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SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT

MEANS
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Abstract. In this paper, we define some new spaces of double se-
quences involving the idea of σ-mean; i.e., we define the spaces of strongly
σ-convergent, absolutely σ-almost convergent, σ-almost bounded and abso-
lutely σ-convergent double sequences and establish some inclusion relations
along with some numerical examples.

1. Introduction and preliminaries

First, we recall some notations and definitions which will be used through-
out the paper (cf. [12]).

A double sequence x = (xjk) of real or complex numbers is said to be
bounded if ‖x‖∞ = supj,k |xjk| < ∞. We denote the space of all bounded
double sequences by L∞.

A double sequence x = (xjk) is said to converge to the limit L in

Pringsheim′s sense (shortly, p-convergent to L) if for every ε > 0 there
exists an integer N such that |xjk −L| < ε whenever j, k > N . In this case L

is called the p-limit of x. If in addition x ∈ L∞, then x is said to be boundedly

p-convergent to L in Pringsheim′s sense (shortly, bp-convergent to L).
In general, for any notion of convergence ν, the space of all ν-convergent

double sequences will be denoted by Cν and the limit of a ν-convergent double
sequence x by ν-lim

j,k
xjk, where ν ∈ {p, bp}.

Let l∞ and c be the spaces of bounded and convergent sequences x = (xk)
respectively. Let σ be a one-to-one mapping from the set N of natural numbers
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into itself. A continuous linear functional φ on the space l∞ is said to be an
invariant mean or a σ-mean if and only if (i) φ(x) ≥ 0 when the sequence
x = (xk) has xk ≥ 0 for all k, (ii) φ(e) = 1, where e = (1, 1, 1, · · · ), and
(iii) φ(x) = φ((xσ(k))) for all x ∈ l∞. Throughout this paper we consider the
mapping σ which has no finite orbits, that is, σp(k) 6= k for all integer k ≥ 0
and p ≥ 1, where σp(k) denotes the pth iterate of σ at k. Note that, a σ-mean
extends the limit functional on the space c in the sense that φ(x) = limx for
all x ∈ c, (cf. [10]). Consequently, c ⊂ Vσ the set of bounded sequences all of
whose σ-means are equal.

The idea of σ-convergence for double sequences has recently been intro-
duced in [3] and further studied by Mursaleen and Mohiuddine ([8, 9]). A
double sequence x = (xjk) of real numbers is said to be σ-convergent to a
number L if and only if σ-lim x = bp- lim

p,q→∞

dpqst(x) = L uniformly in s, t,

where

dpqst(x) =
1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

xσj(s),σk(t), s, t = 0, 1, 2, . . . ;

d0,0,s,t(x) = xst, d−1,0,s,t(x) = xs−1,t, d0,−1,s,t(x)

= xs,t−1, d−1,−1,s,t(x) = xs−1,t−1,

and xσj(s),σk(t) = 0 for all j or k or both negative.
Let us denote by Vσ the space of σ-convergent double sequences x = (xjk),

i.e.,

Vσ = {x ∈ L∞ : bp- lim
p,q→∞

dpqst(x) = L uniformly in s, t; L = σ- lim x}.

For σ(n) = n+1, the set Vσ is reduced to the set f2 of almost convergent
double sequences ([7]). Note that Cbp ⊂ Vσ ⊂ L∞.

In this paper we define the strong σ-convergence for double sequences
which is an extension of the idea of strong σ-convergence for single sequences
due to Mursaleen ([11]). We also introduce some more new spaces of double
sequences; e.g., absolute σ-almost convergence, σ-almost boundedness and ab-
solute σ-convergence involving the idea of invariant mean and we find relations
among these spaces. We also construct some examples of double sequences to
support our claims.

2. Some new sequence spaces

In this section, we define some double sequence spaces. Some of such
spaces for single sequences have been studied in [4, 5, 10, 11].

For any given infinite double series
∑

s

∑

t

ast, denoted as “a”, we write

xjk =

j
∑

s=1

k
∑

t=1

ast, j, k = 1, 2, . . . ,
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and

φpqst(x) = dpqst(x) − dp−1,q,s,t(x) − dp,q−1,s,t(x) + dp−1,q−1,s,t(x)

=
1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

xσj(s),σk(t) −
1

p(q + 1)

p−1
∑

j=0

q
∑

k=0

xσj(s),σk(t)

−
1

(p + 1)q

p
∑

j=0

q−1
∑

k=0

xσj(s),σk(t) +
1

pq

p−1
∑

j=0

q−1
∑

k=0

xσj(s),σk(t)

=
1

(q + 1)

q
∑

k=0





1

(p + 1)

p
∑

j=0

xσj(s),σk(t) −
1

p

p−1
∑

j=0

xσj(s),σk(t)





−
1

q

q−1
∑

k=0





1

(p + 1)

p
∑

j=0

xσj(s),σk(t) −
1

p

p−1
∑

j=0

xσj(s),σk(t)





=
1

(q + 1)

q
∑

k=0





1

p(p + 1)

p
∑

j=1

j(xσj(s),σk(t) − xσj−1(s),σk(t))





−
1

q

q−1
∑

k=0





1

p(p + 1)

p
∑

j=1

j(xσj(s),σk(t) − xσj−1(s),σk(t))





=
1

p(p + 1)

p
∑

j=1

j

[

1

(q + 1)

q
∑

k=0

−
1

q

q−1
∑

k=0

]

(xσj(s),σk(t) − xσj−1(s),σk(t))

=
1

p(p + 1)

p
∑

j=1

j

[

1

(q + 1)

q
∑

k=0

yσj(s),σk(t) −
1

q

q−1
∑

k=0

yσj(s),σk(t)

]

,

where yσj(s),σk(t) = (xσj(s),σk(t) − xσj−1(s),σk(t)), solving further as above, we
get

φpqst(x) =
1

p(p + 1)

p
∑

j=1

j

[

1

q(q + 1)

q
∑

k=1

k(yσj(s),σk(t) − yσj(s),σk−1(t))

]

=
1

p(p + 1)q(q + 1)

p
∑

j=1

q
∑

k=1

jk[xσj(s),σk(t) − xσj−1(s),σk(t)

− xσj(s),σk−1(t) + xσj−1(s),σk−1(t)].
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Now we define

φpqst(x) =



















1
p(p+1)q(q+1)

p
∑

j=1

q
∑

k=1

jk[xσj(s),σk(t) − xσj−1(s),σk(t)

−xσj(s),σk−1(t) + xσj−1(s),σk−1(t)]; p, q ≥ 1,

ast; p or q or both zero.

Throughout we take xst = 0 if either s or t or both are zero or negative.
Note that throughout the present work the ‘limit’ means ‘bp-limit’.

Definition 2.1. A bounded double sequence x = (xjk) is said to be
strongly σ-convergent if there exists a number ℓ such that

1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

|xσj(s),σk(t) − ℓ| −→ 0 as p, q −→ ∞ uniformly in s, t.

In this case, we write [Vσ]-limx = ℓ. Let us denote by [Vσ] the set of all
strongly σ-convergent sequences x = (xjk).

Remark 2.2. If [Vσ]-limx = ℓ, that is

1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

|xσj (s),σk(t) − ℓ| −→ 0

as p, q −→ ∞, uniformly in s, t; then

1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

∣

∣

∣

∣

∣

1

k + 1

k
∑

v=0

xσj(s),σv(t) − ℓ

∣

∣

∣

∣

∣

−→ 0

and

1

(p + 1)(q + 1)

p
∑

j=0

q
∑

k=0

∣

∣

∣

∣

∣

1

j + 1

j
∑

u=0

xσu(s),σk(t) − ℓ

∣

∣

∣

∣

∣

−→ 0,

as p, q −→ ∞, uniformly in s, t.

Remark 2.3. For σ(n) = n + 1, the set [Vσ] is reduced to the set [f2] of
strong almost convergent double sequences ([2]). Note that

(a) Cbp ⊂ [Vσ] and bp-lim x = [Vσ]-limx;
(b) [Vσ] ⊂ Vσ and σ-lim x = [Vσ]-limx;
(c) [Vσ]-limit is unique.

Definition 2.4. A bounded double sequence x = (xjk) or the series a is
said to be absolutely σ-almost convergent if

∞
∑

p=1

∞
∑

q=1

|φpqst(x)| converges uniformly in s, t.
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By Wσ, we denote the set of all absolutely σ-almost convergent double
sequences. For σ(n) = n + 1, we obtain the space of absolutely almost con-
vergent double sequences. The concept of absolutely almost convergence for
single sequences was introduced by Das, Kuttner and Nanda ([4]). Note that
Wσ ⊂ Vσ.

Definition 2.5. A bounded double sequence x = (xjk) is said to be σ-
almost bounded if

sup
s,t

∞
∑

p=0

∞
∑

q=0

|φpqst(x)| < ∞.

By Uσ, we denote the set of all σ-almost bounded double sequences.

Definition 2.6. A bounded double series a (i.e.,
∑

s

∑

t

ast) is said to be

absolutely σ-convergent if

∞
∑

j=0

∞
∑

k=0

|xσj(s),σk(t) − xσj−1(s),σk(t) − xσj(s),σk−1(t) + xσj−1(s),σk−1(t)| < ∞,

uniformly in s, t, where (xjk) is a double sequence of partial sums of the series
∑

s

∑

t

ast, i.e., xjk =
j
∑

s=1

k
∑

t=1
ast; and xσj−1(s),σk−1(t) = 0 for j = 0 or/ and

k = 0. By Lσ, we denote the set of all absolutely σ-convergent double series.
For σ(n) = n + 1, it reduces to the set of absolutely almost convergent double
series.

3. Lemmas

To prove our main results, we need first to prove some lemmas.

Lemma 3.1 (Abel’s transformation for double summation).

p
∑

j=1

q
∑

k=1

vjk(ujk − uj+1,k − uj,k+1 + uj+1,k+1)

=

p
∑

j=1

q
∑

k=1

ujk(△11vjk) −

p
∑

j=1

uj,q+1(△10vjq)

−

q
∑

k=1

up+1,k(△01vpk) + up+1,q+1vpq,

where

△10vjq = vjq − vj−1,q, △01vpk = vpk − vp,k−1

and

△11vjk = vjk − vj−1,k − vj,k−1 + vj−1,k−1.
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Proof. Abel’s transformation for single summation is

(3.1)

m
∑

i=1

vi(ui ∓ ui+1) =

m
∑

i=1

ui(vi ∓ vi−1) ∓ um+1vm.

Now we find Abel’s transformation for double summation,

p
∑

j=1

q
∑

k=1

vjk(ujk − uj+1,k − uj,k+1 + uj+1,k+1)

=

q
∑

k=1





p
∑

j=1

vjk(ujk − uj+1,k) −

p
∑

j=1

vjk(uj,k+1 − uj+1,k+1)



 .

By using (3.1), we have

p
∑

j=1

q
∑

k=1

vjk(ujk − uj+1,k − uj,k+1 + uj+1,k+1)

=

q
∑

k=1





p
∑

j=1

ujk(vjk − vj−1,k) − up+1,kvpk

−

p
∑

j=1

uj,k+1(vjk − vj−1,k) + up+1,k+1vpk





=

p
∑

j=1

[

q
∑

k=1

vjk(ujk − uj,k+1) −

q
∑

k=1

vj−1,k(ujk − uj,k+1)

]

−

q
∑

k=1

up+1,kvpk +

q
∑

k=1

up+1,k+1vpk,

and now again using (3.1), we get

p
∑

j=1

q
∑

k=1

vjk(ujk − uj+1,k − uj,k+1 + uj+1,k+1)

=

p
∑

j=1

[

q
∑

k=1

ujk(vjk − vj,k−1) − uj,q+1vjq

−

q
∑

k=1

ujk(vj−1,k − vj−1,k−1) + uj,q+1vj−1,q

]

−

q
∑

k=1

up+1,kvpk +

q
∑

k=1

up+1,kvp,k−1 + up+1,q+1vpq
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=

p
∑

j=1

q
∑

k=1

ujk(vjk − vj,k−1 − vj−1,k + vj−1,k−1) −

p
∑

j=1

uj,q+1vjq

+

p
∑

j=1

uj,q+1vj−1,q −

q
∑

k=1

up+1,kvpk +

q
∑

k=1

up+1,kvp,k−1 + up+1,q+1vpq

=

p
∑

j=1

q
∑

k=1

ujk(△11vjk) −

p
∑

j=1

uj,q+1(△10vjq)

−

q
∑

k=1

up+1,k(△01vpk) + up+1,q+1vpq.

This completes the proof of the lemma.

Another form of Abel’s transformation for double summation is given by
Altay and Başar ([1]) and by Hardy ([6]).

Lemma 3.2. [Vσ]-limx = ℓ if and only if

(i) σ-limx = ℓ;

(ii) 1
pq

p
∑

j=1

q
∑

k=1

|α(j, k, s, t) − ℓ| −→ 0 (p, q −→ ∞) uniformly in s, t;

(iii) 1
pq

p
∑

j=1

q
∑

k=1

|β(j, k, s, t) − ℓ| −→ 0 (p, q −→ ∞) uniformly in s, t;

(iv) 1
pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) +djkst −α(j, k, s, t)−β(j, k, s, t)| −→ 0 (p, q −→

∞)
uniformly in s, t, where

α(j, k, s, t) =
1

(j + 1)

j
∑

u=0

xσu(s),σk(t) and β(j, k, s, t) =
1

(k + 1)

k
∑

v=0

xσj(s),σv(t).

Proof. Let [Vσ]-limx = ℓ. Then obviously σ-lim x = ℓ by Re-
mark 2.3(b). From the Remark 2.2, (ii) and (iii) follow immediately. Now

1

pq

p
∑

j=1

q
∑

k=1

∣

∣xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)
∣

∣

=
1

pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) − ℓ + djkst(x) − ℓ − α(j, k, s, t) + ℓ − β(j, k, s, t) + ℓ|

≤
1

pq

p
∑

j=1

q
∑

k=1

(|xσj (s),σk(t) − ℓ| + |djkst(x) − ℓ|

+ |α(j, k, s, t) − ℓ| + |β(j, k, s, t) − ℓ|)

−→ 0 as p, q −→ ∞, uniformly in s, t;
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since

(a) [Vσ]-limx = ℓ imply that the first sum tends to zero;
(b) (ii) and (iii) imply that the third and the fourth sums tend to zero;
(c) (i) implies that djkst(x) −→ ℓ (j, k −→ ∞) uniformly in s, t; and so

the second sum tends to zero.

Conversely, suppose that the conditions hold. Now

1

pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) − ℓ|

≤
1

pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)|

+
1

pq

p
∑

j=1

q
∑

k=1

|djkst(x) − ℓ| +
1

pq

p
∑

j=1

q
∑

k=1

|α(j, k, s, t) − ℓ|

+
1

pq

p
∑

j=1

q
∑

k=1

|β(j, k, s, t) − ℓ|

−→ 0 as p, q −→ ∞, uniformly in s, t.

This completes the proof of the lemma.

Lemma 3.3. We have

xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)

= jk[djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)].

Proof. We have

djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)

=

[

1

(j + 1)(k + 1)

j
∑

u=0

k
∑

v=0

xσu(s),σv(t) −
1

j(k + 1)

j−1
∑

u=0

k
∑

v=0

xσu(s),σv(t)

]

−

[

1

(j + 1)k

j
∑

u=0

k−1
∑

v=0

xσu(s),σv(t) −
1

jk

j−1
∑

u=0

k−1
∑

v=0

xσu(s),σv(t)

]

.(3.2)

First we simplify the expression in the first brackets
[

1

(j + 1)(k + 1)

j
∑

u=0

k
∑

v=0

xσu(s),σv(t) −
1

j(k + 1)

j−1
∑

u=0

k
∑

v=0

xσu(s),σv(t)

]

=
1

j(j + 1)(k + 1)

[

k
∑

v=0

(

j

j
∑

u=0

xσu(s),σv(t) − (j + 1)

j−1
∑

u=0

xσu(s),σv(t)

)]
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=
1

j(j + 1)(k + 1)

k
∑

v=0

[

jxσj(s),σv(t) −

j−1
∑

u=0

xσu(s),σv(t)

]

=
1

j(j + 1)(k + 1)

k
∑

v=0

[

(j + 1)xσj(s),σv(t) −

j
∑

u=0

xσu(s),σv(t)

]

=
1

j(k + 1)

k
∑

v=0

[

xσj(s),σv(t) −
1

(j + 1)

j
∑

u=0

xσu(s),σv(t)

]

=
1

j(k + 1)

k
∑

v=0

xσj(s),σv(t) −
1

j(j + 1)(k + 1)

j
∑

u=0

k
∑

v=0

xσu(s),σv(t)

=
1

j(k + 1)

k
∑

v=0

xσj(s),σv(t) −
1

j
djkst(x).(3.3)

Similarly the expression in the second brackets can be simplified by replacing
k − 1 for k, i.e.,

1

(j + 1)k

j
∑

u=0

k−1
∑

v=0

xσu(s),σv(t) −
1

jk

j−1
∑

u=0

k−1
∑

v=0

xσu(s),σv(t)

=
1

jk

k−1
∑

v=0

xσj(s),σv(t) −
1

j
dj,k−1,s,t(x).(3.4)

Substituting (3.3) and (3.4) in (3.2), we get

djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)

=
1

j(k + 1)

k
∑

v=0

xσj(s),σv(t) −
1

jk

k−1
∑

v=0

xσj(s),σv(t)

−
1

j
djkst(x) +

1

j
dj,k−1,s,t(x)

=
1

jk(k + 1)

[

k

k
∑

v=0

xσj(s),σv(t) − (k + 1)
k−1
∑

v=0

xσj(s),σv(t)

]

−
1

j
(djkst(x) − dj,k−1,s,t(x))

=
1

jk(k + 1)

[

kxσj(s),σk(t) −

k−1
∑

v=0

xσj(s),σv(t)

]

−
1

j
(djkst(x) − dj,k−1,s,t(x))
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=
1

jk(k + 1)

[

(k + 1)xσj(s),σk(t) −
k
∑

v=0

xσj(s),σv(t)

]

−
1

j
(djkst(x) − dj,k−1,s,t(x))

=
1

jk

[

xσj(s),σk(t) −
1

(k + 1)

k
∑

v=0

xσj(s),σv(t)

]

−
1

j
(djkst(x) − dj,k−1,s,t(x)).

(3.5)

We know that

djkst(x) =
1

(j + 1)(k + 1)

j
∑

u=0

k
∑

v=0

xσu(s),σv(t)

=
1

(j + 1)(k + 1)

[

j−1
∑

u=0

k
∑

v=0

xσu(s),σv(t) +

k
∑

v=0

xσj(s),σv(t)

]

(3.6)

and

(3.7) dj−1,k,s,t(x) =
1

j(k + 1)

j−1
∑

u=0

k
∑

v=0

xσu(s),σv(t).

From (3.6) and (3.7), we have

(3.8) (j + 1)djkst(x) − jdj−1,k,s,t(x) =
1

(k + 1)

k
∑

v=0

xσj(s),σv(t).

Thus (3.5) becomes

djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)

=
1

jk

[

xσj(s),σk(t) − (j + 1)djkst(x) + jdj−1,k,s,t(x)
]

−
1

j
(djkst(x) − dj,k−1,s,t(x))

=
1

jk

[

xσj(s),σk(t) − djkst(x) − j(djkst(x) − dj−1,k,s,t(x))

−k(djkst(x) − dj,k−1,s,t(x))] .(3.9)

Also (3.8) can be written as

(3.10) j(djkst(x) − dj−1,k,s,t(x)) =
1

(k + 1)

k
∑

v=0

xσj(s),σv(t) − djkst(x).

Similarly we can write

(3.11) k(djkst(x) − dj,k−1,s,t(x)) =
1

(j + 1)

j
∑

u=0

xσu(s),σk(t) − djkst(x).
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Using (3.10) and (3.11) in (3.9), we get

djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)

=
1

jk

[

xσj(s),σk(t) + djkst(x) −
1

(j + 1)

j
∑

u=0

xσu(s),σk(t)

−
1

(k + 1)

k
∑

v=0

xσj(s),σv(t)

]

,

which implies that

xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)

= jk[djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)].

This completes the proof of the lemma.

Lemma 3.4. Let

αghst =

∞
∑

j=g

∞
∑

k=h

|djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)|.

Then

αjkst − αj,k+1,s,t − αj+1,k,s,t + αj+1,k+1,s,t

= |djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)|.

Proof is easy and hence omitted.

4. Inclusion relations

In this section, we prove some inclusion relations concerning of our newly
defined double sequence spaces.

Theorem 4.1. Wσ ⊂ Uσ and the reverse inclusion does not hold in gen-
eral.

Proof. Let x = (xjk) ∈ Wσ. Then there exist integers p0, q0 such that

(4.12)

∑

p>p0

|φpqst(x)| < 1 for each q,

∑

q>q0

|φpqst(x)| < 1 for each p,

∑

p>p0

∑

q>q0

|φpqst(x)| < 1.



















Now we have to show that φpqst(x) is bounded for every fixed p, q such that
0 ≤ p ≤ p0, 0 ≤ q ≤ q0. From (4.12), we have |φpqst(x)| < 1 for each fixed
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p > p0, q > q0. Since

∞
∑

p=0

∞
∑

q=0

|φpqst(x)| =

p0
∑

p=0

q0
∑

q=0

|φpqst(x)| +

∞
∑

p=p0+1

q0
∑

q=0

|φpqst(x)|

+

p0
∑

p=0

∞
∑

q=q0+1

|φpqst(x)| +

∞
∑

p>p0

∞
∑

q>q0

|φpqst(x)|

then in view of (4.12) to show that x ∈ Uσ it is sufficient to prove that

sups,t

p0
∑

p=0

q0
∑

q=0
|φpqst(x)| < ∞, but this follows, since x = (xkj) is bounded.

Hence sups,t

∞
∑

p=0

∞
∑

q=0
|φpqst(x)| < ∞, i.e., Wσ ⊂ Uσ.

Now, we show that the reverse inclusion does not hold in general.
Let σ(n) = n + 1. Define the double sequence x = (xjk) by

xjk =

{ 1
j+1 [1 + (−1)j ], 0 ≤ k ≤ j;

0, j < k.

Then x 6∈ Wσ but it is trivial that x ∈ Uσ.
This completes the proof of the theorem.

Theorem 4.2. Lσ ⊂ Wσ and the reverse inclusion does not hold in gen-
eral.

Proof. The result follows from the chain of inequalities. We know that

∞
∑

p=1

∞
∑

q=1

|φpqst(x)| =

∞
∑

p=1

∞
∑

q=1

1

p(p + 1)q(q + 1)

∣

∣

∣

∣

p
∑

j=1

q
∑

k=1

jk[xσj(s),σk(t)

− xσj−1(s),σk(t) − xσj(s),σk−1(t) + xσj−1(s),σk−1(t)]

∣

∣

∣

∣

≤

∞
∑

j=1

∞
∑

k=1

jk|xσj(s),σk(t) − xσj−1(s),σk(t) − xσj(s),σk−1(t)

+ xσj−1(s),σk−1(t)|

∞
∑

p=j

∞
∑

q=k

1

p(p + 1)q(q + 1)

≤

∞
∑

j=1

∞
∑

k=1

|xσj(s),σk(t) − xσj−1(s),σk(t) − xσj(s),σk−1(t)

+ xσj−1(s),σk−1(t)|.

Hence the result follows.
The following example shows that the reverse inclusion need not be true.
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Let σ(n) = n + 2. Consider the double sequence x = (xjk) defined by

xjk =

{

1, if j is odd for all k;
0, otherwise.

Then φpqst(x) = 0 for all p, q ≥ 1. Thus x ∈ Wσ but x 6∈ Lσ.
This completes the proof of the theorem.

Theorem 4.3. Wσ ⊂ [Vσ] if conditions (ii) and (iii) of Lemma 3.2 hold.
Also [Vσ]-limx = σ-limx for all x ∈ Wσ.

Proof. Suppose that x = (xjk) ∈ Wσ. Then

αghst =

∞
∑

j=g

∞
∑

k=h

|djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)|

−→ 0 as g, h −→ ∞, uniformly in s, t.(4.13)

and

djkst(x) −→ ℓ , say, as j, k −→ ∞ uniformly in s, t,

that is, σ-lim x = ℓ.
In order to prove that x ∈ [Vσ], it is enough to show that condition (iv)

of Lemma 3.2 holds. By Lemma 3.3 and Lemma 3.4 we have

xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)

= jk[djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)]

and

|djkst(x) − dj−1,k,s,t(x) − dj,k−1,s,t(x) + dj−1,k−1,s,t(x)|

= αjkst − αj,k+1,s,t − αj+1,k,s,t + αj+1,k+1,s,t.

So that we have

1

pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)|

=
1

pq

p
∑

j=1

q
∑

k=1

jk[αjkst − αj,k+1,s,t − αj+1,k,s,t + αj+1,k+1,s,t]

by using Lemma 3.1 for Abel’s transformation, we have

1

pq

p
∑

j=1

q
∑

k=1

|xσj(s),σk(t) + djkst(x) − α(j, k, s, t) − β(j, k, s, t)|

=
1

pq





p
∑

j=1

q
∑

k=1

αjkst − p

q
∑

k=1

αp+1,k,s,t − q

p
∑

j=1

αj,q+1,s,t + pqαp+1,q+1,s,t



 ,

−→ 0 as p, q −→ ∞, uniformly in s, t, by (4.13).
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Hence by Lemma 3.2, x ∈ [Vσ].
This completes the proof of the theorem.

Acknowledgements.

Partial results of this paper were presented by the second author as an
invited talk in the “Mathematics Workshop Days” on Summability, Sequence
Spaces and Applications, during May 15-16, 2008, Istanbul. The author is
grateful to the Council of Scientific and Industrial Research (India) for pro-
viding the travel grant, under Grant No.TG/3021/08-HRD.

Research of the first author was supported by the Department of Science
and Technology, New Delhi, under Grant No. SR/S4/MS:505/07; and the
research of the second author was supported by the Department of Atomic
Energy, Government of India under the NBHM-Post Doctoral Fellowship Pro-
gramme Number 40/10/2008-R&D II/892.

Authors are grateful to the referees for their valuable comments.

References
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