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FINITE GROUPS WITH A FAITHFUL REAL-VALUED
IRREDUCIBLE CHARACTER WHOSE SQUARE HAS
EXACTLY TWO DISTINCT IRREDUCIBLE CONSTITUENTS

EMMANUEL ZHMUD
Kharkiv State University, Ukraine

ABSTRACT. We study the groups satisfying the property stated in the
title.

1. MAIN RESULT

To state our results we recall some notation and definitions. In what
follows, G is a finite group.

Let Irr(G) be the set of irreducible complex characters of a group G. If
X, ¥ are characters of G, we define xt as function sending g € G in x(g)1(g),
in particular, (xx)(g) = x%(9) = x(g)?. It is known that Y/ is a character
of G if x,1 are. Next, if ¥ is a character of G, then x(?)(g) = x(g?). It is
known that the function x(? is a generalized character of G (a generalized
character of GG is said to be a difference of two characters of G, i.e., a linear
combination of irreducible characters of G with integer coefficients); see [BZ,
§4.6). We have x(? (1) = x(12) = x(1). If 6 is a generalized character of G,
then Irr(6) = {x € Irr(G) | (A, x) # 0}. It is known that if y € Irr(G), then
Irr(x®) C Trr(x?) (see [BZ, §4.6]). By 1g we denote the principal character
of G.

We use the notation standard for this part of finite group theory (see [1]).

Let, in this paragraph, 7 be a character of G and x € Irr(G). By T, =
{9 € G| 7(9) = 0} we denote the set of zeros of 7. By Burnside, if x
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is nonlinear, then the set T, is not empty. Set R(x) = G- T, = {g €
G | x(g) # 0}, ie., R(x) is the set of elements of G on which y does not
vanish. If D is a representation of G affording the character 7, then the
function det(r) is defined as follows: det(7)(g) = det(D(g)) (g € G). We
write Z(x) = {g € G | |x(g9)| = x(1)}; then Z(x) is a normal subgroup of G
containing ker(x) and such that Z(x)/ker(x) = Z(G/ker(x)). By SL(2,C)
(GL(2, C)) we denote the 2-dimensional special linear (general linear) group
over the field C of complex numbers.

There are few papers in which the nonabelian groups containing a faith-
ful irreducible character x such that its square has a special decomposition in
one or two irreducible constituents are treated (see [2] and [4]). For example,
Isaacs and Zisser [4] have considered the groups G containing a faithful irre-
ducible character  such that (i) x? = a¥, (ii) x? = ax+by, (iii) x? = aw+by,
where 1) € Irr(G). Here Y : g — x(g) (g € G).

In this note we study the groups G containing a faithful irreducible char-
acter y taking real values and such that |Irr(x?)| = 2. As Theorem 1.1 shows,
this condition is fairly restrictive (moreover, as it is shown in the appendix,
there are exactly three groups satisfying this condition).

Our main result is the following

THEOREM 1.1. The following conditions for a group G are equivalent:

(a) There is a faithful irreducible character x of G such that x = X and
()] = 2.

(b) The group G is isomorphic to a (finite) nonabelian subgroup G of
SL(2, C) such that G = (G — G4), where G4 = {z € G | o(x) = 4}.

Later, in the appendix, we show that SL(2,3), Sy (the representation
group of the symmetric group Ss of degree 4 having exactly one involution),
and SL(2,5) are the unique groups satisfying the hypothesis of Theorem 1.1.

In the proof of Theorem 1.1 the following two lemmas play a crucial role.

LEMMA 1.2. For a group G and its irreducible character x the following
conditions are equivalent:
(a) x(1) =2 and det(x) = 1.
(b) x*=2-1g+x@.
PROOF. Let T be a representation of G affording our irreducible character
X- Let g € G and {«, 8} the spectrum of the matrix T'(g).
(a) = (b): We have det(T) = det(x) = 1 and af = det(T(g9)) = 1, by
hypothesis. Next, x(¢g) = a + 0 so that

Y2(9) = (a+ B)? = a? + 52 + 208 = x(g°) + 2

since the spectrum of the matrix T'(g?) is {a?, 3?}. Therefore, x> =215 +
x?, ie., (b) holds.
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(b) = (a): Now let x? = 2-1g+x®. Then x(1)? = 2+x@ (1) = 2+ x(1)
so x(1)(x(1) = 1) =2, and we get x(1) =2. f T, g € G and {«, 3} are as in
the first paragraph of the proof, then, by hypothesis,

a®+ 32 +2a8 = (a+8)* =x*(9) =2+ x(¢9%) =2+ ® + %

It follows that a8 = 1, i.e., det(T'(g)) = 1, and so det(x) = 1, hence condition
(a) is fulfilled. O

REMARK 1.3. The group of Lemma 1.2 is nonabelian since our irreducible
character x is of degree 2 > 1. Besides, for such G we have Y = x. Indeed,
since af = 1 (see the proof of Lemma 1.2), we get § = @ since « and (3 are
roots of unity. Therefore, x(g9) = a + @ is real for all g € G, justifying our
claim. The same follows from the equality x*> = 2 - 1¢ + x(?). Indeed, by
[1, Theorem 4.6.2], we have (x(?,1¢) € {0,1, —1}. Therefore,

6x) = 0316 =2 16 +xP,1g) >2-1>0

so that x = x. In that case, |G| is even (Burnside); the same is also holds
since x(1) = 2 (Frobenius-Molien).

LEMMA 14. If G and x are as in Lemma 1.2 and, in addition, x is
faithful, then

(a) |Z2(G)| = 2.

(b) G has only one involution which is denoted by u.

(©) Ty =g € G | ofg) = 1}.

(d) x? = 1g + 1, where 1 is a character of G of degree 3, and (), 1¢) = 0.
The character ¢ is irreducible if and only if (R(x)) = G; here R(x) =
G—T,.

PRrROOF. (a,b) Take z € Z(G). Then |x(z)| = x(1) = 2 so, in view of

X = X, by Remark 1.3, we get x(z) = —2 since Y is faithful. We have
4=x%(2) =2+ xP(2) =2+ x(z?),

and we conclude that x(z2) = 2 = x(1). Since x is faithful, we get 22 = 1. Tt
follows that exp(Z(G)) < 2. But Z(G) is cyclic since x is faithful, and hence
Z(G)] < 2.

Next, there is in G an involution u since |G| is even (see Remark 1.3). By
Lemma 1.2(b),

X(u) =2+ x(w®) =2+ x(1) = 4.
It follows that x(u) = —2, and we conclude that u € Z(G) since x is faithful.
Thus, |Z(G)| = 2 and w is the unique involution in G. The proof of parts (a)
and (b) is complete.
(c) Take g € Ty. Then 0 = x2(g9) = 2+ x(g°), i-e., x(¢%) = =2 = —x(1).
Therefore, g2 € Z(G)# so g? = u (recall that u is the unique involution in G,
by (b)). It follows that o(g) = 4. Conversely, if o(g) = 4, then ¢g> = u and
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X2(9) =2+ x(g*) =2+ x(u) =2-2=0, ie, g € Ty. The proof of (c) is
complete.
(d) Since x is real-valued, then

(*,1e) = (., X) = (. x) = 1.
Therefore, x? = 1g +1, where v is a character of G of degree 3 and (¥, 1¢) =
0.
Suppose that 9 is reducible; then ¢ has a linear constituent A since (1) =
3. Since (1, A) > 0 = (¥, 1g), we get A # 1g, i.e., G — ker(\) # 0. Taking
into account that Y = x, we obtain:

06AX) = (3N = (la +9,A) = (¥, ) >0
so that Ax = x since the character Ay is irreducible. Then x(A — 1¢) = 0 so
that G — ker(\) C Ty, i.e., R(x) = G — Ty Cker(\) < G since A # 1g. In
particular, (R(x)) < G.

Now suppose that N = (R(x)) < G. We claim that then g € N for all
g€ G. Let g€ G— N(C T,). Then g* = u is the unique involution in G (see
(c)). Since |x(z)| =2 # 0 for all z € Z(G), we have Z(G) C G — T, = R(x)
so that Z(G) < N. It follows that G/N is a non-identity elementary abelian
2-group. Let N < H < G, where |G : H| = 2. In that case, there is the unique
A € Lin(G) such that ker(A\) = H. Since x vanishes on G — H = G — ker(A),
we get x(A — 1g) = 0 or, what is the same, Ay = x. Therefore, since xy = x;,
we get

¥, N = (7 =16, N) = (0 A) = (60 = (6x) =1,
i.e., character v is reducible. The proof of (d) and thereby the lemma is
complete. O

PROOF OF THEOREM 1.1. (a) = (b): By hypothesis, |Irr(x?)| = 2 so
that

X2 =a¢p+bp (¢,9 € Irr(G) are dictinct, a,b € N).

Since ¥ = x, we have, as above,

<X27 ]-G> = <Xa>2> = <XaX> =1
so that 1g € {¢,¢}. To fix ideas, suppose that ¢ = 1g. Then, by the
displayed formula, a = 1 so that
(1.1) x? =1g + by.

It follows from (1.1) that x(1)? = 1+ by(1) > 2 so x(1) > 1 and hence
G is nonabelian. Then T, # ( (Burnside). Let g € T,. Then, by (1.1),
1+ by(g) = x(9)? = 0, i.e., bip(g) = —1. Thus, b divides 1 in the ring of all
algebraic integers and so in the ring Z. Therefore, b = 1, so that

(1.2) X°=1lg + .
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As we know (see [BZ, §4.6]), Trr(x(®) C Trr(x?). Therefore, taking into
account (1.2), we obtain
(1.3) P =clg+dy, (c,deZ).
Since x = X, then, by Theorem 4.6.2 in [1], the Frobenius-Schur indicator
c=(x?,1g) = £1. In that case, by (1.3),
x(1) = xP(1) = e+ dy(1).
Besides, by (1.2), we obtain x2(1) = 1+ (1). Since ¢ = &1, we get

1 1 12 -1

Lo e 0Pt

d x(1)—c x(1)—c
Since x(1) + ¢ > 2+ ¢ > 1, it follows that % € N so d = 1. Therefore, by the
above displayed formula, we also obtain ¢ = —x(1) + 1 < 0 so that ¢ = —1.

Thus (see (1.3)), we have

(1.4) X = —lg+9.

It follows from (1.2) and (1.4) that

(1.5) =lg+v=1lc+xP+1¢=2 1¢ +x?.
It follows from (1.5) and Lemma 1.2 that

(1.6) x(1) =2 and det(x) = 1.

Let, as above, T' be a C-representation affording character x. Since T
is faithful, it follows from (1.6) that the mapping g — T'(g) (¢ € G) is an
isomorphism of G in the special linear group SL(2,C). Let us denote by G
the image of G in SL(2,C); then G = G is nonabelian. Let X4 be the set
of elements of a group X of order # 4. To prove that G = (G — Gy), it
suffices to show that G = (G — G4). But this follows immediately from parts
(c) and (d) of Lemma 1.4. Indeed, since the character ¢ is irreducible, we
have G = (R(x)), by Lemma 1.4(d). On the other hand, by Lemma 1.4(c),
R(x) = G — T, = G — G4. Therefore, G = (G — G4), and so condition (b) is
fulfilled.

(b) = (a): Suppose that G 2 G, where G is a finite nonabelian subgroup
of SL(2, C) satisfying G = (G — G4). Then G = (G — G4). Let T be as in
the previous paragraph and g — T(g) (¢ € G) an isomorphism of G onto
G. Then T is a (faithful) 2-dimensional C-representation of G such that
det(T(g)) = 1 for all g € G. Next, T is irreducible since G is nonabelian.
Let x be the character of T'; then x is faithful since T is. We have x(1) =
2 and det(y) = lg, ie., G satisfied conditions of Lemma 1.2. Then, by
Lemma 1.4(d), x? = 1¢ +1, where ¢ is a character of G. Since G = (G — G4)
and, by Lemma 1.4(c), G — G4 = R(x), we have G = (R(x)). Therefore, v is
irreducible (Lemma 1.4(d)), i.e., [Irr(x?)| = 2, and the theorem is proven. 0O
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2. APPENDIX

This appendix is written by Y. Berkovich with essential help of I. M.
Isaacs (see below).

Our aim is to describe, up to isomorphism, the groups satisfying the
hypothesis of Theorem 1.1.

If a group G has a faithful irreducible character x of degree 2, then either
G has an abelian subgroup of index 2 or G/Z(G) € {A4,S4,PSL(2,5)}, by F.
Klein’s theorem [1, Theorem 18.1]. It follows from the proof of Theorem 1.1,
that if, in addition, the character x is such as in part (a) of the theorem, then
X2 =2-1g+x® (see (1.5)). In that case, by Lemma 1.4, we have |Z(G)| = 2.

Suppose that G has an abelian subgroup, say A, of index 2. Then
|G| =2-|G'| -|Z(G)|, by [3, Lemma 12.12]. Since G has only one involution
(Lemma 1.4(b)), a Sylow 2-subgroup P of G is either cyclic or generalized
quaternion. We also have G = P - B, where B is a 2’-Hall subgroup of A.
Since Z(G) is of order 2, we get |G : G'| = 2|Z(G)| = 4 and Ng(P) = P. If
P is cyclic, then |P| = 4 and G is not generated by elements of order # 4,
contrary to part (b) of Theorem 1.1. Now assume that P is a generalized
quaternion group. Then, if U/B is cyclic of index 2 in G/ B, then all elements
of G of orders # 4 are contained in U < G so that G is not generated by
elements of order # 4, again a contradiction.

Thus, we must have G/Z(G) € {A4,S4,PSL(2,5)}. Since Z(G) is of order
2 and generated by unique involution from G, it follows that Z(G) is isomor-
phic to the Schur multiplier of G/Z(G) so that G is a representation group
of G/Z(G) (see [BZ, Chapter 6]). It follows that G € {SL(2,3), S4,SL(2,5)},
where S, is one of two representation groups of S4 with generalized quaternion
Sylow 2-subgroup.

It is easy to check that SL(2,5) has exactly four faithful irreducible char-
acters of degrees 2,2,4,6, respectively. It follows that SL(2,5) < GL(2,C),
so that

SL(2,5) = SL(2,5)" < GL(2,C)" = SL(2, C).

Next, SL(2,5) is generated by elements of orders # 4 (otherwise, SL(2,5)" <
S(2,5)). It follows that SL(2,5) satisfies the condition of Theorem 1.1(b).
In that case, by Theorem 1.1(a), SL(2,5) has a faithful x € Irr(G) such that
x = ¥ and |Irr(x?)| = 2. Next, SL(2, 3) is generated by elements of orders # 4
and is isomorphic to a subgroup of SL(2,5) so it is isomorphic to a subgroup
of SL(2, C). Then, by Theorem 1.1(a), SL(2, 3) has a faithful x € Irr(G) such
that x = ¥ and |[Irr(x?)| = 2.

It remains to consider the group G = S, with only one involution.! It
is easy to check that S, is generated by elements of orders # 4, namely, of

IThe result of this paragraph is contained in the letter of Isaacs at August 11, 2009.
Isaacs’ argument, reworked by Berkovich, is presented below; that argument is based on
Isaacs’ idea.
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orders 3 and 8. We claim that Sy is isomorphic to a subgroup of the special
linear group SL(2,C). Note, that S, has exactly three faithful irreducible
characters, and their degrees are 2,2/4, respectively. Let x € Irr(G) is faithful
of degree 2 and let T be a representation of G affording character x. Let
P € Syl,(G); then P is generalized quaternion. We have PN G’ = Q = Qs.
Since P is generated by elements of order 4, there is in P — ) an element =
of order 4; then z ¢ G’. Let {c, 3} be the spectrum of matrix T'(x). Since x?
is the unique involution in G so that 22 € Z(G), and the spectrum of T'(z?)
is {a?, 3}, it follows that T'(2?) = diag(a?,a?} is a scalar matrix so that
a? = (B2. Since T is faithful, it follows that o # 3 so that a@ = —/3; in that
case, x(z) = 0. Since o(x) = 4, it follows that « is a 4-th root of unity. Thus,
o € {i,—i}, where i = /—1. In that case, det(T'(z)) = a3 = i(—i) = 1. Since
T is faithful, we get 2 € SL(2, C). By the previous paragraph, G’ = SL(2, 3)
and T(G") < SL(2,C). Thus, T(G) = (T(z), T(G")) < SL(2,C). We see that
G satisfies the condition of Theorem 1.1(b). Therefore, since parts (a) and
(b) of the theorem are equivalent, it follows that ¥ = x and |Irr(x?)| = 2.

REMARK 2.1. Let H be the representation group of S4 with semidihedral
Sylow 2-subgroup (in that case, H & GL(2, 3)). It follows from the above that
SL(2, C) has no subgroup isomorphic to H (this can be checked directly).

Thus, now Zhmud’s Theorem 1.1 can be stated in the following form:

A group G has a faithful irreducible character x such that y = x
and |Irr(x?)] = 2 if and only if G has only one involution and G €
{SL(2a 3)7 S4a SL(Qv 5)}

Let us present an irreducible character xy of G = S; such as in Theo-
rem 1.1. It follows from the character table of G that it has two irreducible
characters x and v, taking on the corresponding G-classes the following val-
ues:

X - 2; 72; 71; 0; 0; ]-7 \/§a \/57
¢:3,3,0 —1,-1,0,1, 1.
Then
X*:1 4,4,1,0,0,1, 2,2
lg+v:4,4,1,0,0,1, 2, 2.
We see that y2 =1+ 1.

OLD PROBLEM. Classify the groups G containing a faithful irreducible
character x such that [Irr(x?)| = 2 (Theorem 1.1 solves this problem for
real-valued x).
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