ON $(m, n)-$ JORDAN CENTRALIZERS IN RINGS AND ALGEBRAS

Joso Vukman
University of Maribor, Slovenia

Abstract

Let $m \geq 0, n \geq 0$ be fixed integers with $m+n \neq 0$ and let R be a ring. It is our aim in this paper to investigate additive mapping $T: R \rightarrow R$ satisfying the relation $(m+n) T\left(x^{2}\right)=m T(x) x+n x T(x)$ for all $x \in R$.

This research is a continuation of our earlier work ([11]). Throughout, R will represent an associative ring with center $Z(R)$. Given an integer $n \geq 2$, a ring R is said to be n-torsion free, if for $x \in R, n x=0$ implies $x=0$. As usual the commutator $x y-y x$ will be denoted by $[x, y]$. We define $[y, x]_{n}$ inductively as follows: $[y, x]_{1}=[y, x],[y, x]_{n+1}=\left[[y, x]_{n}, x\right]$. We shall use the commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=[x, y] z+y[x, z]$, for all $x, y, z \in R$. A mapping F, which maps a ring R into itself, is called commuting on R in case $[F(x), x]=0$ holds for all $x \in R$. Recall that a ring R is prime if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=0$. An additive mapping $D: R \rightarrow R$, where R is an arbitrary ring, is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$, and is called a Jordan derivation in case $D\left(x^{2}\right)=$ $D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner in case there exists $a \in R$, such that $D(x)=[a, x]$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein ([8]) asserts that any Jordan derivation on a prime ring with $\operatorname{char}(R) \neq 2$ is a derivation. A brief proof of Herstein's result can be found

[^0]in [3]. Cusack ([7]) generalized Herstein's result to 2 -torsion free semiprime rings (see also [4] for an alternative proof). We denote by Q_{r}, C and $R C$ Martindale right ring of quotients, extended centroid, and central closure of a semiprime ring R, respectively.For the explanation of Q_{r}, C, and $R C$ we refer the reader to [2]. An additive mapping $T: R \rightarrow R$ is called a left centralizer in case $T(x y)=T(x) y$ holds for all pairs $x, y \in R$. In case R has the identity element $T: R \rightarrow R$ is a left centralizer iff T is of the form $T(x)=a x$ for all $x \in R$, where $a \in R$ is a fixed element. For a semiprime ring R all left centralizers are of the form $T(x)=q x$ for all $x \in R$, where q is a fixed element of Q_{r} (see Chapter 2 in [2]). An additive mapping $T: R \rightarrow R$ is called a left Jordan centralizer in case $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. The definition of right centralizer and right Jordan centralizer should be self-explanatory. We call $T: R \rightarrow R$ a two-sided centralizer in case T is both a left and a right centralizer. In case $T: R \rightarrow R$ is a two-sided centralizer, where R is a semiprime ring with extended centroid C, then there exists an element $\lambda \in C$ such that $T(x)=\lambda x$ for all $x \in R$ (see Theorem 2.3.2 in [2]). Zalar ([14]) has proved that any left (right) Jordan centralizer on a 2 -torsion free semiprime ring is a left (right) centralizer. Molnár ([9]) has proved that in case we have an additive mapping $T: A \rightarrow A$, where A is a semisimple H^{*}-algebra, satisfying the relation $T\left(x^{3}\right)=T(x) x^{2}\left(T\left(x^{3}\right)=x^{2} T(x)\right)$ for all $x \in A$, then T is a left (right) centralizer. Let us recall that a semisimple H^{*}-algebra is a complex semisimple Banach*-algebra whose norm is a Hilbert space norm such that $\left(x, y z^{*}\right)=(x z, y)=\left(z, x^{*} y\right)$ is fulfilled for all $x, y, z \in A$ (see [1]). For results concerning centralizers in rings and algebras we refer to [10-13] where further references can be found. Let X be a real or complex Banach space and let $L(X)$ and $F(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $L(X)$, respectively. An algebra $A(X) \subset L(X)$ is said to be standard in case $F(X) \subset A(X)$. Let us point out that any standard operator algebra is prime, which is a consequence of HahnBanach theorem. In case X is a real or complex Hilbert space we denote by A^{*} the adjoint operator of $A \in L(X)$.

We proceed with the following definition.
Definition 1. Let $m \geq 0, n \geq 0$ be fixed integers with $m+n \neq 0$ and let R be a ring. An additive mapping $T: R \rightarrow R$ will be called an $(m, n)-$ Jordan centralizer in case

$$
\begin{equation*}
(m+n) T\left(x^{2}\right)=m T(x) x+n x T(x) \tag{1}
\end{equation*}
$$

holds for all $x \in R$.
Obviously, $(1,0)$-Jordan centralizer is a left Jordan centralizer, $(0,1)-$ Jordan centralizer is a right Jordan centralizer, and in case (1,1)-Jordan centralizer we have the relation

$$
\begin{equation*}
2 T\left(x^{2}\right)=T(x) x+x T(x), x \in R \tag{2}
\end{equation*}
$$

Vukman ([11]) has proved that in case there exists an additive mapping $T: R \rightarrow R$, where R is a 2 -torsion free semiprime ring, satisfying the relation (2), then T is a two-sided centralizer. The above observations lead to the following conjecture.

CONJECTURE 2. Let $m \geq 1, n \geq 1$ be some integers, let R be a semiprime ring with suitable torsion restrictions, and let $T: R \rightarrow R$ be an (m, n)-Jordan centralizer. In this case T is a two-sided centralizer.

In this paper we prove some results related to the above conjecture. First we prove the following proposition.

Proposition 3. Let $m \geq 0, n \geq 0$ be some integers with $m+n \neq 0$, let R be a ring and let $T: R \rightarrow R$ an $(m, n)-$ Jordan centralizer. In this case we have

$$
\begin{align*}
& 2(m+n)^{2} T(x y x) \\
& \quad=m n T(x) x y+m(2 m+n) T(x) y x-m n T(y) x^{2}+2 m n x T(y) x \tag{3}\\
& \quad-m n x^{2} T(y)+n(m+2 n) x y T(x)+m n y x T(x)
\end{align*}
$$

for all pairs $x, y \in R$.
Proof. The linearization of the relation (1) gives
(4) $(m+n) T(x y+y x)=m T(x) y+m T(y) x+n x T(y)+n y T(x), x, y \in R$.

Putting in the above relation $(m+n)(x y+y x)$ for y we obtain

$$
\begin{aligned}
(m+ & n)^{2} T\left(x^{2} y+y x^{2}+2 x y x\right) \\
= & m(m+n) T(x)(x y+y x)+m(m+n) T(x y+y x) x \\
& +n(m+n) x T(x y+y x)+n(m+n)(x y+y x) T(x), x, y \in R .
\end{aligned}
$$

Applying first the relation (4) and then the relation (1) we obtain

$$
\begin{aligned}
& 2(m+n)^{2} T(x y x)+(m+n) m T\left(x^{2}\right) y+(m+n) m T(y) x^{2} \\
& \quad+(m+n) n x^{2} T(y)+(m+n) n y T\left(x^{2}\right) \\
& =m(m+n) T(x)(x y+y x)+m(m T(x) y+m T(y) x+n x T(y)+n y T(x)) x \\
& \quad+n x(m T(x) y+m T(y) x+n x T(y)+n y T(x))+n(m+n)(x y+y x) T(x), \\
& \quad x, y \in R . \\
& 2(m+n)^{2} T(x y x)+m(m T(x) x+n x T(x)) y+(m+n) m T(y) x^{2} \\
& +(m+n) n x^{2} T(y)+n y(m T(x) x+n x T(x)) \\
& =m(m+n) T(x)(x y+y x)+m(m T(x) y+m T(y) x+n x T(y)+n y T(x)) x \\
& \quad+n x(m T(x) y+m T(y) x+n x T(y)+n y T(x))+n(m+n)(x y+y x) T(x), \\
& \quad x, y \in R .
\end{aligned}
$$

Collecting terms we arrive at

$$
\begin{aligned}
& 2(m+n)^{2} T(x y x) \\
& \quad=m n T(x) x y+m(2 m+n) T(x) y x-m n T(y) x^{2}+2 m n x T(y) x \\
& \quad-m n x^{2} T(y)+n(m+2 n) x y T(x)+m n y x T(x), x, y \in R .
\end{aligned}
$$

which completes the proof.
In particular for $y=x$ the relation (3) reduces to the relation below which will be considered latter on.
(5) $\begin{aligned} & 2(m+n)^{2} T\left(x^{3}\right) \\ &= m(2 m+n) T(x) x^{2}+2 m n x T(x) x+n(2 n+m) x^{2} T(x), x \in R .\end{aligned}$

The result below proves Conjecture 2 in case R is a prime ring.
THEOREM 4. Let $m \geq 1, n \geq 1$ be fixed integers and let R be a prime ring with char $(R) \neq 6 m n(m+n)$. Suppose $T: R \rightarrow R$ is a $(m, n)-$ Jordan centralizer. If $Z(R)$ is nonzero, then T is a two-sided centralizer.

In the proof of Theorem 4 we shall use the result below proved by Brešar and Hvala ([6]).

ThEOREM 5. Let $n>1$ be an integer and let R be a prime ring such that $\operatorname{char}(R)=0$ or $\operatorname{char}(R) \geq n$. Let $f_{1}, \ldots, f_{n}: R \rightarrow R$ be additive mappings satisfying the relation

$$
f_{1}(x) x^{n-1}+x f_{2}(x) x^{n-2}+\ldots+x^{n-1} f_{n}(x)=0
$$

for all $x \in R$. If $Z(R)$ is nonzero, then there exist elements $a_{1}, a_{2}, \ldots, a_{n-1} \in$ $R C+C$ and additive mappings $\zeta_{1}, \ldots, \zeta_{n}: R \rightarrow C$, such that

$$
\begin{aligned}
& f_{1}(x)=x a_{1}+\zeta_{1}(x) \\
& f_{k}(x)=-a_{k-1} x+x a_{k}+\zeta_{k}(x), k=2, \ldots, n-1 \\
& f_{n}(x)=-a_{n-1} x+\zeta_{n}(x)
\end{aligned}
$$

for all $x \in R$. Moreover, $\zeta_{1}+\ldots+\zeta_{n}=0$.
Proof of Theorem 4. Putting $(m+n) x^{2}$ for x in (1) and applying (1) we obtain

$$
\begin{aligned}
(m+n)^{3} T\left(x^{4}\right)= & m(m+n)^{2} T\left(x^{2}\right) x^{2}+n(m+n)^{2} x^{2} T\left(x^{2}\right) \\
= & m(m+n)(m T(x) x+n x T(x)) x^{2} \\
& +n(m+n) x^{2}(m T(x) x+n x T(x)) \\
= & m^{2}(m+n) T(x) x^{3}+m n(m+n) x T(x) x^{2} \\
& +m n(m+n) x^{2} T(x) x+n^{2}(m+n) x^{3} T(x) .
\end{aligned}
$$

We have therefore

$$
\begin{align*}
(m+n)^{3} T\left(x^{4}\right)= & m^{2}(m+n) T(x) x^{3}+m n(m+n) x T(x) x^{2} \\
& +m n(m+n) x^{2} T(x) x+n^{2}(m+n) x^{3} T(x), x \in R \tag{6}
\end{align*}
$$

On the other hand, putting in the relation (3) $y=(m+n) x^{2}$ and applying (1), we obtain

$$
\begin{aligned}
2(m+n)^{3} T\left(x^{4}\right)= & m n(m+n) T(x) x^{3}+m(2 m+n)(m+n) T(x) x^{3} \\
& -m n(m+n) T\left(x^{2}\right) x^{2}+2 m n(m+n) x T\left(x^{2}\right) x \\
& -m n(m+n) x^{2} T\left(x^{2}\right)+n(m+2 n)(m+n) x^{3} T(x) \\
& +m n(m+n) x^{3} T(x) \\
= & 2 m(m+n)^{2} T(x) x^{3}-m n(m T(x) x+n x T(x)) x^{2} \\
& +2 m n x(m T(x) x+n x T(x)) x-m n x^{2}(m T(x) x+n x T(x)) \\
& +2 n(m+n)^{2} x^{3} T(x) \\
= & \left(2 m(m+n)^{2}-m^{2} n\right) T(x) x^{3}+m n(2 m-n) x T(x) x^{2} \\
& +m n(2 n-m) x^{2} T(x) x+\left(2 n(m+n)^{2}-m n^{2}\right) x^{3} T(x), \\
& x \in R .
\end{aligned}
$$

We have therefore
(7)

$$
\begin{aligned}
2(m+n)^{3} T\left(x^{4}\right)= & \left(2 m(m+n)^{2}-m^{2} n\right) T(x) x^{3}+m n(2 m-n) x T(x) x^{2} \\
& +m n(2 n-m) x^{2} T(x) x+\left(2 n(m+n)^{2}-m n^{2}\right) x^{3} T(x) .
\end{aligned}
$$

By comparing (6) with (7) we obtain
$m n(2 n+m) T(x) x^{3}-3 m n^{2} x T(x) x^{2}-3 m^{2} n x^{2} T(x) x+m n(2 m+n) x^{3} T(x)=0$,
for all $x \in R$, which reduces according to the requirements of the theorem to $(2 n+m) T(x) x^{3}-3 n x T(x) x^{2}-3 m x^{2} T(x) x+(2 m+n) x^{3} T(x)=0, \quad x \in R$.
Now applying Theorem 5 one can conclude that

$$
\begin{align*}
(2 n+m) T(x) & =x a_{1}+\zeta_{1}(x), x \in R, \tag{8}\\
-3 n T(x) & =-a_{1} x+x a_{2}+\zeta_{2}(x), x \in R, \tag{9}\\
-3 m T(x) & =-a_{2} x+x a_{3}+\zeta_{3}(x), x \in R, \tag{10}\\
(2 m+n) T(x) & =-a_{3} x+\zeta_{4}(x), x \in R, \tag{11}
\end{align*}
$$

where $a_{1}, a_{2}, a_{3} \in R C+C$, and $\zeta_{1} \ldots \zeta_{4}: R \rightarrow C$ are additive mappings with $\zeta_{1}+\ldots+\zeta_{4}=0$. Combining the relations from (8) to (11) one obtains

$$
\begin{equation*}
D_{1}(x)+D_{2}(x)+D_{3}(x)=0, \quad x \in R, \tag{12}
\end{equation*}
$$

where $D_{i}(x)$ stands for $\left[a_{i}, x\right]$. Note that D_{i} are derivations. Combining relations (8) and (11), and putting x^{2} for x we obtain

$$
\begin{equation*}
3(m+n) T\left(x^{2}\right)=x^{2} a_{1}-a_{3} x^{2}+\zeta_{1}\left(x^{2}\right)+\zeta_{4}\left(x^{2}\right), x \in R . \tag{13}
\end{equation*}
$$

Left multiplication of the relation (9) by x and right multiplication of the relation (10) by x gives

$$
\begin{align*}
-3 n x T(x) & =-x a_{1} x+x^{2} a_{2}+\zeta_{2}(x) x, x \in R \tag{14}\\
-3 m T(x) x & =-a_{2} x^{2}+x a_{3} x+\zeta_{3}(x) x, x \in R \tag{15}
\end{align*}
$$

Combining (13), (14) and (15) we obtain

$$
\begin{aligned}
& 3\left((m+n) T\left(x^{2}\right)-m T(x) x-n x T(x)\right) \\
& \quad=-x D_{1}(x)-D_{2}\left(x^{2}\right)-D_{3}(x) x+\zeta_{1}\left(x^{2}\right)+\zeta_{2}(x) x \\
& \quad+\zeta_{3}(x) x+\zeta_{4}\left(x^{2}\right), x \in R
\end{aligned}
$$

which reduces because of (1) to

$$
\begin{aligned}
& -x D_{1}(x)-D_{2}(x) x-x D_{2}(x)-D_{3}(x) x+\zeta_{1}\left(x^{2}\right)+\zeta_{2}(x) x \\
& \quad+\zeta_{3}(x) x+\zeta_{4}\left(x^{2}\right)=0, x \in R
\end{aligned}
$$

Applying (12) in the above relation we obtain

$$
D_{1}(x) x+x D_{3}(x)+\zeta_{1}\left(x^{2}\right)+\zeta_{2}(x) x+\zeta_{3}(x) x+\zeta_{4}\left(x^{2}\right)=0, x \in R
$$

which gives

$$
\left[D_{1}(x) x+x D_{3}(x), x\right]=0, x \in R
$$

The above relation can be written in the form

$$
D_{1}(x) x^{2}+x\left(D_{3}(x)-D_{1}(x)\right) x-x^{2} D_{3}(x)=0, x \in R
$$

From the above relation it follows according to Corollary 3. 4.in [6] that $D_{1}(x)=D_{3}(x)=0$ for all $x \in R$, whence it follows that $D_{2}(x)=0$ because of (12). In other words, we have

$$
\left[a_{1}, x\right]=\left[a_{2}, x\right]=\left[a_{3}, x\right]=0, x \in R .
$$

Now applying the above relation in (9) we obtain

$$
3 n[T(x), x]=\left[a_{1} x, x\right]-\left[x a_{2}, x\right]=\left[a_{1}, x\right] x-x\left[a_{2}, x\right]=0, x \in R .
$$

We have therefore $3 n[T(x), x]=0, x \in R$, which reduces to

$$
[T(x), x]=0, x \in R
$$

according to the requirements of the theorem. In other words, T is commuting on R. Now, one can replace in (1) $x T(x)$ by $T(x) x$, which gives $(m+n) T\left(x^{2}\right)=$ $(m+n) T(x) x, x \in R$, whence it follows because of the requirements of the theorem that

$$
T\left(x^{2}\right)=T(x) x
$$

holds for all $x \in R$. Of course, we have also

$$
T\left(x^{2}\right)=x T(x), x \in R .
$$

In other words, T is a left and a right Jordan centralizer. By proposition 1.4. in [14] T is a left and a right centralizer, which completes the proof of the theorem.

An additive mapping $D: R \rightarrow R$, where R is an arbitrary ring, is called a Jordan triple derivation in case

$$
D(x y x)=D(x) y x+x D(y) x+x y D(x)
$$

holds for all pairs $x, y \in R$. One can easily prove that any Jordan derivation on arbitrary 2 -torsion free ring is a Jordan triple derivation (see [3] for the details). Brešar ([5]) has proved that any Jordan triple derivation, which maps a 2 -torsion free semiprime ring into itself, is a Jordan derivation. These observations and Proposition 3 lead to the definition and the conjecture below.

Definition 6. Let $m \geq 0, n \geq 0$ be some integers with $m+n \neq 0$, and let R be an arbitrary ring. An additive mapping $D: R \rightarrow R$ is called an (m, n)-Jordan triple centralizer in case

$$
\begin{aligned}
2(m+n)^{2} T(x y x)= & m n T(x) x y+m(2 m+n) T(x) y x-m n T(y) x^{2} \\
& +2 m n x T(y) x-m n x^{2} T(y)+n(m+2 n) x y T(x) \\
& +\operatorname{mnyx} T(x),
\end{aligned}
$$

holds for all pairs $x, y \in R$.
Conjecture 7. Let $m \geq 1, n \geq 1$ be some integers, let R be a semiprime ring with suitable torsion restrictions, and let $T: R \rightarrow R$ be an (m, n)-Jordan triple centralizer. In this case T is a two-sided centralizer.

We proceed with the following result.
Theorem 8. Let X be Hilbert space over the real or complex field \mathcal{K}, let $A(X) \subset L(X)$ be a standard operator algebra which is closed under the adjoint operation, and let $m \geq 1, n \geq 1$ be some integers. Suppose there exists an additive mapping $T: A(X) \rightarrow L(X)$ satisfying the relation
(16) $2(m+n)^{2} T\left(A^{3}\right)=m(2 m+n) T(A) A^{2}+2 m n A T(A) A+n(2 n+m) A^{2} T(A)$
for all $A \in A(X)$. In this case T is of the form $T(A)=\lambda A$, for all $A \in A(X)$ and some $\lambda \in \mathcal{K}$. In particular, T is linear and continuous.

Let us point out that in the theorem above we obtain as a result the continuity of T under purely algebraic assumptions, which means that Theorem 8 might be of some interest from the automatic continuity point of view.

Proof of Theorem 8. Let us first consider the restriction of T on $F(X)$. Let A be from $F(X)$ and let $P \in F(X), P^{*}=P$ be a projection with $A P=P A=A$. We have also $A^{*} P=P A^{*}=A^{*}$. From the relation (16) one obtains
(17) $2(m+n)^{2} T(P)=m(2 m+n) T(P) P+2 m n P T(P) P+n(2 n+m) P T(P)$.

Right multiplication of the above relation by P gives

$$
\begin{equation*}
T(P) P=P T(P) P \tag{18}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
P T(P)=P T(P) P \tag{19}
\end{equation*}
$$

Combining (18) and (19) we obtain

$$
\begin{equation*}
T(P) P=P T(P) \tag{20}
\end{equation*}
$$

Applying (18), (19) and (20) in (17) we obtain

$$
\begin{equation*}
T(P)=T(P) P=P T(P) \tag{21}
\end{equation*}
$$

Putting $A+P$ for A in the relation (16) one obtains

$$
\begin{aligned}
& 2(m+n)^{2} T\left(A^{3}+3 A^{2}+3 A+P\right) \\
& \quad=m(2 m+n) T(A+P)\left(A^{2}+2 A+P\right)+2 m n(A+P) T(A+P)(A+P) \\
& \quad+n(2 n+m)\left(A^{2}+2 A+P\right) T(A+P)
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
2(m+ & n)^{2}\left(3 T\left(A^{2}\right)+3 T(A)\right) \\
= & m(2 m+n)\left(T(P) A^{2}+2 T(A) A+2 T(P) A+T(A)\right) \\
& +2 m n(T(A) A+A T(P) A+T(P) A+A T(A)+T(A)+A T(P)) \\
& +n(2 n+m)\left(2 A T(A)+T(A)+A^{2} T(P)+2 A T(P)\right) .
\end{aligned}
$$

Putting in the above relation $-A$ for A and comparing the relation so obtained with the above relation we obtain

$$
\begin{align*}
6(m+n)^{2} T\left(A^{2}\right)= & m(2 m+n) B A^{2}+4 m(m+n) T(A) A+2 m n A B A \\
& +4 n(m+n) A T(A)+n(2 n+m) A^{2} B \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
(m+n) T(A)=m B A+n A B \tag{23}
\end{equation*}
$$

where B stands for $T(P)$. From the relation (23) one can conclude that T maps $F(X)$ into itself. Combining (22) with (23) we obtain

$$
\begin{aligned}
& 6(m+n)\left(m B A^{2}+n A^{2} B\right) \\
& \quad=m(2 m+n) B A^{2}+4 m(m B A+n A B) A+2 m n A B A \\
& \quad+4 n A(m B A+n A B)+n(2 n+m) A^{2} B
\end{aligned}
$$

which reduces to $5 m n B A^{2}+5 m n A^{2} B-10 m n A B A=0$ and finally to

$$
B A^{2}+A^{2} B-2 A B A=0
$$

which can be written in the form

$$
\begin{equation*}
[[B, A], A]=0 \tag{24}
\end{equation*}
$$

Let us denote by F_{P} the set $\{A ; A \in F(X), A P=P A\}$. The set F_{P} is an algebra which is closed under the adjoint operation. According to (20) one can conclude that $B \in F_{P}$. Let us prove that F_{P} is semiprime. Suppose that

$$
A C A=0,
$$

holds for some $A \in F_{P}$ and all $C \in F_{P}$. Putting in the above relation $C=A^{*}$ and multiplying the relation so obtained from the left side by A^{*}, we obtain $\left(A^{*} A\right)^{*}\left(A^{*} A\right)=0$, whence it follows $A^{*} A=0$, which gives $A=0$. The linearization of the relation (24) gives

$$
[[B, A], C]+[[B, C], A]=0
$$

Putting $A C$ for A in the above relation we obtain

$$
\begin{aligned}
0 & =[[B, A], A C]+[[B, A C], A] \\
& =[[B, A], A] C+A[[B, A], C]+[[B, A] C+A[B, C], A] \\
& =A[[B, A], C]+[[B, A], A] C+[B, A][C, A]+A[[B, C], A] \\
& =[B, A][C, A] .
\end{aligned}
$$

We have therefore

$$
[B, A][C, A]=0
$$

The substitution $C B$ for C in the above relation gives $[B, A] C[B, A]=0$, for all pairs $A, C \in F_{P}$. Since F_{P} is semiprime we have

$$
[B, A]=0
$$

for all $A \in F_{P}$. Now the relation (23) reduces to $T(A)=B A=A B$, which gives

$$
T\left(A^{2}\right)=B A^{2}=A^{2} B=(B A) A=A(A B)=T(A) A=A T(A)
$$

Thus we have $T\left(A^{2}\right)=T(A) A=A T(A)$, for all $A \in F(X)$. In other words, T is a left and a right Jordan centralizer on $F(X)$. Since $F(X)$ is prime one can conclude by Proposition 1.4 in [14] that T is a two-sided centralizer. One can easily prove that T is of the form

$$
T(A)=\lambda A
$$

for any $A \in F(X)$ and some $\lambda \in \mathcal{K}$ (see [10] for the details). It remains to prove that the above relation holds on $A(X)$ as well. Let us introduce $T_{1}: A(X) \rightarrow L(X)$ by $T_{1}(A)=\lambda A$ and consider $T_{0}=T-T_{1}$. The mapping T_{0} is, obviously, additive and satisfies the relation (16). Besides, T_{0} vanishes on $F(X)$. Let $A \in A(X)$, let $P \in F(X)$, be an one-dimensional projection
and $S=A+P A P-(A P+P A)$. Note that S can be written in the form $S=(I-P) A(I-P)$, where I denotes the identity operator on X. Since, obviously, $S-A \in F(X)$, we have $T_{0}(S)=T_{0}(A)$. Besides, $S P=P S=0$. We have therefore the relation
$2(m+n)^{2} T_{0}\left(S^{3}\right)=m(2 m+n) T_{0}(S) S^{2}+2 m n S T_{0}(S) S+n(2 n+m) S^{2} T_{0}(S)$.
Applying the above relation and the fact that $T_{0}(P)=0, S P=P S=0$, we obtain

$$
\begin{aligned}
m(2 & m+n) T_{0}(S) S^{2}+2 m n S T_{0}(S) S+n(2 n+m) S^{2} T_{0}(S) \\
= & 2(m+n)^{2} T_{0}\left(S^{3}\right)=2(m+n)^{2} T_{0}\left(S^{3}+P\right)=2(m+n)^{2} T_{0}\left((S+P)^{3}\right) \\
= & m(2 m+n) T_{0}(S+P)(S+P)^{2}+2 m n(S+P) T_{0}(S+P)(S+P) \\
& +n(2 n+m)(S+P)^{2} T_{0}(S+P) \\
= & m(2 m+n) T_{0}(S)\left(S^{2}+P\right)+2 m n(S+P) T_{0}(S)(S+P) \\
& +n(2 n+m)\left(S^{2}+P\right) T_{0}(S)
\end{aligned}
$$

We have therefore

$$
\begin{aligned}
& m(2 m+n) T_{0}(S) S^{2}+2 m n S T_{0}(S) S+n(2 n+m) S^{2} T_{0}(S) \\
& \quad=m(2 m+n) T_{0}(S)\left(S^{2}+P\right)+2 m n(S+P) T_{0}(S)(S+P) \\
& \quad+n(2 n+m)\left(S^{2}+P\right) T_{0}(S)
\end{aligned}
$$

which reduces to
(25)
$(2 m+n) T_{0}(A) P+2 m P T_{0}(A) S+2 m S T_{0}(A) P+2 m P T_{0}(A) P+2 m P T_{0}(A)=0$.
Multiplying the above relation from both sides by P we obtain

$$
\begin{equation*}
P T_{0}(A) P=0 \tag{26}
\end{equation*}
$$

Right multiplication of the relation (25) by P gives because of (26)

$$
\begin{equation*}
(2 m+n) T_{0}(A) P+2 m S T_{0}(A) P=0 \tag{27}
\end{equation*}
$$

Putting in the above relation $-A$ for A, and comparing the relation so obtained with the above relation, (let us recall that $S=(I-P) A(I-P)$) we obtain

$$
T_{0}(A) P=0
$$

Since P is an arbitrary one-dimensional projection, one can conclude that $T_{0}(A)=0$, for any $A \in A(X)$. In other words, we have proved that T is of the form $T(A)=\lambda A$, for all $A \in A(X)$ and some $\lambda \in \mathcal{K}$. The proof of the theorem is complete.

It should be mentioned that in the proof of Theorem 8 we used some ideas and methods similar to those used by Molnár in [9].

References

[1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., New York, 1996.
[3] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-323.
[4] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[5] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[6] M. Brešar and B. Hvala, On additive maps of prime rings, II, Publ. Math. Debrecen 54 (1999), 39-54.
[7] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[8] I. N. Herstein, Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[9] L. Molnár, On centralizers of an H^{*}-algebra, Publ. Math. Debrecen 46 (1995), 89-95.
[10] I. Kosi-Ulbl and J. Vukman, On centralizers of standard operator algebras and semisimple H^{*}-algebras, Acta Math. Hungar. 110 (2006), 217-223.
[11] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447-456.
[12] J. Vukman and I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225-234.
[13] J. Vukman and I. Kosi-Ulbl, On centralizers of semisimple H^{*}-algebras, Taiwanese J. Math. 11 (2007), 1063-1074.
[14] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.
J. Vukman

Department of Mathematics and Computer Science
University of Maribor
FNM, Koroška 160, 2000 Maribor
Slovenia
E-mail: joso.vukman@uni-mb.si
Received: 23.12.2008.
Revised: 20.2.2009.

[^0]: 2010 Mathematics Subject Classification. 16W10, 46K15, 39 B 05.
 Key words and phrases. Ring, prime ring, semiprime ring, Banach space, Hilbert space, algebra of all bounded linear operators, standard operator algebra, H^{*}-algebra, derivation, Jordan derivation, left (right) centralizer, two-sided centralizer, left (right) Jordan centralizer, (m, n)-Jordan centralizer.

 This research has been supported by the Research Council of Slovenia.

