both sides by P we obtain

(26) PT0(A)P = 0.

Right multiplication of the relation (25) by P gives because of (26)

(27) (2m + n)T0(A)P + 2mST0(A)P = 0.

Putting in the above relation −A for A, and comparing the relation so ob-
tained with the above relation, (let us recall that S = (I − P )A(I − P )) we
obtain

T0(A)P = 0.

Since P is an arbitrary one-dimensional projection, one can conclude that
T0(A) = 0, for any A ∈ A(X). In other words, we have proved that T is of
the form T (A) = λA, for all A ∈ A(X) and some λ ∈ K. The proof of the
theorem is complete.

It should be mentioned that in the proof of Theorem 8 we used some ideas
and methods similar to those used by Molnár in [9].
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