CHARACTERIZATIONS OF FINITE ABELIAN AND MINIMAL NONABELIAN GROUPS

YAKOV BERKOVICH

University of Haifa, Israel

In memory of Semen L. Gramm (1916-2009)

ABSTRACT. In this note we present the following characterizations of finite abelian and minimal nonabelian groups: (i) A group G is abelian if and only if $G' = \Phi(G)'$. (ii) A group G is either abelian or minimal nonabelian if and only if $\Phi(G)' = H'$ for all maximal subgroups H of G. We also prove a number of related results.

In this note G is a nonidentity finite group and p, q are distinct primes. Our notation is standard for finite group theory (see [3] and [6]).

In what follows we use freely some known properties of Φ -subgroups ([7], see also [3, §1]). For example, if $M \triangleleft G$, then $\Phi(M) \leq \Phi(G)$, and G is nilpotent if and only if $G' \leq \Phi(G)$ which is equivalent to normality of all maximal subgroups in G (Wielandt; see Lemma J(d)). It follows from Schur-Zassenhaus' theorem that orders |G| and $|G/\Phi(G)|$ have the same prime divisors (see Lemma J(g)). If $P \in \operatorname{Syl}_p(G)$ is G-invariant, then $P \cap \Phi(G) = \Phi(P)$ ([1]; see Lemma J(a) and its proof following Lemma J (for more general result where P is a normal Hall subgroup of G, see [2, Theorem 3.1]). We also use the Miller-Moreno-Redei description of minimal nonabelian groups (see Lemma J(b,c); for proofs, see [3, Exercise 1.8a] and [6, Lemma 11.2]). For example, if G is a minimal nonabelian group, then $\Phi(G)$ is primary cyclic if G is nonnilpotent, and G is prime-power with |G'| = p if G is nilpotent.

²⁰¹⁰ Mathematics Subject Classification. 20D15.

Key words and phrases. Maximal subgroup, abelian, minimal nonabelian, minimal nonnilpotent and Frobenius groups, Frattini subgroup, derived subgroup.

⁵⁵

If G is abelian, then $G' = \Phi(G)'$ and it appears that this property characterizes abelian groups (Theorem 1). If G is either abelian or minimal nonabelian, then $H' = \Phi(G)'$, and Theorem 3 shows that this property is characteristic for groups all of whose maximal subgroups are abelian.

Let $\Gamma_1(\Gamma_1^n)$ be the set of maximal (nonnormal maximal) subgroups of a group G. A group G is not nilpotent if and only it the set Γ_1^n is not empty (Lemma J(d)).

In Lemma J we collected most known results cited in what follows so that our note is self contained modulo Lemma J.

LEMMA J. Let G be a finite group.

- (a) R. Baer ([1]). If $P \in Syl(G)$ is G-invariant, then $\Phi(P) = P \cap \Phi(G)$.
- (b) (Redei; see [3, Exercise 1.8a].) If G is a nilpotent minimal nonabelian group, then G is a p-group, |G'| = p, Z(G) = Φ(G) is of index p² in G and one of the following holds:
 - (i) p = 2 and G is the ordinary quaternion group,
 - (ii) $G = \langle a, b \mid a^{p^m} = b^{p^n} = 1, a^b = a^{1+p^{m-1}}, m > 1 \rangle$ is metacyclic of order p^{m+n} ,
 - (iii) $G = \langle a, b \mid a^{p^m} = b^{p^n} = c^p = 1, c = [a, b], [a, c] = [b, c] = 1 \rangle$ is nonmetacyclic of order p^{m+n+1} .

If $\exp(G) = p$, then p > 2 and $|G| = p^3$.

- (c) (Miller-Moreno; see [3, Lemma 10.8]) If G is a nonnilpotent minimal nonabelian group, then $|G| = p^a q^b$, $G = P \cdot Q$, where $P \in \text{Syl}_p(G)$ is cyclic, $Q = G' \in \text{Syl}_q(G)$ is a minimal normal subgroup of $G, Z(G) = \Phi(G)$ has index p in P.
- (d) (Wielandt) A group G is nilpotent if and only if $G' \leq \Phi(G)$ (or, what is equivalent, $G/\Phi(G)$ is nilpotent).
- (e) If G is nilpotent and noncyclic, then G/G' is also noncyclic.
- (f) ([7]) If a Sylow p-subgroup is normal in $G/\Phi(G)$, then a Sylow p-subgroup is normal in G. If H is normal in G, then $\Phi(H) \leq \Phi(G)$.
- (g) $\pi(G/\Phi(G)) = \pi(G)$, where $\pi(G)$ is the set of prime divisors of the order of G.
- (h) ([4]) If $N_F(F \cap H) \neq F \cap H \neq N_H(F \cap H)$ for any two distinct $F, H \in \Gamma_1$, then either G is nilpotent or $G/\Phi(G)$ is (nonnilpotent) minimal nonabelian.
- (i) If G is a nonabelian p-group such that G' ≤ Z(G) has exponent p, then Φ(G) ≤ Z(G).
- (j) (Fitting; see [3, corollary 6.5]) Let Q be a normal abelian Sylow q-subgroup of a group G. Then $Q \cap Z(G)$ is a direct factor of G.

Let us prove Lemma J(a). Since $\Phi(P) \leq D = \Phi(G) \cap P$ (Lemma J(f)), it suffices to prove the reverse implication. To this end, one may assume that $\Phi(P) = \{1\}$. Let H be a p'-Hall subgroup of G. Then $P = D \times L$, where L is *H*-admissible (Maschke). In that case, $G = (HL) \cdot D$, a semidirect product with kernel *D*, so $D = \{1\}$ since $D \leq \Phi(G)$. Thus, $\Phi(P) = \Phi(G) \cap P$.

Let us prove Lemma J(i). Take $x, y \in G$. Since G is of class 2, we have $1 = [x, y]^p = [x, y^p]$ so that $\mathcal{O}_1(G) \leq \mathbb{Z}(G)$, and we obtain $\Phi(G) = G'\mathcal{O}_1(G) \leq \mathbb{Z}(G)$.

THEOREM 1. The following conditions for a group G are equivalent:

- (a) $G' = \Phi(G)'$.
- (b) G is abelian.

PROOF. Obviously, (b) \Rightarrow (a) so it remains to prove the reverse implication. We have $G' = \Phi(G)' \leq \Phi(G)$ so G is nilpotent (Lemma J(d)); then $G = P_1 \times \cdots \times P_k$, where P_1, \ldots, P_k are Sylow subgroups of G. We have

(1)
$$\Phi(G) = \Phi(P_1) \times \dots \times \Phi(P_k),$$

(2)
$$G' = P'_1 \times \dots \times P'_k,$$

(3)
$$\Phi(G)' = \Phi(P_1)' \times \dots \times \Phi(P_k)'.$$

Equality (1) follows from Lemma J(a) and (2), (3) are known consequences of (1). Since $\Phi(G)' = G'$, it follows from (2) and (3) that $\Phi(P_i)' = P'_i$ so P_i satisfies the hypothesis for i = 1, ..., k. To complete the proof, it suffices to show that P_i is abelian for i = 1, ..., k, so one may assume that k = 1, i.e., Gis a *p*-group. Assume that G is nonabelian of the least possible order. We get $\Phi(G)' = G' > \{1\}$ so that $\Phi(G)$ is nonabelian. Let $R < \Phi(G)'$ be G-invariant of index p. Since $R < \Phi(G)' = G' < \Phi(G)$, we get

$$\Phi(G/R)' = (\Phi(G)/R)' = \Phi(G)'/R = G'/R = (G/R)',$$

whence the nonabelian group G/R satisfies the hypothesis so we must have $R = \{1\}$, by induction. In that case, $|\Phi(G)'| = |G'| = p$ so $G' \leq Z(G)$. By Lemma J(i), $\Phi(G) \leq Z(G)$ so that $\Phi(G)$ is abelian, contrary to what has been said above.

LEMMA 2. Let G be a noncyclic p-group and $D = \langle \Phi(H) | H \in \Gamma_1 \rangle$. Then $D \leq \Phi(G)$ and $|\Phi(G) : D| \leq p$ with equality only for p > 2.

PROOF. Since all members of the set Γ_1 are *G*-invariant, we have $D \triangleleft G$ and $D \leq \Phi(G)$ (Lemma J(f)). Since all maximal subgroups of the quotient group G/D are elementary abelian, G/D is either elementary abelian or nonabelian of order p^3 and exponent p (Lemma J(d)). In the first case, $D = \Phi(G)$. In the second case, p > 2 and $|\Phi(G) : D| = |\Phi(G/D)| = p$. In both cases $|\Phi(G) : D| \leq p$.

If $H \in \Gamma_1$, then $\Phi(G) < H$ so $\Phi(G)' \leq H'$. Below we consider the extreme case when $\Phi(G)' = H'$ for all $H \in \Gamma_1$.

THEOREM 3. The following assertions for a group G are equivalent:

- (a) $\Phi(G)' = H'$ for all $H \in \Gamma_1$.
- (b) G is either abelian or minimal nonabelian.

PROOF. Obviously, (b) \Rightarrow (a). Therefore, it remains to prove the reverse implication. In what follows one may assume that G is nonabelian.

(i) The subgroups $\Phi(G)$, $\Phi(G)' = H'$ are *G*-invariant for all $H \in \Gamma_1$. If $\Phi(G)$ is abelian, then all maximal subgroups of *G* are also abelian, by hypothesis, and *G* is minimal nonabelian so (b) holds. Next we assume that $\Phi(G)' > \{1\}$; then all members of the set Γ_1 are nonabelian. Assume, in addition that *G* is a *p*-group. Let $R < \Phi(G)'$ be *G*-invariant of index *p* and set $\overline{G} = G/R$; then $\Phi(\overline{G})$ is nonabelian and $|\Phi(\overline{G})'| = p$. Take $H \in \Gamma_1$. We have

(4)
$$\Phi(\bar{G})' = \Phi(G/R)' = (\Phi(G)/R)' = \Phi(G)'/R = H'/R = \bar{H}'$$

is of order p so, by Lemma J(i), $\Phi(\bar{H}) \leq Z(\bar{H})$ and hence $\Phi(\bar{H}) \leq Z(\Phi(\bar{G}))$ since $\Phi(\bar{H}) \leq \Phi(\bar{G}) \leq \bar{H}$. Setting $\bar{D} = \langle \Phi(\bar{H}) | H \in \Gamma_1 \rangle$, we conclude that $\bar{D} \leq Z(\Phi(\bar{G}))$ so $\Phi(\bar{G})$ is abelian since $|\Phi(\bar{G}) : \bar{D}| \leq p$, by Lemma 2, contrary to what has been said already. Thus, if G is a p-group, then (a) \Rightarrow (b).

In what follows we assume that G is not a prime-power group. Write $T = \Phi(G)'$; then T = H' for all $H \in \Gamma_1$, by hypothesis. Therefore, all maximal subgroups of G/T are abelian so G/T is either abelian or minimal nonabelian. As in (i), we may assume that $\Phi(G)$ is nonabelian.

(ii) Suppose that G is nilpotent; then $G = P_1 \times \cdots \times P_k$, where $P_i \in \operatorname{Syl}_{p_i}(G)$, $i = 1, \ldots, k, k > 1$. It follows from (2) and (3) which are true for any nilpotent group that $\Phi(P_i)' = H'_i$ for all maximal subgroups H_i of P_i so P_i is either abelian or minimal nonabelian, by (i). Then $\Phi(P_i)$ is abelian for all *i* so that $\Phi(G)$ is abelian, in view of (1), contrary to the assumption. Thus, the theorem is true provided G is nilpotent. Next we assume that G is not nilpotent. In that case, by Lemma J(d), G/T is nonnilpotent.

(iii) It remains to consider the case where G/T is minimal nonabelian and nonnilpotent. It follows from the structure of G/T (Lemma J(c)) that $\Phi(G/T) = \Phi(G)/T$ is cyclic. Remembering that $\Phi(G)$ is nilpotent and $T = \Phi(G)'$, we conclude that $\Phi(G)$ is cyclic (Lemma J(e)) so abelian, a final contradiction.

COROLLARY 4. Suppose that a group G is neither abelian nor minimal nonabelian. Then there exists a nonabelian $H \in \Gamma_1$ such that $\Phi(G)' < H'$.

PROOF. We have $\Phi(G)' \leq H'$ for all $H \in \Gamma_1$. Assume that $\Phi(G)' = H'$ for all nonabelian $H \in \Gamma_1$; then $\Phi(G)$ is nonabelian (take a nonabelian $H \in \Gamma_1$) so the set Γ_1 has no abelian members. In that case, $\Phi(G)' = H'$ for all $H \in \Gamma_1$, by hypothesis, so that G is minimal nonabelian (Theorem 3), contrary to the hypothesis.

We claim that the following conditions for a group G are equivalent: (a) $H' \leq \Phi(G)$ for all $H \in \Gamma_1$, (b) either G is nilpotent or $G/\Phi(G)$ is nonnilpotent minimal nonabelian, (c) $N_F(F \cap H) \neq F \cap H \neq N_H(H \cap F)$ for all distinct $F, H \in \Gamma_1$. Obviously, (a) \Leftrightarrow (b) and (b) \Rightarrow (c). Next, (b) follows from (c), by Lemma J(h).

Below we use some known results on Frobenius groups (see [6, §10.2]). Recall that G is said to be a *Frobenius group* if there is a non-identity H < Gsuch that $H \cap H^x = \{1\}$ for all $x \in G - H$. In that case, $G = H \cdot N$ is a semidirect product with kernel N, Sylow subgroups of H are either cyclic or generalized quaternion.

LEMMA 5. The following conditions for a nonnilpotent group G are equivalent:

- (a) All members of the set Γ_1^n are abelian.
- (b) $G/Z(G) = (U/Z(G)) \cdot (Q_1/Z(G))$ is a Frobenius group with elementary abelian kernel $Q_1/Z(G) = (G/Z(G))'$ and a cyclic complement $U/Z(G), U \in \Gamma_1$.

PROOF. If U, V are two distinct abelian maximal subgroups of a nonabelian group G, then $U \cap V = \mathbb{Z}(G)$.

Suppose that G satisfies condition (a). Given $H \in \Gamma_1^n$, set $H_G = \bigcap_{x \in G} H^x$; then $H_G = Z(G)$, by the previous paragraph. Set $\overline{G} = G/Z(G)$; then $\overline{G} = \overline{H} \cdot \overline{Q}_1$ is a Frobenius group with kernel \overline{Q}_1 and complement \overline{H} . Since \overline{H} is abelian, it is cyclic. There is in \overline{Q}_1 an \overline{H} -invariant Sylow subgroup, by Sylow's theorem. Therefore, since \overline{H} is maximal in \overline{G} , the subgroup \overline{Q}_1 is a *p*-group; moreover, \overline{Q}_1 is a minimal normal subgroup of \overline{G} so it is elementary abelian. All nonnormal maximal subgroups of \overline{G} are conjugate with \overline{H} (Schur-Zassenhaus) so all members of the set Γ_1^n are conjugate in G (indeed, all members of the set Γ_1^n , being abelian, contain Z(G)). Thus, (a) \Rightarrow (b).

Conversely, every group such as in (b), satisfies condition (a). In fact, if $H \in \Gamma_1^n$, then Z(G) < H. By (b), H/Z(G) is cyclic so H is abelian.

The proof of Lemma 5 shows that if the set Γ_1^n has at least one abelian member, then the group G has the same structure as in Lemma 5(b).

COROLLARY 6. A nonnilpotent group G satisfies $\Phi(G)' = H'$ for all $H \in \Gamma_1^n$ if and only if $\overline{G} = G/\Phi(G)'$ is as in Lemma 5(b).

PROOF. Suppose that $\overline{G} = G/\Phi(G)'$ is as in Lemma 5(b) and \overline{H} is a nonnormal maximal subgroup of \overline{G} ; then \overline{H} is cyclic, by hypothesis, so $H' \leq \Phi(G)'$. Since $\Phi(G) < H$, we get $\Phi(G)' \leq H'$ so $H' = \Phi(G)'$ and whence G satisfies the hypothesis.

Now suppose that $\Phi(G)' = H'$ for all $H \in \Gamma_1^n$. Then all nonnormal maximal subgroups of $G/\Phi(G)'$ are abelian so it is as in Lemma 5(b).

PROPOSITION 7. Suppose that a nonnilpotent group G is not minimal nonabelian and such that $M' = \Phi(G)$ for all nonabelian $M \in \Gamma_1$. Then

- (a) $G = P \cdot Q$ is a semidirect product with kernel $Q = G' \in \operatorname{Syl}_q(G), P \in \operatorname{Syl}_p(G)$ is of order $p, \Phi(G) = \Phi(Q) > \{1\}$. Set $H = P\Phi(G)$. The set Γ_1 consists of two conjugacy classes of subgroups with representatives H and Q.
- (b) $P^G = G$, where P^G is the normal closure of P in G.
- (c) $G/\Phi(Q)$ is minimal nonabelian so that $Q/\Phi(Q)$ is a minimal normal subgroup of $G/\Phi(G)$.
- (d) $H' < \Phi(Q)$ if and only if G is minimal nonnilpotent.
- (e) If $\Phi(Q)$ is abelian, then either G is minimal nonnilpotent or a Frobenius group.

PROOF. By hypothesis, all maximal subgroups of $G/\Phi(G)$ are abelian so it is nonnilpotent and minimal nonabelian, by Lemma J(d,c), and (c) is proven. It follows that the set Γ_1 is the union of two conjugacy classes of subgroups. We have $\Phi(G/\Phi(G)) = \{1\}$ so that $|G/\Phi(G)| = pq^b$, where a subgroup of order p is not normal in $G/\Phi(G)$ (Lemma J(b,c)). By hypothesis, the set Γ_1 has a nonabelian member so $\Phi(G) > \{1\}$. By Lemma J(g), $\pi(G) = \pi(G/\Phi(G)) = \{p,q\}$. By Lemma J(f), $Q \in \text{Syl}_q(G)$ is normal in G. We have $G = P \cdot Q$, where $P \in \text{Syl}_p(G)$. By Lemma J(a), $\Phi(Q) = Q \cap \Phi(G)$. By the above, $\Phi(G) = P_1 \times \Phi(Q)$, where P_1 is a maximal subgroup of P. The subgroup $H = P\Phi(Q) \in \Gamma_1$ and all nonnormal maximal subgroups of G are conjugate in G (see the second sentence of this paragraph). Since P_1Q/Q is the unique normal maximal subgroup of G/Q, it follows that $G/Q \cong P$ is cyclic.

As above, $P_1 \leq \Phi(G)$ since $|G/\Phi(G)| = pq^b$ (here P_1 is maximal in cyclic subgroup P). Next, $P_1Q = P_1 \times Q = M \in \Gamma_1$. Assume that $P_1 > \{1\}$ and Mis nonabelian. We have $P_1 \not\leq M' = \Phi(G)$, a contradiction. Thus, if $P_1 > \{1\}$, then M is abelian. Similarly, $P_1 \not\leq (P\Phi(G))' = H'$ so that H is also abelian. It follows that G is minimal nonabelian, contrary to the hypothesis. Thus, $P_1 = \{1\}$ so that |P| = p and $Q \in \Gamma_1$. This completes the proof of (a). By Lemma J(a), $\Phi(G) = \Phi(Q)$.

Since Q, the unique normal maximal subgroup of G, has index p in G, it follows that $P^G = G$, and the proof of (b) is complete.

Suppose that $H' < \Phi(G)$. Then H is abelian, by hypothesis. In that case, $C_G(\Phi(G)) \ge H^G = G$ so $\Phi(G) = Z(G)$ since $Z(G/\Phi(G)) = \{1\}$, and we conclude that G is minimal nonnilpotent since $G/\Phi(G)$ is minimal nonabelian. The proof of (d) is complete.

Assume that $\Phi(Q)(=\Phi(G))$ is abelian and G is not minimal nonnilpotent. Then, by (d), $H = P\Phi(Q)$ is nonabelian so $H' = \Phi(Q)$, by hypothesis. In that case, by Lemma J(j), $N_H(P) = P$ so that H is a Frobenius group since |P| = p. Since $G/\Phi(Q)$ is a Frobenius group, it follows that G is also a Frobenius group. This completes the proof of (e) and thereby the proposition. $\hfill \Box$

Let a nonabelian group G be such that $H' = \Phi(H)$ for all nonabelian $H \leq G$. Then G has no minimal nonnilpotent subgroups, by Lemma J(d). It follows that G is nilpotent. Let $A \leq G$ be minimal nonabelian. Then A is a p-subgroup for some prime p and $A' = \Phi(A)$ has order p and index p^2 in A (Lemma J(b)) so that $|A| = |A'|p^2 = p^3$. Suppose that $P \in \text{Syl}_2(G)$ is nonabelian. Then P is among the 2-groups described in [8] (see also [5, §90]). Now suppose that $G = Q \times H$, where $Q \in \text{Syl}_q(G)$ is nonabelian and $H > \{1\}$. Assume that $Z \leq H$ is cyclic of order p^2 . Then the subgroup $K = Q \times Z$ does not satisfy the hypothesis since $\Phi(Z) \not\leq K'$ and $\Phi(Z) \leq \Phi(K)$. Thus, either G is a prime power or $G = Q \times H$, where $Q \in \text{Syl}_q(G)$ is nonabelian and $\exp(H) > 1$ is square free. It follows that if H is also nonabelian, then $\exp(Q) = q$ and we conclude that q > 2.

Problems

- 1. Study the nonabelian *p*-groups *G* of exponent > *p* satisfying $\mathcal{O}_1(\Phi(H)) = \mathcal{O}_1(H)$ for all $H \leq G$ (obviously, we must have p > 2 since for any 2-group *G* we have $\Phi(G) = \mathcal{O}_1(G)$).
- 2. Classify the *p*-groups G satisfying $H' = \Phi(G)'$ for all those $H \leq G$ that are neither abelian nor minimal nonabelian.
- 3. Suppose that G is a p-group with $|G/\Phi(G)| = p^d$, Given $i \leq d$, let Γ_i be the set of all normal subgroups N of G such that G/N is elementary abelian of order p^i . Study the p-groups G such that $H' = \Phi(G)'$ for all $H \in \Gamma_i$ (for i = 1, see Theorem 3).

ACKNOWLEDGEMENTS.

I am indebted to the referee for a number of constructive remarks.

References

- [1] R. Baer, Supersoluble immersion, Canad. J. Math. 11 (1959), 353-369.
- Y. Berkovich, Alternate proofs of some basic theorems of finite group theory, Glas. Mat. Ser. III 40(60) (2005), 207–233.
- [3] Y. Berkovich, Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin, 2008.
- [4] Y. G. Berkovich and S. L. Gramm, On finite Γ-quasi-nilpotent groups, Mathematical analysis and its applications, Rostov Gos. Univ., Rostov-Don, 1969, 34–39 (Russian).
- [5] Y. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 2, Walter de Gruyter, Berlin, 2008.
- [6] Y. Berkovich and E. M. Zhmud, Characters of Finite Groups. Part 1, Translations of Mathematical Monographs 172, AMS, Providence, Rhode Island, 1998.
- [7] W. Gaschütz, Über die Φ-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160– 170.
- [8] Z. Janko, On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4, J. Algebra 315 (2007), 801–808.

Y. BERKOVICH

Y. Berkovich Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905 Israel Received: 8.12.2008. Revised: 5.5.2009. & 27.6.2009.