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Abstract. In a previous paper the author has associated with every
inverse system of compact CW-complexes X with limit X and every sim-
plicial complex K with geometric realization |K| a resolution of X × |K|,
which consists of spaces having the homotopy type of polyhedra. In a sub-
sequent paper it is shown that this construction is functorial. The proof
depends essentially on particular cellular subdivisions of K. The purpose
of this paper is to describe in detail these subdivisions and establish their
relevant properties. In particular, one defines two subdivisions L(K) and
N(K) of K. Each cell from L(K), respectively from N(K), is contained in
a simplex σ ∈ K and it is the direct sum a⊕ b, respectively c⊕d, of certain
simplices contained in σ. One defines new subdivisions L′(K) and N ′(K)
of K by taking for their cells the direct sums L(a)⊕b, respectively c⊕N(d).
The main result asserts that there is an isomorphism of cellular complexes
ϑ : L′(K) → N ′(K), which induces a selfhomeomorphism θ : |K| → |K|.

1. Introduction

In [6] the author has associated with every inverse system of compact
Hausdorff spaces X = (Xλ, pλλ′ ,Λ) with limit p = (pλ,Λ): X → X and every
simplicial complex K with geometric realization P = |K| a resolution (inverse
limit with additional properties) q = (qµ,M) : Y → Y = (Yµ, qµµ′ ,M) of the
Cartesian product Y = X × P , here called the standard resolution of X × P .
If X consists of compact CW-complexes Xλ, the inverse system Y consists
of spaces Yµ having the homotopy type of polyhedra. In [7], it is shown that
the construction of the standard resolution of X ×P can be enriched so as to
obtain a functor (in the first variable) from the coherent homotopy category
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of inverse systems of Hausdorff compacta CH(pro-Cpt) to the pro-category
pro-HTop of the homotopy category HTop (for these notions and the notion
of resolution see [5]). The proof depends essentially on constructing particular
cellular subdivisions of K. The purpose of this paper is to describe in detail
these subdivisions and establish their properties needed in [7].

The first construction, described in the present paper, associates with
every simplicial complex K in a real vector space V a particular cellular
subdivision L(K) to which we refer as to the first canonical subdivision of
K (see Theorem 3.6). It is the union of subdivisions L(σ), where σ ∈ K.
An important property of L(σ) is that, for an n-dimensional simplex σ ∈ K,
the n-dimensional cells c ∈ L(σ), are direct sums of the form c = e ⊕ d,
where (e, d) is an ordered pair of simplices contained in σ, and the second
summand d is endowed with a natural linear ordering of its vertices, i.e., it
is an ordered simplex. The direct sum e ⊕ d is a cell, homeomorphic to the
Cartesian product e× d, described in Section 3.

In [7] the subdivision L(K) is used in defining the desired functor CH(pro-
Cpt) → pro-HTop. More precisely, with every coherent mapping f : X → X ′

between cofinite inverse systems X and X ′, which are objects of CH(pro-
Cpt), one associates an induced homotopy mapping g = (g, gµ) : Y → Y ′

between the standard resolutions Y of X × P and Y ′ of X ′ × P . Here
g : M ′ → M is an increasing function, which to every µ ∈ M ′ assigns an
increasing function g(µ) : K → Λ. Moreover, each gµ is a mapping Yg(µ) → Y ′

µ,
induced by mappings g̃σ

µ : X(g(µ))(σ) × σ → Y ′
µ, where σ ranges over K. The

latter mappings are given by explicit formulae on subsets X(g(µ))(σ)×c, where
c ranges over the set of cells of L(σ).

A particular cellular subdivision N(∆n) of the standard n-simplex ∆n

was used in defining the composition f ′′ = f ′f : X → X ′′ of two coherent
mappings f : X → X ′ and f ′ : X ′ → X ′′ (see [5, I.1.3] or Section 4 of [7]).
This subdivision consists of n+ 1 n-dimensional convex polytopes Pn

i ⊆ ∆n,
0 ≤ i ≤ n, and of their faces. Each of these n-cells is the direct sum Pn

i =

Qi
i⊕R

n−i
i of two simplices Qi

i and Rn−i
i of dimensions i and n−i, respectively

(see Section 4 of [7]). By definition, f ′′ consists of an increasing function
f ′′ : Λ′′ → Λ between the index sets of X ′′ and X and of some mappings
f ′′

µ : Xf ′′(µn) × ∆n → X ′′
µ0

, where µ = (µ0, . . . , µn) is a multiindex in M ′′ of
length n. These mappings are defined by explicit formulae on the subsets
Xf ′′(µn) × Pn

i ⊆ Xf ′′(µn) × ∆n.
The construction of the subdivision N(∆n) of ∆n readily generalizes to

the construction of a subdivision N(σ) of any linearly ordered simplex σ =
[v0, . . . , vn] ⊆ V . We refer to it as to the second canonical subdivision of σ.
By definition, N(σ) consists of n-dimensional polytopes cσi , 0 ≤ i ≤ n, and
of their faces. As in the case of L(σ), each of the n-cells cσi is the direct
sum cσi = c′

σ
i ⊕ c′′

σ
i of two simplices c′

σ
i and c′′

σ
i (of dimensions i and n − i,

respectively) (see Theorem 4.3). The construction easily extends further to a
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cellular subdivision N(K), for any ordered simplicial complex K in V . Recall
that K is ordered if its set of vertices is partially ordered in such a way that
the vertices of each of its simplices are linearly ordered.

We will consider two more cellular subdivisions of K to which we refer as
to the first iterated canonical subdivision L′(K) of K and the second iterated

canonical subdivision N ′(K) of K. To define L′(K) we first define a cellular
subdivision L′(σ) of L(σ), for each σ ∈ K. If dimσ = n, one considers the
subdivision L(σ) and its n-cells c ∈ L(σ). They are of the form c = e⊕d, where
e and d are simplices contained in σ of dimensions dim e = i and dim d = n−i,
0 ≤ i ≤ n, respectively. Applying the operation L to the first summand e,
one obtains a subdivision L(e) of e. The i-cells e′ ∈ L(e) determine n-cells
e′ ⊕ d ⊆ c, which together with their faces form a cellular subdivision L(c) of
c. It is shown in Theorem 5.1 that the union of all L(c), when c ranges over
the set of n-cells from L(σ), is a cellular subdivision L′(σ) of L(σ), hence also
a cellular subdivision of σ. Finally, we put L′(K) = ∪σ∈KL

′(σ).
Similarly, to define N ′(K) we will first define a cellular subdivision N ′(σ)

of L(σ), for each σ ∈ K. As above, if dimσ = n, one considers the n-cells
c = e⊕ d from c ∈ L(σ). Applying the operation N to the second summand
d, one obtains a subdivision N(d) of d. The (n− i)-cells d′ ∈ N(d) determine
n-cells e⊕ d′ ⊆ c, which together with their faces form a cellular subdivision
N(c) of c. It is shown in Theorem 6.1 that the union of allN(c), when c ranges
over the set of n-cells from L(σ), is a cellular subdivision N ′(σ) of L(σ), hence
also a cellular subdivision of σ. Finally, we put N ′(K) = ∪σ∈KN

′(σ).
A careful analysis of the cellular complexes L′(K) and N ′(K) shows that

there exists an isomorphism of cellular complexes ϑ : L′(K) → N ′(K) (Theo-
rem 7.1). Moreover, there exist affine isomorphisms between the correspond-
ing cells c∗ ∈ L′(K) and c• = ϑ(c∗) ∈ N ′(K), which generate a selfhomeo-
morphism θ : P → P of the carrier P = |K| = |L′(K)| = |N ′(K)| (Theorem
7.2). These surprising facts are the main results of this paper and have en-
abled the author to prove in [7] the following assertion. The composition g′g

of the homotopy mappings g and g′, associated with f and f ′, respectively,
is homotopic to the homotopy mapping g′′, associated with the composition
f ′′ = f ′f . This assertion is the crucial step in establishing the desired func-
toriality of the standard resolution of X × P .

2. Preliminaries on convex polytopes and cellular complexes

In this section we fix terminology and notations and review notions
and facts from the basic theory of polytopes and cellular complexes, needed
throughout the paper.

2.1. Let V be a (real) vector space. The sum of two non-empty subsets
A,B ⊆ V is the set A + B = {a+ b | a ∈ A, b ∈ B} ⊆ V . An affine manifold
M in V is a subset of V of the form M = v + LM , where v ∈ V and LM
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is a linear subspace of V . Note that LM is completely determined by M ,
i.e., it does not depend on the choice of v. An alternative definition says
that M is an affine manifold in V if v0, . . . , vk ∈ M , λ0, . . . , λk ∈ R and
∑i=k

i=0 λi = 1 imply
∑i=k

i=0 λivi ∈M . By definition, the (geometric) dimension
dimM = dimLM . A set of points {v0, . . . , vn} ⊆ V is affinely independent if
its affine hull Aff({v0, . . . , vn}) has dimension n.

A mapping f : M → N between affine manifolds M = v + LM and N =
w+LN is an affine mapping provided there is a linear mapping ϕ : LM → LN

such that f(v + x) = w + ϕ(x), for x ∈ LM . Alternatively, f is affine if

v0, . . . , vk ∈ M , λ0, . . . , λk ∈ R and
∑i=k

i=0 λi = 1 imply f(
∑i=k

i=0 λivi) =
∑i=k

i=0 λif(vi).
A convex polytope C in V is the convex hull C = Conv(F ) of a finite set

of points F ⊆ V . Dimension dimC is the dimension of the affine hull Aff(C)
(see [2, §7] or [9, Definition 6.2.1]). A proper face C′ of a convex polytope
C is the intersection of C with a supporting hyperplane of C in Aff(C); we
use the notation C′ < C (see [4, §2.4] or [2, Theorem 7.5] or [9, §6.2]). The
empty set ∅ and C itself are improper faces of C. If C′ is a face of C, proper
or improper, we use the notation C′ ≤ C. The faces of a convex polytope
are convex polytopes (see [2, Theorem 7.3] or [9, Lemma 6.2.3]). If C is a
convex polytope in V , C′ ≤ C and C′′ ≤ C′, then C′′ ≤ C (see [4, §3.5]). Two
faces of a convex polytope intersect in a common face (possibly empty) (see
[4, 2.4.10] or [2, Theorem 5.9]). The (geometric) boundary Bd (C) of C is the
union of all proper faces of C. The (geometric) interior Int (C) of C is the
set C\Bd (C). Vertices of C are the 0-dimensional faces of C. Every convex
polytope is the convex hull of its vertices (see [2, Theorem 7.2] or [9, Theorem
6.2.5]). The faces of a convex polytope C of dimension dimC − 1 are called
facets of C. Every proper face of C is a face of some facet of C. The boundary
Bd (C) equals the union of all facets of C.

A mapping f : C → C′ between convex polytopes is said to be affine
provided it is the restriction to C of an affine mapping between the affine
hulls Aff(C) and Aff(C′). In 3.7.3.1, we will need the following elementary
lemma (see the proof of Lemma 3.11.(i)).

Lemma 2.1. Let f : C → C′ be an affine mapping between two convex

polytopes and let D < C and D′ < C′ be proper faces such that f(D) ⊆ D′.

If for every vertex w ∈ C\D one has f(w) ∈ C′\D′, then for every point

u ∈ C\D, one has f(u) ∈ C′\D′.

Proof. Since C is the convex hull of its vertices, there exist vertices
w0, . . . , wn of C and there exist real numbers µ0, . . . , µn ≥ 0 such that
∑

0≤i≤m µi = 1 and u =
∑

0≤i≤m µiwi. At least one of the vertices wi does
not belong to D and the corresponding coefficient is 6= 0, for otherwise, we
would have u ∈ D. Therefore, there is no loss of generality in assuming that
either all vertices w0, . . . , wn ∈ C\D or there is a k, 0 ≤ k < n, such that



SOME CELLULAR SUBDIVISIONS OF SIMPLICIAL COMPLEXES 223

w0, . . . , wk ∈ D, wk+1, . . . wn ∈ C\D and µk+1, . . . µn > 0. In the first case,
by assumption, f(w0), . . . , f(wn) ∈ C′\D′. Since C′\D′ is a convex set, it
follows that f(u) =

∑

0≤i≤n µif(wi) ∈ C′\D′. Now consider the second case.

Let P ′ be a support affine subspace for the faceD′ and thus, P ′∩C′ = D′. For
i > k, we have f(wi) /∈ D′, and thus, f(wi) /∈ P ′. Put ν0 =

∑

0≤i≤k µi, ν1 =
∑

k+1≤i≤n µi and note that ν0 > 0, ν1 > 0 and ν0 + ν1 = 1. Consider the

points u′0 =
∑

0≤i≤k
µi

ν0
f(wi), u

′
1 =

∑

k+1≤i≤n
µi

ν1
f(wi). Since f(wi) ∈ D′, for

0 ≤ i ≤ k and f(wi) ∈ C′\D′, for k + 1 ≤ i ≤ n, it follows that u′0 ∈ D′ ⊆ P ′

and u′1 ∈ C′\D′. Also note that f(u) = ν0u
′
0 + ν1u

′
1. If we assume that

f(u) ∈ D′ ⊆ P ′, it would follow that u′1 = 1
ν1

(f(u) − ν0u
′
0) ∈ P ′. Since

u′1 ∈ C′, we would have u′1 ∈ P ′ ∩ C′ = D′, which is a contradiction.

2.2. Convex polytopes C in the Euclidean space Rn are compact metric
spaces (see [2, Corollary 2.9] or [9, 6.2.2]). If the geometric dimension dimC =
n, i.e., Aff (C) = Rn, then the topological dimension of C also equals n.
Moreover, the geometric interior Int (C) coincides with the topological interior
of C in Rn. To see this we need the fact that C is the intersection of those
supporting halfspaces of the facets of C which contain C (see ([1, Appendix
II, §4, Theorem V] or [2, Theorem 4.5]). Since each facet is the intersection
of C with the corresponding supporting hyperplane, it follows that Int (C)
is the intersection of the corresponding open halfspaces. However, these are
open sets in Rn and their number is finite. Therefore, Int (C) is an open
subset of Rn, contained in C. Clearly, it is the maximal open subset of Rn

contained in C, because every neighborhood of a point of Bd (C) meets Rn\C.
It follows immediately that the geometric boundary Bd (C) coincides with the
topological boundary of C in Rn.

Every n-dimensional polytope C in Rn is homeomorphic to the unit n-ball
Bn ⊆ Rn ([1, Appendix II, §2, Theorem X]). It follows that n-dimensional
convex polytopes C ⊆ Rn are n-manifolds with boundary, the boundary being
BdC. This justifies referring to n-dimensional convex polytopes in Rn as to
n-dimensional cells, shorter n-cells in Rn.

2.3. If V is an arbitrary vector space, then every n-dimensional linear
subspace L of V admits a unique topology, called Euclidean, which makes
it a topological vector space. To define it, one considers the standard basis
{e1, . . . , en} of the vector space Rn, e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1),
and one considers a basis {v1, . . . , vn} of the vector space L. Let ϕ : Rn → L
be the linear mapping determined by putting ϕ(ei) = vi, 1 ≤ i ≤ n. Note that
ϕ is an isomorphism of vector spaces. The Euclidean topology on L is the
topology which makes ϕ a homeomorphism (see [3, Appendix I. A, Theorem
2.1]). Clearly, L endowed with the Euclidean topology is isomorphic to the
Euclidean vector space Rn as a topological vector space.
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One endows n-dimensional affine manifoldsM in V with a topology, called
Euclidean. If M = v + LM , where v ∈ V and LM is an n-dimensional
linear subspace of V and ψ : M → L is the affine isomorphism, given by
ψ(x) = x−v, then the Euclidean topology on M is the topology which makes
ψ a homeomorphism. Affine mappings f : M → N = w + LN between finite-
dimensional affine manifolds are continuous (Euclidean topologies). Indeed, if
ψM : M → LM and ψN : N → LN are affine isomorphisms, given by ψM (x) =
x − v, ψN (y) = y − w and ϕ : LM → Ln is a linear mapping such that
ϕψM = ψNf , then continuity of f is an immediate consequence of the fact
that ϕ (just as any linear mapping between finite-dimensional vector spaces)
is continuous and ψM and ψN are homeomorphisms.

Statements made in Subsection 2.2 about n-dimensional convex polytopes
in Rn are also valid for n-dimensional convex polytopes C in V and their affine
hulls Aff (C) in V . In particular, C is a closed subset of Aff (C).

2.4. It is well-known that for non-empty subsets A,B ⊆ V , Aff (A+B) =
Aff (A) + Aff (B) and Conv (A + B) = Conv (A) + Conv (B) (for Conv see
[9, Theorem 3.2.6]; a proof for Aff is obtained from the proof of [9, Theorem
3.1.4] by obvious modifications). An immediate consequence is the fact that
the sum of two affine manifolds, two convex sets or two convex polytopes in
V is an affine manifold, a convex set or a convex polytope (see [9, Theorem
6.2.7]).

If {ai|1 ≤ i ≤ k} and {bj|1 ≤ j ≤ l} are the sets of vertices of convex
polytopes A and B in V , then A+B = Conv ({ai + bj |1 ≤ i ≤ k, 1 ≤ j ≤ l})
(see [9, Theorem 6.2.7]). It follows that every vertex of the polytope A+B is
of the form ai + bj (see [2, Theorem 7.2]). In general, the converse does not
hold, i.e., some of the points ai + bj may not be vertices of A + B. E.g., if
A = [0, 1] ⊆ R, B = [0, 2] ⊆ R, then the points 1 + 0 = 1 and 0 + 2 = 2 are
not vertices of A + B = [0, 3]. However, the converse does hold if the affine
hulls of the two convex polytopes are affinely independent (see Subsections
2.5 and 2.6).

2.5. Two affine manifolds M = v + LM and N = w + LN are affinely
independent if the linear subspaces LM and LN of V are linearly independent,
i.e., LM ∩ LN = 0. In that case M + N = (v + w) + (LM + LN ) and thus,
LM+N = LM + LN and dim(M + N) = dimLM+N = dim(LM + LN) =
dimLM + dimLN = dimM + dimN . Moreover, every point z ∈ M + N
admits unique points x ∈M , y ∈ N such that z = x+ y. Indeed, if x, x′ ∈M
and y, y′ ∈ N , then z = x+y = x′+y′ implies x−x′ = y′−y. Since x−x′ ∈ LM ,
y′ − y ∈ LN , it follows that x− x′ = y′ − y and thus, x− x′ = 0 = y− y′. We
refer to the functions pM = M +N → M and pN = M +N → N , given by
pM (x + y) = x and pN(x + y) = y as to canonical projections. It is readily
verified that pM and pN are affine mappings. Therefore, they are continuous.
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2.6. The following lemma plays an important role in the paper.

Lemma 2.2. Let A and B be convex polytopes in a vector space V . If their

affine hulls Aff (A) and Aff (B) are affinely independent, then the following

assertions hold:

(i) dim (A+B) = dim A+ dim B.

(ii) The faces of A + B are convex polytopes of the form A′ + B′, where

A′ ≤ A and B′ ≤ B.

(iii) The vertices of A+B are the points ai + bj, where ai ranges over the

set of vertices of A and bj ranges over the set of vertices of B.

(iv) If A′, A′′ ⊆ A and B′, B′′ ⊆ B, then (A′ + B′) ∩ (A′′ + B′′) = (A′ ∩
A′′) + (B′ ∩B′′).

Proof. (i). Put M = Aff (A) and N = Aff (B) and note that Aff (A +
B) = Aff (A)+Aff (B) = M+N . Therefore, dim(A+B) = dimAff (A+B) =
dim(M+N). As seen in 2.5, dim(M+N) = dimM+dimN = dim A+dim B.

(iv). If z ∈ (A′ + B′) ∩ (A′′ + B′′), then there are points a′ ∈ A′ ⊆ A,
b′ ∈ B′ ⊆ B, a′′ ∈ A′′ ⊆ A, b′′ ∈ B′′ ⊆ B such that z = a′ + b′ = a′′ + b′′.
Since a′, a′′ ∈ A ⊆ M and b′, b′′ ∈ B ⊆ N , it follows that a′ = a′′ ∈ A′ ∩ A′′

and b′ = b′′ ∈ B′ ∩ B′′ (see 2.5) and thus, z ∈ (A′ ∩ A′′) + (B′ ∩ B′′). The
converse implication is obvious.

(iii) is an immediate consequence of (ii). To prove (ii), consider the
following statement.

(ii)′. The facets of A + B are convex polytopes of the form A′ + B or
A+B′, where A′ ranges over the facets of A and B′ ranges over the facets of
B.

(ii)′ ⇒ (ii). If A′ is a facet of A, then Aff (A′) ⊆ Aff (A) and thus,
Aff (A′) and Aff (B) are affinely independent. This enables us to apply (ii)′

to A′ +B and conclude that, for facets A′′ of A and B′ of B, the faces A′′ +B
and A′ + B′ are facets of A′ + B. Analogously, applying (ii)′ to A +B′, one
concludes that, for facets A′ of A and B′′ of B′, the faces A′ +B′ and A+B′′

are facets of A + B′. Since descending chains of facets yield all faces of a
convex polytope, one obtains (ii).

Proof of (ii)′. Let M = v + LM , N = w + LN , where v ∈ M , w ∈ N
and LM , LN are linear subspaces of V such that LM ∩ LN = 0. Consider the
affine polytopes A∗ = A − v ⊆ LM and B∗ = B − w ⊆ LN and note that
A∗ + B∗ = A + B − (v + w). Since translation preserves the face structure
of polytopes, it suffices to prove (ii)′ for A∗ + B∗. This shows that there
is no loss of generality in assuming from the beginning that Aff (A) = LM

and Aff (B) = LN are linear subspaces of V , dimLM = m, dimLN = n and
LM ∩LN = 0. Choosing a basis {v1, . . . , vm} of LM and a basis {w1, . . . , wn}
of LN , one obtains linear isomorphisms ϕM : Rm → LM and ϕN : Rn → LN

as in 2.3. Clearly, these isomorphisms induce an isomorphism ϕ : Rm+n →
LM + LN . Since linear isomorphisms preserve the face structure of convex
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polytopes, it suffices to prove (ii)′ in the case when A ⊆ Rm × 0, B ⊆ 0×Rn,
dimA = m and dimB = n. Note that in that case, for arbitrary subsets
D ⊆ RM × 0 and E ⊆ 0 × Rn, one has D+E = D×E ⊆ Rm+n = Rm × Rn,
because (d, 0) + (0, e) = (d, e), for d ∈ Rm, e ∈ Rn. In particular, A + B =
A×B ⊆ Rm+n.

Assume that A′ < A is a facet of A, i.e., an (m−1)-dimensional face of A.
Let H ⊆ Rm be the supporting halfspace of A, whose supporting hyperplane
S ⊆ H intersect A in the facet A′. Then K = H×Rn ⊆ Rm+n is a supporting
halfspace of A×B, whose supporting hyperplane T = S×Rn intersects A×B
in the set T ∩ (A×B) = (S × Rn) ∩ (A×B) = A′ ×B, because S ×A = A′.
Since dim(A′ × B) = m − 1 + n, we see that A′ + B = A′ × B is a facet of
A + B = A × B. In the same way one concludes that A + B′ is a facet of
A + B, whenever B′ is a facet of B. It remains to show that in this way we
have obtained all the facets of A+B.

Recall that the union of all facets A′ of A coincides with the geometric
boundary Bd (A) and thus, the union

⋃

A′(A′+B) = (
⋃

A′ A′)+B = Bd(A)+
B. Similarly,

⋃

B′(A+B′) = A+ Bd (B). It follows that the union of all the
facets we have just constructed equals (Bd (A) +B)∪ (A+ (Bd (B)). For the
topological boundary, the following formula is easily proved: (Bd (A) × B) ∪
(A × Bd (B)) = Bd (A × B). It suffices to note that, for open sets UM in
Rm and UN in Rn, the set UM × UN is open in Rm × Rn = Rm+n. Since
D+E = D×E, the boundary formula can be written in the form Bd (A+B) =
(Bd (A)+B)∪ (A+(Bd (B)). However, for convex polytopes, the topological
boundary coincides with the geometric boundary. Consequently, interpreting
Bd in the boundary formula as the geometric boundary, we conclude that the
facets of A+B, which we have constructed above, cover the whole geometric
boundary of A+B and thus, there can be no other facets of A+B.

2.7. In the present paper we find it convenient to use the notion of a
direct sum M ⊕N of two affine manifolds in V and the notion of a direct sum

A⊕B of two convex polytopes in V . We define M ⊕N only when the affine
manifolds M and N intersect in a single point w, which implies that they are
affinely independent. By definition, M⊕N = M+N−w. Note that the point
w is completely determined by M and N and we call it the reference point of
the direct sum M⊕N (in [7] we called it base-point). Being the translate of the
affine manifold M +N , the direct sum M ⊕N is also an affine manifold. By
Subsection 2.5, dim(M ⊕N) = dim(M +N) = dimM +dimN . Since M and
N are affinely independent, the canonical projections pM = M ⊕N →M and
pN = M ⊕N → N are well-defined affine, hence also continuous mappings.

Analogously, if A,B are convex polytopes in V such that Aff (A)∩Aff (B)
is a single point w ∈ V , we define (see [9, Definition 6.4.3]) A ⊕ B by the
formula

(2.1) A⊕B = A+B − w.
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We call w the reference point of A⊕B.

.............

.............

K

K

... ...

A Aff(A)

Aff(B)

B

w

0

A ⊕ B

•

•

A + B

Figure 1. Sum A+B and direct sum A⊕B

Being a translate of the convex polytope A+B, the direct sum A⊕B is
a convex polytope. Moreover, by Lemma 2.2, dim(A ⊕ B) = dim(A + B) =
dimA+dimB, the faces of A⊕B are convex polytopes of the form A′+B′−w,
where A′ ≤ A and B′ ≤ B. The vertices of A⊕B are the points ai + bj −w,
where ai ranges over the set of vertices of A and bj ranges over the set of
vertices of B. If A′, A′′ ⊆ A and B′, B′′ ⊆ B, then (A′ + B′ − w) ∩ (A′′ +
B′′ − w) = (A′ ∩ A′′) + (B′ ∩ B′′) − w. In general, for faces A′ ≤ A and
B′ ≤ B, the direct sum A′ ⊕B′ is not defined, because Aff(A′)∩Aff(B′) can
be empty. Clearly, A′ ⊕ B′ is defined if and only if Aff(A′) ∩ Aff(B′) 6= ∅.
In that case Aff(A′) ∩ Aff(B′) = {w} and A′ ⊕ B′ = A′ + B′ − w. Note
that the direct sum A ⊕ B is invariant with respect to translations, because
Aff(A) ∩ Aff(B) = {w} implies Aff(A + t) ∩ Aff(B + t) = {w + t} and thus,
(A+ t)⊕ (B+ t) = (A+B+2t)− (w+ t) = A+B−w+ t = (A⊕B)+ t. This
is not the case with the ordinary sum, because, (A+ t)+(B+ t) 6= (A+B)+ t,
for t 6= 0.

2.8. If M ⊕ N and M ′ ⊕ N ′ are direct sums of affine manifolds with
reference points w and w′, respectively, then mappings f : M → M ′ and
g : N → N ′ induce a mapping f ⊕ g : M ⊕ N → M ′ ⊕ N ′. By definition, if
z = x+ y − w ∈M ⊕N , x ∈M , y ∈ N , then (f ⊕ g)(z) = f(x) + g(y) − w′.
A straightforward verification shows that, for affine mappings f and g, the
mapping f⊕g is also an affine mapping. Moreover, (f ′⊕g′)(f⊕g) = (f ′f⊕g′g)
and 1 ⊕ 1 = 1. Consequently, if f and g are affine isomorphisms, then so is
f ⊕ g. For direct sums M ⊕N with reference point w and for points x ∈ M
and y ∈ N , it is sometimes convenient to denote x+y−w by x⊕y. Then f⊕g
can be defined by the simple formula (f ⊕ g)(x⊕ y) = f(x)⊕ g(y). However,
one can use this shorter notation only when it is clear about which direct sum
M ⊕N and M ′ ⊕N ′ we speak, because for arbitrary points x, y ∈ V , the set
{x} ⊕ {y} is defined only when Aff{x} ∩ Aff{y} = {x} ∩ {y} 6= ∅ and thus,
x = y.

Since a convex polytope is the convex hull of the set of its vertices, for
convex polytopes A⊕B with reference point w and A′⊕B′ with reference point
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w′ and for affine mappings f : Aff (A) → Aff (A′) and g : Aff (B) → Aff (B′),
the affine mapping f⊕g : Aff (A)⊕Aff (B) → Aff (A′)⊕Aff (B′) is completely
determined by its values at the vertices of ai + bj − w of A ⊕ B, i.e., by the
values f(ai) + g(bj) − w′.

2.9. We now endow the vector space V with the topology generated by
the Euclidean topologies of the finite-dimensional affine manifolds M in V
and call this topology the finite topology of V . By definition, a subset H ⊆ V
is closed in V provided H ∩M is closed in M (Euclidean topology), for every
finite-dimensional affine manifold M in V (see [3, Appendix I. A, Definition
4.2]). Note that affine manifolds in Rn are closed subsets of Rn. Therefore,
affine manifolds in finite-dimensional affine manifolds M in V are closed in M
(Euclidean topology). Since the intersection M ∩N of an affine manifold M
in V with a finite-dimensional affine manifold N in V is a finite-dimensional
affine manifold in N , it follows that M ∩N is closed in N , which proves that
every affine manifold M in V is closed in V . Since every convex polytope C
is closed in its affine hull Aff (C), it follows that C is also closed in V . It is
known that V endowed with the finite topology as well as all of its subspaces
are (Hausdorff) paracompact spaces. In general, V is not a topological vector
space (see [3, Appendix I. A, 4.3]).

2.10. In this paper by a cellular complex in a vector space V we mean
a collection L of convex polytopes c ⊆ V , called cells of L, such that all
faces c′ of a cell c ∈ L belong to L and any two cells c′, c′′ ∈ L intersect
in a common (possibly empty) face of c′ and c′′. We allow L to be infinite,
but we require that, for any convex polytope C ⊆ V , there are only finitely
many different intersections C ∩ c, when c ranges over L. By a morphism of
cellular complexes ϑ : L→ N we mean a sequence of functions ϑk : Lk → Nk,
k ∈ {0, 1, . . .}, between the sets of k-cells Lk of L and Nk of N , which preserve
faces, i.e., if c′ ∈ Lk′ , c ∈ Lk and c′ ≤ c, then ϑk′(c′) ≤ ϑk(c). An isomorphism
of cellular complexes is a morphism ϑ : L→ N , which admits an inverse, i.e.,
there is a morphism of cellular complexes ϕ : N → L such that ϕkϑk = id and
ϑkϕk = id, for every k.

The carrier |L| of a cellular complex L in V is the union of all cells
belonging to L. The finite topology on V induces a topology on |L|, called
the finite topology of |L|. It coincides with the CW-topology of |L|, i.e.,
the topology generated by the Euclidean topologies of the cells c ∈ L, which
implies that our cellular complexes are special cases of CW-complexes. Indeed,
let H ⊆ |L| be a set closed in the CW-topology of |L|, i.e., let H ∩ c be closed
in c, for every c ∈ L. To show thatH is also closed in the finite topology of |L|,
it suffices to show that H∩F is closed in F , for every finite-dimensional affine
manifold F of V , endowed with the Euclidean topology. Since the topology
of Rn is generated by the topologies of convex polytopes contained in Rn, the
topology of F is generated by the topologies of convex polytopes contained in
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F . Therefore, it suffices to show that H ∩ C is closed in C, for every convex
polytope C ⊆ F . By the definition of a cellular complex, there are finitely
many cells c1, . . . , ck ∈ L such that C = (C ∩ c1) ∪ . . . ∪ (C ∩ ck) and thus,
H ∩ C = (H ∩ C ∩ c1) ∪ . . . ∪ (H ∩ C ∩ ck). By assumption, H ∩ ci is closed
in ci and thus, H ∩ C ∩ ci is closed in C ∩ ci. Since ci is closed in V (finite
topology), it follows that C ∩ ci is closed in C, hence also H ∩C ∩ ci is closed
in C. However, H ∩ C is a finite union of sets of the form H ∩ C ∩ ci and
therefore, H ∩ C is closed in C. Conversely, sets H ⊆ |L|, closed in the finite
topology of |L| are closed in the CW-topology of |L|, because for E = Aff (c),
the set H ∩ E is closed in E and thus, H ∩ c is closed in c.

A cellular complex L in V is a subdivision of a cellular complexK provided
every cell c ∈ L is contained in a cell d ∈ K and every cell d ∈ K is the union
of a collection of cells c ∈ L. By our definition of a cellular complex, the
collection of all cells c ∈ L contained in a cell d ∈ K is a finite cellular
complex L(d) with carrier |L(d)| = d (we use the same notation d for the cell
d, for the complex consisting of d and its faces, as well as for its carrier |d|).

Remark 2.3. It appears that complexes consisting of convex polytopes
are not used very often in recent literature. However, in older literature they
were standard objects (see e.g., [1, Chapter III, §1]).

Simplicial complexes in V are special cases of cellular complexes, whose n-
cells σ, called simplices, are convex hulls of sets consisting of n+1 affinely inde-
pendent points v0, . . . , vn of V , called vertices of σ, n ∈ {0, 1, . . .}. Throughout
this paper, for simplices in V , we use the standard notation σ = [v0, . . . , vn].
Note that the order of the vertices is irrelevant.

Every abstract simplicial complex K admits a geometric realization in a
vector space V as a simplicial complex L in V . It suffices to take for V a vector
space, whose basis {ai} admits a bijection onto the set {vi} of all vertices of
K. With every abstract simplex {vi0 , . . . , vik

} of K one then associates the
polytope (simplex) [ai0 , . . . , aik

] in V . It is readily seen that the simplices
c = [ai0 , . . . , aik

] form a simplicial complex L, the geometric realization of the
complex K. Note that, for any convex polytope C ⊆ V , there are only finitely
many different intersections C ∩ c, when c ranges over L.

3. The first canonical subdivision L(K)

3.1. To construct the cellular subdivision L(K) of a simplicial complex
K, we assume that K is contained in a vector space V . We first construct
the cellular subdivisions L(σ) of σ, for all simplices σ ∈ K. If dimσ = n,
it suffices to define the n-cells of L(σ). Then L(σ) consists of these n-cells
and of all of their faces (including the empty face). The construction of L(σ)
will be done in such a way that the intersections of its cells with any proper
face ζ < σ coincides with L(ζ). Therefore, the union of all L(σ), when σ
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ranges over K, is a cellular subdivision of K. By definition, this is the desired
subdivision L(K) of K.

Among the n-cells of L(σ), where dimσ = n, there is one, contained in
the interior Int(σ) of σ. This n-cell is actually an n-simplex, which we call
the central n-simplex of σ and we denote it by cσ. All other n-cells of L(σ)
meet the boundary Bd (σ) (also denoted by ∂σ) and are called peripheral

n-cells of σ. If v0, . . . , vn are the vertices of σ (repetition is not allowed),
we use the notation σ = [v0, . . . , vn]. Each peripheral n-cell of σ is deter-
mined by a proper face τ < σ, i.e., τ = [vi0 , . . . , vik

], where 0 ≤ k < n,
{i0, . . . , ik} ⊂ {0, . . . , n}, i0 < . . . < ik, and by a permutation π of the
complement {jk+1, . . . , jn} = {0, . . . , n}\{i0, . . . , ik}, jk+1 < . . . < jn. The
corresponding n-cell is denoted by cτπ. The central n-simplex cσ can also be
viewed as an n-cell of the form cτπ, where τ = σ and π is the empty permu-
tation (this explains the notation cσ). Arguments for peripheral n-cells given
throughout this paper readily adapt to the central simplex and are omitted
in most cases.

3.2. To define the central n-simplex cσ of σ = [v0, . . . , vn], we consider
the barycenter bσ of σ,

(3.1) bσ = 1
n+1

∑i=n
i=0 vi

and the homothetic transformation χσ : σ → σ with center bσ and ratio 1
2 , i.e.,

we put χσ(x)− bσ = 1
2 (x− bσ), for x ∈ σ. By definition, cσ = χσ(σ). Clearly,

cσ is the n-dimensional simplex [wσ
0 , . . . , w

σ
n] with vertices wσ

i = χσ(vi), 0 ≤
i ≤ n. Since wσ

i ∈ Int(σ), it follows that cσ ⊆ Int(σ). In situations where it is
clear that we are performing a construction within a simplex σ = [v0, . . . , vn],
we will often be using the convenient (shorter) notation b0...n for bσ, c0...n for
cσ and w0...n

i for wσ
i , where the upper index σ is replaced by the indices of

the vertices of σ. Consequently,

(3.2) wσ
i = w0...n

i = 1
2 (vi + b0...n) = 1

2vi + 1
2(n+1)

∑j=n
j=0 vj , 0 ≤ i ≤ n,

(3.3) cσ = c0...n = [w0...n
0 , . . . , w0...n

n ] = [wσ
0 , . . . , w

σ
n].

Note that b0 = v0 = w0
0 and c0 = [w0

0 ]. Also note that the order of the
upper indices in b0...n, w0...n

i and c0...n is irrelevant. The convenient notation
is also used in the case of a face τ = [vi0 , . . . , vik

] of σ = [v0, . . . , vn]. E.g., the
corresponding central k-simplex cτ of τ will also be denoted by ci0...ik .

Remark 3.1. It is useful to keep in mind that wr...s
i = wr′...s′

i′ if and
only if {r, . . . , s} = {r′, . . . , s′} and i = i′. Indeed, wr...s

i ∈ Int[vr, . . . , vs] and

wr′...s′

i′ ∈ Int[vr′ , . . . , vs′ ]. Therefore, wr...s
i = wr′...s′

i′ implies that the interiors
of the faces [vr, . . . , vs] and [vr′ , . . . , vs′ ] of the simplex [v0, . . . , vn] intersect.
This is possible only if the two faces agree, i.e., [vr, . . . , vs] = [vr′ , . . . , vs′ ]
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and thus, {r, . . . , s} = {r′, . . . , s′}. However, by (3.2), 0 = wr...s
i − wr...s

i′ =
1
2 (vi − vi′) implies vi = vi′ and thus, i = i′.

For a point u ∈ σ = [v0, . . . , vn], let λi = λi(u), 0 ≤ i ≤ n, denote
the barycentric coordinates of u with respect to the vertices v0, . . . , vn of σ
(shorter, with respect to σ). Then u ∈ σ belongs to cσ if and only if

(3.4) λ0, . . . , λn(u) ≥ 1
2(n+1) .

Indeed, let µi = µi(u), 0 ≤ i ≤ n, be the barycentric coordinates of u ∈ c0...n

with respect to the vertices w0...n
0 , . . . , w0...n

n of cσ. Substituting in the equality

(3.5) u =
∑j=n

j=0 λjvj =
∑i=n

i=0 µiw
0...n
i

the values of w0...n
i from (3.2), one concludes that

(3.6) λj =
µj

2 + 1
2(n+1) , 0 ≤ j ≤ n.

Now formula (3.4) is a consequence of the fact that µj ≥ 0. Conversely,
(3.4) implies u ∈ c0...n, because the numbers µj , determined by (3.6), have

the property that µj ≥ 0,
∑j=n

j=0 µj = 1 and thus, µj are the barycentric

coordinates of u with respect to w0...n
0 , . . . , w0...n

n .

3.3. By definition, in L[v0] there are no peripheral 0-cells. In L[v0, v1]
there are two peripheral 1-cells, i.e., the 1-simplices [w0

0 , w
01
0 ] and [w1

1 , w
01
1 ]. In

L[v0, v1, v2] there are nine peripheral 2-cells, i.e., the six 2-simplices meeting
the boundary of [v0, v1, v2] and the three parallelograms, shown in Figure 2.

w
012
2

w
012
1w

012
0

w
01
1w

01
0

w
12
1

w
02
0

w
12
2w

02
2

w
2
2 = v2

w
1
1 = v1w

0
0 = v0

Figure 2. The decomposition L[v0, v1, v2]

In general, the peripheral n-cell cτπ of σ is determined by the central k-
simplex cτ of the face τ of σ and by an (n−k)-simplex dτ

π ⊆ σ. In what follows
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we will describe dτ
π and cτπ in the case when τ = [v0, . . . , vk], 0 ≤ k < n, and

therefore, π is a permutation of the set {k + 1, . . . , n}. In all other cases dτ
π

and cτπ are obtained by adequately relabelling the vertices of σ. We will also
be using the convenient notation d0...k

π for dτ
π and c0...k

π for cτπ.
By definition, dτ

π = d0...k
π is the (n− k)-simplex

(3.7) d0...k
π = [w0...k

0 , w
0...kπ(k+1)
0 , . . . , w

0...kπ(k+1)...π(k+i)
0 , . . . , w0...n

0 ].

Note that w
0...kπ(k+1)...π(n)
0 = w0...n

0 , because {π(k + 1), . . . , π(n)} = {k +
1, . . . , n}.

The points listed in (3.7) are affinely independent and belong to σ. There-
fore, d0...k

π is an (n − k)-simplex contained in σ. Let us show that even the
points in the larger list

(3.8) w0...k
0 , . . . , w0...k

k , w
0...kπ(k+1)
0 , . . . , w

0...kπ(k+1)...π(k+i)
0 , . . . , w0...n

0

are affinely independent. Indeed, consider the affine hulls Sk = Aff{v0, . . . , vk}
and Sk+i = Aff{v0, . . . , vk, vπ(k+1), . . . , vπ(k+i)}, 1 ≤ i ≤ n − k. Since

Sk ⊆ Sk+1 ⊆ . . . ⊆ Sn = Aff(σ) and the points w0...k
0 , . . . , w0...k

k are
affinely independent and belong to the simplex [v0, . . . , vk] ⊆ Sk, it suffices

to show that w
0...kπ(k+1)...π(k+i)
0 ∈ Sk+i\Sk+i−1, for 1 ≤ i ≤ n − k. In-

deed, w
0...kπ(k+1)...π(k+i)
0 ∈ c0...kπ(k+1)...π(k+i) lies in the interior of the sim-

plex [v0, . . . , vk, vπ(k+1), . . . , vπ(k+i)] ⊆ Sk+i and therefore, does not belong to
the proper face [v0, . . . , vk, vπ(k+1), . . . , vπ(k+i−1)] of that simplex. Since that

face equals σ ∩ Sk+i−1, it follows that w
0...kπ(k+1)...π(k+i)
0 /∈ Sk+i−1.

Note that, for σ = [v0, v1] and τ = [v0], the permutation π : {1} → {1}
is the identity ι and d01

ι = [w0
0 , w

01
0 ]. If σ = [v0, v1, v2] and τ = [v0, v1], then

π : {2} → {2} is the identity ι and d012
π = [w01

0 , w
012
0 ]. If σ = [v0, v1, v2] and

τ = [v0], there are two permutations of {1, 2}, the identity permutation ι and
the permutation ε, which interchanges 1 and 2. Accordingly, one obtains two
2-simplices, d012

ι = [w0
0 , w

01
0 , w

012
0 ] and d012

π = [w0
0 , w

02
0 , w

012
0 ].

For τ = [v0, . . . , vk], 0 ≤ k < n, we define the peripheral n-cell cτπ by the
formula

(3.9) cτπ = cτ ⊕ dτ
π .

Note that the intersection of Sk = Aff(cτ ) and Tk = Aff(dτ
π) is the point wτ

0 =
w0...k

0 , because the points listed in (3.8) are affinely independent. Therefore,
the direct sum cτ ⊕ dτ

π is well-defined and has wτ
0 for its reference point. It is

an n-dimensional convex polytope and

(3.10) cτ ⊕ dτ
π = cτ + dτ

π − wτ
0 .

Note that of the nine peripheral 2-cells of the decomposition L[v0, v1, v2]
(see Figure 2), formula (3.7) describes only three, i.e., for τ = [v0], the tri-
angles with vertices w0

0 , w
01
0 , w

012
0 and w0

0 , w
02
0 , w

012
0 and for τ = [v0, v1], the

parallelogram with vertices w01
0 , w

01
1 , w

012
0 , w012

1 . To obtain the triangles with
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vertices w1
1 , w

12
1 , w

012
1 and w1

1 , w
01
1 , w

012
1 and the parallelogram with vertices

w12
1 , w

12
2 , w

012
1 , w012

2 , we must use the faces τ = [v1] and τ = [v1, v2], respec-
tively. To obtain the remaining three peripheral 2-cells of L[v0, v1, v2], we
must use τ = [v2] and τ = [v0, v2]. Let us illustrate, in the case of the triangle
[w1

1 , w
12
1 , w

012
1 ], how it is obtained using formula (3.7) and the relabelling of

the vertices of [v0, v1, v2], which sends the indices 0, 1, 2 to 1, 2, 0, respectively.
By (3.7), d0

ι = [w0
0 , w

01
0 , w

012
0 ], where ι is the identity permutation on the set

{1, 2}. After the relabelling, to ι corresponds the identity permutation κ on
{0, 2} and we obtain d1

κ = [w1
1 , w

12
1 , w

012
1 ].

The following lemma lists the vertices of cτπ and describes the faces of cτπ.

Lemma 3.2. If σ = [v0, . . . , vn], τ = [v0, . . . , vk], 0 ≤ k < n, and dτ
π is

the simplex defined by (3.7), then the vertices of cτπ = cτπ ⊕ dτ
π are the points

(3.11)
w0...k

0 . . . w0...k
j . . . w0...k

k

w
0...kπ(k+1)
0 . . . w

0...kπ(k+1)
j . . . w

0...kπ(k+1)
k

. . . . . . . . . . . . . . .

w
0...kπ(k+1)...π(k+i)
0 . . . w

0...kπ(k+1)...π(k+i)
j . . . w

0...kπ(k+1)...π(k+i)
k

. . . . . . . . . . . . . . .

w0...n
0 . . . w0...n

j . . . w0...n
k .

The faces of cτπ are convex hulls of the sets of vertices lying at the crossings

of a collection of rows with a collection of columns of (3.11). The n-cell cτπ is

contained in σ.

Note that the last row of (3.11) consists of the points

w
0...kπ(k+1)π(k+2)...π(n)
j = w0...n

j .

We will refer to (3.11) as to the vertex scheme of cτπ. The crossings of a
collection of rows with a collection of columns of (3.11) form a subscheme of
the vertex scheme of cτπ. Such a subscheme determines a face of cτπ and we
call it the vertex scheme of the face.

Proof of Lemma 3.2. Since w0...k
j , 0 ≤ j ≤ k, are the vertices of cτ

and w
0...kπ(k+1)...π(k+i)
0 , 0 ≤ i ≤ n − k, are the vertices of dτ

π (for i = 0, one
interprets π(k + 1)...π(k + i) as empty), (3.9) implies that the vertices of cτπ
are the points

(3.12) w0...k
j + w

0...kπ(k+1)...π(k+i)
0 − w0...k

0 .

Now note that (3.2) implies

(3.13) w0...n
j − w0...n

0 = 1
2 (vj − v0), 0 ≤ j ≤ n.

Analogously,
(3.14)

w0...k
j − w0...k

0 = 1
2 (vj − v0) = w

0...kπ(k+1)...π(k+i)
j − w

0...kπ(k+1)...π(k+i)
0
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and we see that (3.12) coincides with

(3.15) w
0...kπ(k+1)...π(k+i)
j .

Note that the point w
0...kπ(k+1)...π(k+i)
j lies at the crossing of the i-th row and

the j-th column of (3.11). To obtain the vertices of a face of cτπ one considers
the vertices of a face of c0...k, which are points w0...k

j , for appropriate indices

0 ≤ j1, . . . , jq ≤ k, and one considers the vertices of a face of d0...k
π , which

are points w
0...kπ(k+1)...π(k+i)
0 , for appropriate indices 0 ≤ i1, . . . , ip ≤ n − k.

Then the points w0...k
j + w

0...kπ(k+1)...π(k+i)
0 − w0...k

0 = w
0...kπ(k+1)...π(k+i)
j at

the crossings of the rows determined by i1, . . . , ip and the columns determined
by j1, . . . , jq are the the vertices of the given face of cτπ. Finally, since every
convex polytope is the convex hull of its vertices and the points in (3.11)
belong to σ, one concludes that cτπ ⊆ σ.

Remark 3.3. In formula (3.7) the index 0 plays a special role and the
notation for the (n− k)-simplex dτ

π should really include that index, i.e., one
should be using the notation, say dτ

0π. Then (3.10) should be written as
cτ ⊕ dτ

0π = cτ + dτ
0π − w0...k

0 . Choosing another index j ∈ {0, . . . , k} would

yield another (n − k)-simplex dτ
jπ = [w0...k

j , w
0...kπ(k+1)
j , . . . , w0...n

j ] and the

analogue of (3.10) should be written as cτ ⊕ dτ
jπ = cτ + dτ

jπ −w0...k
j . The fact

that (3.12) and (3.15) coincide show that dτ
jπ = dτ

0π + (w0...k
j − w0...k

0 ) and

thus, dτ
jπ is the translate of dτ

0π by the vector w0...k
j − w0...k

0 , which connects
two points of Aff (cτ ). Therefore, Aff (cτ ) and Aff (dτ

jπ) intersect in the single

point w0...k
0 + (w0...k

j − w0...k
0 ) = w0...k

j , which proves that the direct sum

cτ ⊕ dτ
jπ is well defined and has w0...k

j for its reference point. Moreover,

cτ ⊕ dτ
jπ = cτ + dτ

jπ − w0...k
j = cτ + dτ

0π − w0...k
0 = cτ ⊕ dτ

0π . This shows
that the choice of the index j does not affect the definition of the n-cell cτπ
and therefore, there is no need for including that index in the notation for
cτπ. Note that the vertices of cτ form the first row of the vertex scheme (3.11)
and the vertices of dτ

jπ form the j-th column of that scheme. Their crossing

w0...k
j is the reference point of cτ ⊕dτ

jπ . To simplify notation we will generally
continue to denote dτ

0π by dτ
π .

3.4. Every vertex wr...s
t of cτπ (in fact, every point of σ) belongs to the

interior of a unique face of σ. We refer to the dimension of that face as to the
rank of the vertex wr...s

t . By (3.2), wr...s
t = 1

2 (vt + br...s) lies in the interior of
the face [vr , . . . , vs] of σ and thus, the rank of wr...s

t equals dim[vr, . . . , vs] =
card{r, . . . , s} − 1. Note that the vertices w0...k

j in the 0-th row of (3.11)

are of rank k and the vertices w
0...kπ(k+1)...π(k+i)
j in the i-th row of (3.11)

are of rank k + i. Clearly, the first summand cτ of cτ ⊕ dτ
π = cτ ⊕ dτ

jπ is
the simplex spanned by the vertices of cτπ of minimal rank and is therefore,
completely determined by cτπ. The vertices of the second summand dτ

jπ have
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a natural linear order given by their ranks, which increase by 1 as we descend
along the j-th column. Since (3.12) and (3.15) coincide, the translation by
wτ

j −wτ
0 is an affine isomorphism dτ

π = dτ
0π → dτ

jπ which preserves the ranks,

because it sends the vertex w
0...kπ(k+1)...π(k+i)
0 of rank k + i to the vertex

w
0...kπ(k+1)...π(k+i)
j , whose rank is also k+ i. Consequently, the translation by

wτ
j − wτ

0 preserves the ordering of the vertices of dτ
π = dτ

0π and dτ
jπ .

If a is a face of an n-cell cτπ = cτ ⊕ dτ
π ∈ L(σ), one cannot conclude

that a = ca ⊕ da, where ca ≤ cτ , da ≤ dτ
π, because Aff (ca) ∩ Aff (da) could

be empty and the direct sum ca ⊕ da would not be defined. However, the
following lemma holds.

Lemma 3.4. Let c = cτ ⊕ dτ
π be an n-cell from L(σ) and let a ≤ c be a

face of c, whose vertex scheme is the following subscheme of the vertex scheme

(3.11) of c.
(3.16)

w
0...kπ(k+1)...π(k+i)
j w

0...kπ(k+1)...π(k+i)
j1

. . . w
0...kπ(k+1)...π(k+i)
js

w
0...kπ(k+1)...π(k+i1)
j w

0...kπ(k+1)...π(k+i1)
j1

. . . w
0...kπ(k+1)...π(k+i1)
js

. . . . . . . . .

w
0...kπ(k+1)...π(k+ir)
j w

0...kπ(k+1)...π(k+ir)
j1

. . . w
0...kπ(k+1)...π(k+ir)
js

,

where 0 ≤ i = i0 ≤ i1 < . . . < ir ≤ n− k and 0 ≤ j = j0 ≤ j1 < . . . < js ≤ k.
If ca and da are simplices, whose vertex schemes are the first row and the

first column of (3.16), respectively, then ca and da are faces of a such that the

direct sum decomposition a = ca ⊕ da = ca + da − w is well defined and the

corresponding reference point w = w
0...kπ(k+1)...π(k+i)
j , lying at the crossing of

the first row with the first column of (3.16), is a vertex of both simplices ca
and da. The set of vertices of ca coincides with the set of vertices of the face

a having minimal rank. Therefore, ca is completely determined by a and does

not depend on c. The simplex c′a = [w0...k
j , w0...k

j1
, . . . , w0...k

js
] is a face of cτ

and translation by w
0...kπ(k+1)...π(k+i)
0 −wτ

0 is a bijection between the vertices

of c′a and ca and thus, ca = c′a + w
0...kπ(k+1)...π(k+i)
0 − wτ

0 . The simplex

d′a = [w
0...kπ(k+1)...π(k+i)
0 , w

0...kπ(k+1)...π(k+i1)
0 , . . . , w

0...kπ(k+1)...π(k+ir)
0 ] is a

face of dτ
π and a = c′a + d′a − wτ

0 . Translation by wτ
j − wτ

0 is a bijection

between the vertices of d′a and da and thus, da = d′a + wτ
j − wτ

0 . This

translation preserves the ranks of the vertices of d′a and thus, it is an order

preserving isomorphism between the simplices d′a and da. Analogously, if d1
a is

the face of a, whose vertex scheme is the l-th column of (3.16), then translation

by wτ
jl
−wτ

j is an order preserving isomorphism between the simplices da and

d1
a.

Proof. All the assertions of this lemma are immediate consequences
of the definitions and facts given in Subsections 2.7, 3.1, 3.2 and 3.3.
They are here stated only for easier referencing. The vertices of ca lie
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in the first row of (3.16) and have rank k + i, while all other vertices
of a have ranks > k + i. Therefore, ca is completely determined by a.
The vertex scheme w0...k

j w0...k
j1

. . . w0...k
js

of c′a is a subscheme of the ver-

tex scheme wτ
0 ...w

τ
k of cτ and thus, c′a ≤ cτ . Since w

0...kπ(k+1)...π(k+i)
0 −

wτ
0 = w

0...kπ(k+1)...π(k+i)
jl

− wτ
jl

, translation by w
0...kπ(k+1)...π(k+i)
0 − wτ

0 maps

the vertex w0...k
jl

of c′a to the vertex w
0...kπ(k+1)...π(k+i)
jl

of ca and thus,

ca = c′a + w
0...kπ(k+1)...π(k+i)
0 − wτ

0 . Analogously, the vertex scheme of
d′a is a subscheme of the vertex scheme of dτ

π and thus, d′a ≤ dτ
π. Since

wτ
j −wτ

0 = w
0...kπ(k+1)...π(k+it)
j −w

0...kπ(k+1)...π(k+it)
0 , translation by wτ

j −wτ
0

maps the vertex w
0...kπ(k+1)...π(k+it)
0 of d′a to the vertex w

0...kπ(k+1)...π(k+it)
j

of da and thus, da = d′a + wτ
j − wτ

0 . Both vertices w
0...kπ(k+1)...π(k+it)
0 and

w
0...kπ(k+1)...π(k+it)
j have the same rank k+ it, which shows that this transla-

tion is an order preserving isomorphism between the simplices d′a and da. A
similar argument proves the assertion concerning the translation by wτ

jl
−wτ

j .

Remark 3.5. If σ = [v0, . . . , vn] ∈ K, there exists a bijection between the
set of n-cells of L(σ) and the elements of the partially ordered set C[n], which
consists of chains of nonempty subsets of the set {0, . . . , n}, ordered by proper
inclusion ⊂ and having two additional properties. The adjacent links of a
chain are sets whose cardinality differs by 1 and the terminal link is the subset
{0, . . . , n}. In that sense L(σ) can be considered a geometric representation
of C[n]. E.g., C[2] consists of ten chains ending with {0, 1, 2}. They are
the 1-link chain: {0, 1, 2}, three 2-link chains: {0, 1} ⊂ {0, 1, 2}, {0, 2} ⊂
{0, 1, 2}, {1, 2} ⊂ {0, 1, 2} and six 3-link chains: {0} ⊂ {0, 1} ⊂ {0, 1, 2},
{0} ⊂ {0, 2} ⊂ {0, 1, 2}, {1} ⊂ {0, 1} ⊂ {0, 1, 2}, {1} ⊂ {1, 2} ⊂ {0, 1, 2},
{2} ⊂ {0, 2} ⊂ {0, 1, 2}, {2} ⊂ {1, 2} ⊂ {0, 1, 2}.

3.5. The main result in this section is Theorem 3.6. Its lengthy proof is
carried out in a number of steps.

Theorem 3.6. For any n-simplex σ of a simplicial complex K, the n-
cells cτπ described in Subsections 3.2 and 3.3, together with their faces, form a

cellular subdivision L(σ) of σ. If ζ < σ is a proper face of σ, then L(ζ) ⊆ L(σ)
and

(3.17) L(ζ) = ζ ∩ L(σ) = {ζ ∩ c|c ∈ L(σ)}.

The union L(K) =
⋃

σ∈K L(σ) is a cellular subdivision of K.

We will first prove that L(σ) is a cellular complex. For this we need to
prove that the intersection of any two cells c1, c2 ∈ L(σ) is a common face
(possibly empty) of these cells and that the union of all cells c ∈ L(σ) equals
σ. If dimσ = n, it suffices to prove the first assertion in the special case when
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c1, c2 are n-dimensional cells of L(σ). Indeed, if c1, c2 are arbitrary cells from
L(σ), then there exist n-dimensional cells c′1, c

′
2 ∈ L(σ) such that c1 ≤ c′1 and

c2 ≤ c′2. By the assertion in the special case, the intersection c′1 ∩ c
′
2 is a cell

c′, which is a common face of c′1 and c′2. Since c1 = c1 ∩ c′1 and c2 = c2 ∩ c′2,
we see that c1 ∩ c2 = c1 ∩ (c′1 ∩ c

′
2)∩ c2 = c1 ∩ c

′ ∩ c2. The cells c1, c
′ are faces

of c′1 and thus, their intersection c1∩c′ is also a face of c′. Analogously, c2∩c′

is a face of c′. Consequently, the intersection c1 ∩ c2 = (c1 ∩ c′) ∩ (c′ ∩ c2)
is a face of c′. Since c′ ≤ c′1 ∈ L(σ), it follows that c′ ∈ L(σ) and thus, also
c1 ∩ c2 ∈ L(σ). Clearly, to prove the second assertion, it suffices to prove that
σ is the union of all n-cells from L(σ).

3.6. Before considering the intersection cτπ ∩ cτ
′

π′ of two different n-cells
from L(σ), we will prove the following lemma concerning the intersection
dτ

π ∩ dτ
π′ .

Lemma 3.7. Let σ = [v0, . . . , vn], let τ = [v0, . . . , vk], 0 ≤ k < n, and let

π, π′ be permutations of the set {k+1, . . . , n}. Then dτ
π∩d

τ
π′ is a common face

of both simplices dτ
π and dτ

π′ . More precisely, if r1 < r2 < . . . < rp = n − k
are all integers in the set {1, . . . , n− k}, for which

(3.18) π{k + 1, . . . , k + ri} = π′{k + 1, . . . , k + ri},

then

(3.19) dτ
π ∩ dτ

π′ = dτ
ππ′ ,

where

(3.20)

dτ
ππ′ = [w0...k

0 , w
0...kπ(k+1)...π(k+r1)
0 , w

0...kπ(k+1)...π(k+r1)...π(k+r2)
0 , . . . , w0...n

0 ].

Proof. First note that the vertices of dτ
ππ′ are contained in dτ

π ∩ dτ
π′ ,

because by (3.18), {π(k + 1), . . . , π(k + ri)} = {π′(k + 1), . . . , π′(k + ri)}.
Since dτ

π ∩ dτ
π′ is convex, it follows that

(3.21) dτ
ππ′ ⊆ d0...k

π ∩ d0...k
π′ .

To prove the opposite inclusion, consider the n-dimensional affine man-
ifold Sn = Aff{v0, . . . , vn}. Moreover, for any pair of integers j, l ∈
{1, . . . , n − k}, consider the (n − 1)-dimensional affine manifold Sjl ⊆ Sn,
spanned by the points vi, i ∈ {0, . . . , n}\{π(k+ j), π(k+ l)} and by the point
1
2 (vπ(k+j) + vπ(k+l)). It consists of all points u ∈ Sn, whose barycentric coor-
dinates satisfy the condition λπ(k+j) = λπ(k+l). Since π(k + j), π(k + l) > k,
we read from (3.2) that

(3.22) λπ(k+j)(w
0...k
0 ) = 0 = λπ(k+l)(w

0...k
0 ),

and thus, w0...k
0 ∈ Sjl. Since w0...k

0 ∈ dτ
π ∩ dτ

π′ , we see that

(3.23) {w0...k
0 } ⊆ dτ

π ∩ dτ
π′ ∩ Sjl
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and thus,

(3.24) dτ
π ∩ Sjl 6= ∅, dτ

π′ ∩ Sjl 6= ∅.

For every integer j ∈ {1, . . . , n − k} there is a unique integer j′ ∈
{1, . . . , n − k} such that π(k + j) = π′(k + j′). We will say that an ordered
pair of integers (j, l) from {1, . . . , n − k} is an inversion pair provided j < l
and j′ > l′. Let us show that, for all inversion pairs (j, l), Sjl is a supporting
hyperplane for both simplices dτ

π , d
τ
π′ and it separates them. More precisely,

Sjl determines in Sn two affine halfspaces,

(3.25) S+
jl = {u ∈ Sn|λπ(k+j)(u) ≥ λπ(k+l)(u)},

(3.26) S−
jl = {u ∈ Sn|λπ(k+j)(u) ≤ λπ(k+l)(u)},

such that

(3.27) dτ
π ⊆ S+

jl ,

(3.28) dτ
π′ ⊆ S−

jl

and (3.24) holds.
To prove (3.27) and (3.28), it suffices to prove that, for 1 ≤ i ≤ n− k, all

the vertices w
0...kπ(k+1)...π(k+i)
0 of d0...k

π satisfy the inequality

(3.29) λπ(k+j)(w
0...kπ(k+1)...π(k+i)
0 ) ≥ λπ(k+l)(w

0...kπ(k+1)...π(k+i)
0 )

and all the vertices w
0...kπ′(k+1)...π′(k+i)
0 of d0...k

π′ satisfy the inequality

(3.30) λπ(k+j)(w
0...kπ′(k+1)...π′(k+i)
0 ) ≤ λπ(k+l)(w

0...kπ′(k+1)...π′(k+i)
0 ).

Indeed, by (3.2), applied to the simplex [v0. . . . , vk, vπ(k+1) . . . , vπ(k+i)],

(3.31)
w

0...kπ(k+1)...π(k+i)
0 =

1
2v0 + 1

2(k+i+1) (v0 + . . .+ vk + vπ(k+1) + . . .+ vπ(k+i))

and thus,

(3.32) λπ(k+j)(w
0...kπ(k+1)...π(k+i)
0 ) =

{ 1
2(k+i+1) , j ≤ i,

0, j > i.

Replacing j by l, an analogous relation for λπ(k+l)(w
0...kπ(k+1)...π(k+i)
0 ) is ob-

tained. Using temporarily the abbreviation w for w
0...kπ(k+1)...π(k+i)
0 , we see

that the two relations yield the following.

(3.33) λπ(k+j)(w) = 0 = λπ(k+l)(w), i < j,

(3.34) λπ(k+j)(w) = 1
2(k+i+1) > 0 = λπ(k+l)(w), j ≤ i < l,

(3.35) λπ(k+j)(w) = 1
2(k+i+1) = λk+l(w), l ≤ i.

Clearly, formulae (3.33), (3.34) and (3.35) imply (3.29).
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For λπ(k+j)(w
0...kπ′(k+1)...π′(k+i)
0 ) we have a relation analogous to (3.31).

(3.36)
w

0...kπ′(k+1)...π′(k+i)
0 =

1
2v0 + 1

2(k+i+1) (v0 + . . .+ vk + vπ′(k+1) + . . .+ vπ′(k+i)).

Since π(k + j) = π′(k + j′), we see that

(3.37) λπ(k+j)(w
0...kπ′(k+1)...π′(k+i)
0 ) =

{ 1
2(k+i+1) , j′ ≤ i,

0, j′ > i.

Replacing j by l, an analogous relation for λπ(k+l)(w
0...kπ′(k+1)...π′(k+i)
0 ) is

obtained. Using temporarily the abbreviation w′ for w
0...kπ′(k+1)...π′(k+i)
0 , we

see that the two relations yield the following.

(3.38) λπ(k+j)(w
′) = 0 = λπ(k+l)(w

′), i < l′,

(3.39) λπ(k+j)(w
′) = 0 < 1

2(k+i+1) = λπ(k+l)(w
′), l′ ≤ i < j′,

(3.40) λπ(k+j)(w
′) = 1

2(k+i+1) = λπ(k+l)(w
′), j′ ≤ i.

Clearly, formulae (3.38), (3.39) and (3.40) imply (3.30).
It is a consequence of (3.27), (3.28) and S+

jl ∩S
−
jl = Sjl that d0...k

π ∩d0...k
π′ ⊆

Sjl and thus,

(3.41) dτ
π ∩ dτ

π′ ⊆ dτ
π ∩ Sjl.

Denote by Wjl the set of all vertices w
0...kπ(k+1)...π(k+i)
0 of dτ

π, which lie in Sjl.
Since Sjl is a supporting hyperplane of the simplex dτ

π in Sn, the intersection
dτ

π ∩ Sjl is the face of dτ
π, spanned by the set Wjl, i.e., dτ

π ∩ Sjl is the convex
hull Conv(Wjl). If (j1, l1), . . . , (jm, lm) are all inversion pairs, then (dτ

π ∩
Sj1l1) ∩ . . .∩ (dτ

π ∩ Sjmlm) = Conv(Wj1l1)∩ . . .∩Conv(Wjmlm). However, the
intersection of a collection of faces of a simplex coincides with the convex hull
of the intersection of their sets of vertices. Consequently, (3.41) implies

(3.42) dτ
π ∩ dτ

π′ ⊆ Conv(Wj1l1 ∩ . . . ∩Wjmlm).

To complete the proof, it suffices to show that, for every i ∈ {1, ..., n−1}\

{r1, . . . , rp−1}, there exists an inversion pair (j, l) such that w
0...kπ(k+1)...π(k+i)
0

/∈Wjl. Indeed, if this is the case, then Wj1l1 ∩ . . .∩Wjmlm is contained in the

set {w0...k
0 , w

0...kπ(k+1)...π(k+r1)
0 , w

0...kπ(k+1)...π(k+r2)
0 , . . . , w0...n

0 }, which spans
the simplex dτ

ππ′ . Therefore, by (3.42),

(3.43) dτ
π ∩ dτ

π′ ⊆ dτ
ππ′ ,

which together with (3.21) yields the desired equality (3.19).
Finally, let us show that, for 0 < i < n− k and i 6= r1, . . . , rp, there does

exist an inversion pair (j, l) such that

(3.44) j ≤ i < l
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and therefore, by (3.44), w = w0...kπ(k+1)...π(k+i) 6∈ Sjl, i.e., w 6∈ Wjl.
First consider the case, when 0 < i < r1. By the definition of r1,

(3.45) π{k + 1, . . . , k + i} 6= π′{k + 1, . . . , k + i}.

We claim that there exists an integer j ∈ {1, . . . , i} such that π(k + j) 6∈
π ′{k + 1, . . . , k + i}. Indeed, if this were not the case, we would have π{k +
1, . . . , k + i} ⊆ π′{k + 1, . . . , k + i}. Since these are equipotent finite sets, we
would have π{k+1, . . . , k+ i} = π′{k+1, . . . , k+ i}, which is in contradiction
with (3.45). Since π(k+ j) = π′(k+ j′), one must have j′ > i. Similarly, there
exists an l ∈ {i+1, . . . , n−k} such that π(k+ l) 6∈ π′{k+ i+1, . . . , n}. If this
were not the case, we would have π{k + i+ 1, . . . , n} ⊆ π′{k + i+ 1, . . . , n},
hence also π{k + i+ 1, . . . , n} = π′{k + i+ 1, . . . , n}. However, this too is in
contradiction with (3.45), because it implies the equality π{k+1, . . . , k+ i} =
π′{k + 1, . . . , k + i}. Since π(k + l) = π′(k + l′), one must have l′ ≤ i. Now
j ≤ i < l and l′ ≤ i < j′ show that (j, l) is an inversion pair with property
(3.44).

If r1 < i < r2, one repeats the argument with obvious changes. Instead of
{0, . . . , k}, one considers {0, . . . , k, π(k+1), . . . , π(k+ r1)} = {0, . . . , k, π′(k+
1), . . . , π′(k + r1)} and one notes that π and π′ permute the set {k + r1 +
1, . . . , k + r2}. Instead of (3.45), one uses

(3.46) π{k + r1 + 1, . . . , k + i} 6= π′{k + r1 + 1, . . . , k + i},

which holds, because of the definition of r2. One proceeds in the same way,
when rm < i < rm+1, m ≥ 2.

The next lemma is an immediate consequence of Lemma 3.7.

Lemma 3.8. Let σ = [v0, . . . , vn], τ = [v0, . . . , vk], 0 ≤ k < n, and let

π, π′ be permutations of the set {k+ 1, . . . , n}. Let W (dτ
π) and W (dτ

π′) be the

sets of vertices of the simplices dτ
π and dτ

π′ , respectively. Then dτ
π ∩ dτ

π′ is the

convex hull of the set W (dτ
π) ∩W (dτ

π′).

Proof. Since W (dτ
π) ⊆ dτ

π, W (dτ
π′) ⊆ dτ

π′ and dτ
π ∩ dτ

π′ is convex, it
follows that Conv (W (dτ

π) ∩W (dτ
π′)) ⊆ dτ

π ∩ dτ
π′ . Conversely, by Lemma 3.7,

dτ
π ∩ dτ

π′ ≤ dτ
π and dτ

π ∩ dτ
π′ ≤ dτ

π′ . Therefore, if w is a vertex of dτ
π ∩ dτ

π′ , it is
also a vertex of dτ

π and a vertex of dτ
π′ . Consequently, w ∈ W (dτ

π)∩W (dτ
π′) ⊆

Conv (W (dτ
π) ∩W (dτ

π′)). Since dτ
π ∩ dτ

π′ is the convex hull of the set of all of
its vertices w, it follows that dτ

π ∩ dτ
π′ ⊆ Conv (W (dτ

π) ∩W (dτ
π′)).

3.7. In considering the intersection of two different n-cells cτ
′

π′ , cτ
′′

π′′ ∈
L(σ), we distinguish three cases: (a) τ ′ = τ ′′, (b) τ ′ 6= τ ′′ and the convex hull
τ = Conv (τ ′ ∪ τ ′′) = σ and (c) τ ′ 6= τ ′′ and τ is a proper face of σ. The

assertion that cτ
′

π′ ∩ cτ
′′

π′′ is a common face of the cells cτ
′

π′ and cτ
′′

π′′ in cases (a),
(b) and (c) will be proved in Lemmas 3.9, 3.10 and 3.12, respectively.
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3.7.1. Case (a), τ ′ = τ ′′. Clearly, τ ′ 6= σ, because there is only one
central n-cell cσ. By relabelling the vertices of σ, it suffices to consider the case
of a proper face τ = [v0, . . . , vk] of σ, 0 ≤ k < n, and of different permutations
π, π′ of the set {k + 1, . . . , n}. This case is settled by the following lemma.

Lemma 3.9. Let τ = [v0, . . . , vk], 0 ≤ k < n, and let π, π′ be different

permutations of the set {k + 1, . . . , n}. Then the intersection cτπ ∩ cτπ′ of the

n-cells cτπ = cτ ⊕ dτ
π and cτπ′ = cτ ⊕ dτ

π′ is a common face of both n-cells cτπ
and cτπ′ . More precisely,

(3.47) cτπ ∩ cτπ′ = cτ ⊕ (dτ
π ∩ dτ

π′).

Proof. Note that wτ
0 = w0...k

0 is a vertex of cτ ⊆ Aff(cτ ) and by (3.19)
and (3.20), wτ

0 is also a vertex of dτ
π ∩ dτ

π′ ⊆ Aff(dτ
π ∩ dτ

π′). Since Aff(cτ ) ∩
Aff(dτ

π ∩ dτ
π′) ⊆ Aff(cτ ) ∩ Aff(dτ

π) = {wτ
0}, it follows that cτ ⊕ (dτ

π ∩ dτ
π′) is

well defined and has w0...k
0 for its reference point. By Lemma 3.7, dτ

π ∩ dτ
π′ is

a face of dτ
π and thus, cτ ⊕ (dτ

π ∩ dτ
π′) = cτ + (dτ

π ∩ dτ
π′) − w0...k

0 is a face of
cτ + dτ

π − w0...k
0 = cτπ. Analogously, cτ ⊕ (dτ

π ∩ dτ
π′) is a face of cτπ′ .

To complete the proof, we need to prove (3.47). Consider an arbitrary
point u ∈ cτπ ∩ cτπ′ . It is of the form

(3.48) u = s+ t− w0...k
0 = s′ + t′ − w0...k

0 ,

where s, s′ ∈ cτ , t ∈ dτ
π and t′ ∈ dτ

π′ . Consider the affine mapping pτσ : σ → τ ,
determined by its values at the vertices of σ,

(3.49) pτσ(vj) =

{

vj , 0 ≤ j ≤ k,
bτ , k + 1 ≤ j ≤ n.

Note that pτσ uniquely extends to an affine mapping pτσ : Aff (σ) → Aff (τ).
Since pτσ is a retraction, an application of the affine mapping pτσ to (3.48)
yields the equality

(3.50) s+ pτσ(t) = s′ + pτσ(t′).

Let us show that

(3.51) pτσ(t) = w0...k
0 = pτσ(t′)

and thus, s = s′. Indeed, t ∈ dτ
π = [w0...k

0 , . . . , w
0...kπ(k+1)...π(k+i)
0 , . . . , w0...n

0 ]

and w
0...kπ(k+1)...π(k+i)
0 = 1

2 (v0 + b0...kπ(k+1)...π(k+i)). Moreover,

(3.52) b0...kπ(k+1)...π(k+i) = 1
k+1+i

(v0 + . . .+ vk + vπ(k+1), . . . ,+vπ(k+i))

and thus,
(3.53)
pτσ(b0...kπ(k+1)...π(k+i)) = 1

k+1+i
(v0 + . . .+ vk) + 1

k+1+i
(bτ + . . .+ bτ )

= k+1
k+1+i

bτ + i
k+1+i

bτ = bτ .
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Consequently,

(3.54)
pτσ(w

0...kπ(k+1)...π(k+i)
0 ) = 1

2 (v0 + pτσ(b0...kπ(k+1)...π(k+i)))

= 1
2 (v0 + bτ ) = w0...k

0

and we see that pτσ maps all vertices of dτ
π to the point w0...k

0 . Therefore, it
also maps t to that point, i.e., pτσ(t) = w0...k

0 . In the same way one verifies
that pτσ(t′) = w0...k

0 . Now s = s′ and (3.48) yield the conclusion that also
t = t′ ∈ dτ

π∩d
τ
π′ . All this proves that u = s+t−w0...k

0 ∈ cτ +(dτ
π∩d

τ
π′)−w0...k

0

and thus,

(3.55) cτπ ∩ cτπ′ ⊆ cτ + (dτ
π ∩ dτ

π′) − w0...k
0 .

The opposite inclusion is obvious and we see that cτπ ∩ cτπ′ = cτ + (dτ
π ∩ dτ

π′)−
w0...k

0 , which establishes (3.47).

3.7.2. Case (b), τ ′ 6= τ ′′ and τ = σ. If τ ′ ∩ τ ′′ 6= ∅, the intersection
τ ′ ∩ τ ′′ is a simplex τ , which is the common face of τ ′ and τ ′′. There is
no loss of generality in assuming that τ = [v0, . . . , vk], where 0 ≤ k < n.
At least one of the sets τ ′\τ , τ ′′\τ must be nonempty, for otherwise, one
would have τ ′ = τ = τ ′′. It suffices to consider the case when τ ′\τ 6= ∅. If
τ ′ 6= σ, i.e., if it is a proper face of σ, there is no loss of generality in assuming
that τ = [v0, . . . , vk], τ ′ = [v0, . . . , vk′ ], τ ′′ = [v0, . . . , vk, vk′+1, . . . , vn], where

0 ≤ k < k′ < n. If τ ′ = σ, then cτ
′

π′ = cσ is the central n-simplex, τ ′′ = τ and
π′′ is a permutation of the set {k + 1, . . . , n}. Renaming π′′ to π the n-cell

cτ
′′

π′′ becomes cτπ. Therefore, case (b) is settled by the following lemma.

Lemma 3.10.

(i) Let τ ′ = [v0, . . . , vk′ ], τ ′′ = [v0, . . . , vk, vk′+1, . . . , vn], τ ′ ∩ τ ′′ = τ =

[v0, . . . , vk], 0 ≤ k < k′ < n and let cτ
′

π′ , cτ
′′

π′′ be n-cells from L(σ). Then

the intersection cτ
′

π′ ∩ cτ
′′

π′′ is a common face of cτ
′

π′ and cτ
′′

π′′ . Moreover,

(3.56) cτ
′

π′ ∩ cτ
′′

π′′ = [wσ
0 , . . . , w

σ
k ].

(ii) Let τ = [v0, . . . , vk], 0 ≤ k < n and let cτπ be a peripheral n-cell from

L(σ). Then the intersection cσ ∩ cτπ of the central n-simplex cσ with

the n-cell cτπ is a common face of cσ and cτπ. Moreover,

(3.57) cσ ∩ cτπ = [wσ
0 , . . . , w

σ
k ].

(iii) Let cτ
′

π′ and cτ
′′

π′′ be n-cells from L(σ) such that τ = σ. If τ ′ ∩ τ ′′ = ∅,

then also cτ
′

π′ ∩ cτ
′′

π′′ = ∅.

Proof. Case (i). In the n-dimensional affine manifold Sn = Aff (σ) ⊆ V
we will define an (n− 1)-dimensional affine manifold S such that S is a sup-

porting hyperplane for both convex sets cτ
′

π′ and cτ
′′

π′′ . Moreover, S will separate
these two sets, i.e., they will lie in different subspaces S+, S−, determined by
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S. Since S+ ∩ S− = S, it will follow that cτ
′

π′ ∩ cτ
′′

π′′ = cτ
′

π′ ∩ cτ
′′

π′′ ∩ S. We will
also show that

(3.58) cτ
′

π′ ∩ S = [wσ
0 , . . . , w

σ
k ],

(3.59) cτ
′′

π′′ ∩ S = [wσ
0 , . . . , w

σ
k , w

σ
k′+1, . . . , w

σ
n],

which will imply cτ
′

π′ ∩ cτ
′′

π′′ = [wσ
0 , . . . , w

σ
k ], as asserted by (3.56).

To define S, S+ and S−, we consider the function Λ: Aff (σ) → R, given
by the formula

(3.60) Λ(u) = λk+1(u) + . . .+ λk′ (u), u ∈ Aff (σ)

and we put

(3.61)

S = {u ∈ Aff (σ)|Λ(u) = k′−k
2(n+1)},

S+ = {u ∈ Aff (σ)|Λ(u) ≥ k′−k
2(n+1)},

S− = {u ∈ Aff (σ)|Λ(u) ≤ k′−k
2(n+1)}.

We will show that, for all vertices w′ of cτ
′

π′ , one has Λ(w′) ≥ k′−k
2(n+1) ,

which implies Λ(u) ≥ k′−k
2(n+1) , for all points u ∈ cτ

′

π′ , i.e., cτ
′

π′ ⊆ S+. Moreover,

of all the vertices w′ only w0...n
0 , . . . , w0...n

k satisfy the equality Λ(w′) = k′−k
2(n+1) .

Therefore, S is a supporting hyperplane for the convex set cτ
′

π′ and (3.58) holds.

Similarly, we will show that, for all vertices w′′ of cτ
′′

π′′ , one has Λ(w′′) ≤ k′−k
2(n+1)

and only the vertices w′′ from the set {wσ
0 , . . . , w

σ
k , w

σ
k′+1, . . . , w

σ
n} satisfy the

equality Λ(w′) = k′−k
2(n+1) . Therefore, cτ

′′

π′′ ⊆ S− and (3.59) holds.

According to (3.11), the vertices of cτ
′

π′ are the points w0...k′

m and the points

w
0...k′π′(k′+1)...π′(k′+i)
m , where 1 ≤ i ≤ n− k′ and 0 ≤ m ≤ k′. Note that

(3.62)

b0...k′π′(k′+1)...π′(k′+i) =
1

k′+1+i
(v0 + . . .+ vk + vk+1 + . . .+ vk′ + vπ′(k′+1) + . . .+ vπ′(k′+i)).

Since {0, . . . , k} ∩ {k + 1, . . . , k′} = ∅ and {π′(k′ + 1), . . . , π′(k′ + i)} ∩ {k +
1, . . . , k′} = ∅, we see that Λ(v0 + . . .+ vk) = Λ(vπ′(k′+1) + . . .+ vπ′(k′+i)) = 0
and thus,

(3.63)
Λ(b0...k′π′(k′+1)...π′(k′+i)) = 1

k′+1+i
Λ(vk+1 + . . .+ vk′) =

1
k′+1+i

(λk+1(vk+1) + . . .+ λk′ (vk′ )) = k′−k
k′+1+i

.

Now note that Λ(vm) = 0, when 0 ≤ m ≤ k and Λ(vm) = 1, when k+1 ≤ m ≤

k′. Since w
0...k′π′(k′+1)...π′(k′+i)
m = 1

2vm + 1
2b

0...k′π′(k′+1)...π′(k′+i), we conclude
that

(3.64) Λ(w0...k′π′(k′+1)...π′(k′+i)
m ) =

{

k′−k
2(k′+1+i) , 0 ≤ m ≤ k,
1
2 + k′−k

2(k′+1+i) , k + 1 ≤ m ≤ k′.
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A simplified version of the above calculation gives for Λ(w0...k′

m ) the value
obtained by substituting i = 0 in (3.64). For i = n− k′, (3.64) yields

(3.65) Λ(wσ
0 ) = . . . = Λ(wσ

k ) = k′−k
2(n+1) ,

(3.66) Λ(wσ
k+1) = . . . = Λ(wσ

k′ ) = 1
2 + k′−k

2(n+1) ,

because {π′(k′ +1), . . . , π′(n)} = {k′ +1, . . . , n}. Moreover, i < n−k′ implies
k′−k

k′+1+i
> k′−k

n+1 , which shows that Λ assumes the minimal value k′−k
2(n+1) only

for the vertices wσ
0 , . . . , w

σ
k . We have thus, verified the above made assertions

concerning the vertices of cτ
′

π′ .

A similar calculation establishes the assertions for the vertices of cτ
′′

π′′ .

These are the points w0...kk′+1...n
m and w

0...kk′+1...nπ′′(k+1)...π′′(k+j)
m , where 1 ≤

j ≤ k′ − k and 0 ≤ m ≤ k or k′ + 1 ≤ m ≤ n. Note that
(3.67)

b0...kk′+1...nπ′′(k+1)...π′′(k+j) =
1

k+1+n−k′+j
(v0 + ...+ vk + vk′+1 + ...+ vn + vπ′′(k+1) + ...+ vπ′′(k+j)).

It is readily seen that Λ(v0 + ...+ vk) = 0 and Λ(vk′+1 + ...+ vn) = 0. Since
π′′(k + 1), . . . , π′′(k + j) are j different elements of the set {k + 1, . . . , k′},
one has Λ(vπ′′(k+1)) = . . . = Λ(vπ′′(k+j)) = 1 and thus, Λ(vπ′′(k+1) + . . . +
vπ′′(k+j)) = j. Consequently,

(3.68) Λ(b0...kk′+1...nπ′′(k+1)...π′′(k+j)) = j
k+1+n−k′+j

.

Since Λ(vm) = 0, for 0 ≤ m ≤ k or k′ + 1 ≤ m ≤ n, we conclude that

(3.69) Λ(w
0...kk′+1...nπ′′(k+1)...π′′(k+j)
m ) = j

2(k+1+n−k′+j) .

Moreover, it is readily seen that

(3.70) Λ(w0...kk′+1...n
m ) = 0.

For j = k′ − k, (3.69) becomes

(3.71) Λ(wσ
m) = k′−k

2(n+1) ,

because π′′{k+1, . . . , k′} = {k+1, . . . , k′} and thus, w0...kk′+1...nk+1...k′

m = wσ
m.

Furthermore, for 1 ≤ j < k′ − k, one has j
2(k+1+n−k′+j) <

k′−k
2(n+1) , because

k′ < n implies 0 < k + 1 + n− k′ and j
(k+1+n−k′+j) <

j+1
(k+1+n−k′+j+1) . This

shows that the right side of (3.69) assumes its maximal value k′−k
2(n+1) only

for the vertices wσ
0 , . . . , w

σ
k , w

σ
k′+1, . . . , w

σ
n. Hence, we have verified the above

made assertions concerning the vertices of cτ
′′

π′′ .
Clearly, [wσ

0 , . . . , w
σ
k ] is a face of [wσ

0 , . . . , w
σ
k′ ]. However, the latter simplex

is spanned by the last row of (3.11) for cτ
′

π′ and thus, it is a face of cτ
′

π′ .
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Consequently, [wσ
0 , . . . , w

σ
k ] ≤ cτ

′

π′ . Analogously, [wσ
0 , . . . , w

σ
k ] is a face of the

last row of (3.11) for cτ
′′

π′′ and thus, it is also a face of cτ
′′

π′′ .
Case (ii). The proof of (3.57) can be obtained from the above proof of

(3.56) by replacing everywhere k′ by n and i by 0 and by deleting expressions
which in this case make no sense, like k′ + 1...n, π′(k′ + 1)...π′(k′ + i) or
vk′+1 + ... + vn. Then τ ′ = [v0, . . . , vk′ ] becomes σ = [v0, . . . , vk′ ], τ ′′ =

[v0, . . . , vk, vk′+1, . . . , vn] becomes τ = [v0, . . . , vk] and cτ
′

π′ and cτ
′′

π′′ become cσ

and cτπ, respectively. Furthermore, Λ(u) becomes the sum λk+1(u)+. . .+λn(u)

and the expression k′−k
2(n+1) in (3.61) becomes n−k

2(n+1) . The vertices of cσ are

the points wσ
m, where 0 ≤ m ≤ n and

(3.72) Λ(wσ
m) =

{

n−k
2(n+1) , 0 ≤ m ≤ k,
1
2 + n−k

2(n+1) , k + 1 ≤ m ≤ n.

Hence, Λ assumes its minimal value n−k
2(n+1) at the verticeswσ

0 , . . . , w
σ
k and thus,

cσ ⊆ S+ and cσ ∩ S = [wσ
0 , . . . , w

σ
k ]. The vertices of cτπ are the points w0...k

m

and w
0...kπ(k+1)...π(k+j)
m , where 1 ≤ j ≤ n − k and 0 ≤ m ≤ k. Furthermore,

Λ(w0...k
m ) = 0 and

(3.73) Λ(w
0...kπ(k+1)...π(k+j)
m ) = j

2(k+1+j) .

The right side of (3.73) assumes its maximal value n−k
2(n+1) only for the vertices

wσ
0 , . . . , w

σ
k . Therefore, cτπ ⊆ S−, cτπ ∩ S = [wσ

0 , . . . , w
σ
k ] and the assertion

(3.57) follows. That [wσ
0 , . . . , w

σ
k ] is a face of cτπ follows as in the above case.

That it is a face of cσ is an immediate consequence of the definition of cσ.
Case (iii). If τ ′ ∩ τ ′′ = ∅, there is no loss of generality in assuming that

τ ′ = [v0, . . . , vk] and τ ′′ = [vk+1, . . . , vn], where 0 ≤ k < n. In this case
we define Λ by putting Λ(u) = λ0(u) + . . . λk(u). In (3.61) we replace the

expression k′−k
2(n+1) by k+1

2(n+1) . The vertices of cτ
′

π′ are now the points w0...k
m and

w
0...kπ′(k+1)...π′(k+i)
m , where 1 ≤ i ≤ n − k and 0 ≤ m ≤ k. A computation

like the previous ones shows that

(3.74) Λ(w
0...kπ′(k+1)...π′(k+i)
m ) = 1

2 + k+1
2(k+1+i)

and Λ(w0...k
m ) = 1. Consequently, the minimal value of Λ at the vertices of cτ

′

π′

is 1
2 + k+1

2(n+1) and thus, for u ∈ cτ
′

π′ , one has

(3.75) 1
2 + k+1

2(n+1) ≤ Λ(u).

Furthermore, the vertices of cτ
′′

π′′ are the points wk+1...n
m and w

k+1...nπ′′(0)...π′′(j)
m ,

where 0 ≤ j ≤ k and k + 1 ≤ m ≤ n. A computation like the previous ones
shows that

(3.76) Λ(w
k+1...nπ′′(0)...π′′(j)
m ) = j+1

2(n−k+j+1)
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and Λ(wk+1...n
m ) = 1

2(n−k+1) . Consequently, the maximal value of Λ at the

vertices of cτ
′′

π′′ is k+1
2(n+1) and thus, for u ∈ cτ

′′

π′′ , one has

(3.77) Λ(u) ≤ k+1
2(n+1) .

Since there is no point u, which satisfies both inequalities (3.75) and (3.77),

it follows that cτ
′

π′ ∩ cτ
′′

π′′ = ∅.

3.7.3. Case (c). τ ′ 6= τ ′′ and τ = Conv (τ ′ ∪ τ ′′) < σ.

3.7.3.1. We first prove a lemma, which will enable us to reduce the proof
in case (c) to case (b), using the affine mapping pτσ : σ → τ , determined by
(3.49).

Lemma 3.11. Let τ = [v0, . . . , vk], τ = [v0, . . . , vk] be faces of σ, where

0 ≤ k < k < n.

(i) For every n-cell cτπ ∈ L(σ), there is a permutation ρ of the set {k +
1, . . . , k} such that the corresponding k-cell cτρ ∈ L(τ) has the property

that

(3.78) pτσ(cτπ) ⊆ cτρ .

There is also a permutation ϑ of the set {k + 1, . . . , n} and there is a

common face cττ
πϑ of cτπ and cτϑ such that

(3.79) (pτσ|c
τ
π)−1[wτ

0 , . . . , w
τ
k ] = cττ

πϑ.

(ii) For every n-cell cτπ ∈ L(σ),

(3.80) pτσ(cτπ) ⊆ cτ

and there is a face cττ
π of cτπ such that

(3.81) (pτσ|c
τ
π)−1[wτ

0 , . . . , w
τ
k ] = cττ

π .

Proof. (i) Since π : {k + 1, . . . , n} → {k + 1, . . . , n} is a bijection and
{k + 1, . . . , k} is a proper subset of {k + 1, . . . , n}, there are precisely k − k
integers j such that 1 ≤ j ≤ n− k and π(k+ j) ∈ {k+1, . . . , k} and there are

precisely n−k integers l such that 1 ≤ l ≤ n−k and π(k+ l) ∈ {k+1, . . . , n}.
Denote these integers by 1 ≤ j1 < . . . < ja < . . . < jk−k ≤ n− k and 1 ≤ l1 <

. . . < lb < . . . < ln−k ≤ n− k, respectively. Note that k + 1 ≤ π(k + ja) ≤ k

and n ≥ π(k+ lb) ≥ k+1. Define functions ρ : {k+1, . . . , k} → {k+1, . . . , k}
and ϑ : {k + 1, . . . , n} → {k + 1, . . . , n} by putting

(3.82) ρ(k + a) = π(k + ja), 1 ≤ a ≤ k − k,

(3.83) ϑ(k + b) = π(k + lb), 1 ≤ b ≤ n− k.

The functions ρ and ϑ are permutations, because they are surjective and
injective.
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Let us now prove (3.78). Every point u ∈ cτπ is of the form u = s+ t−wτ
0 ,

where s ∈ cτ and t ∈ dτ
π. Since {s, wτ

0} ⊆ cτ ⊆ τ ⊆ τ and pτσ : σ → τ is
a retraction, it follows that pτσ(s) = s and pτσ(wτ

0 ) = wτ
0 . Therefore, to

prove (3.78), it suffices to show that pτσ(t) ∈ dτ
ρ , because then, pτσ(u) =

s+ pτσ(t) − wτ
0 ∈ cτ + dτ

ρ − wτ
0 = cτρ.

To prove that pτσ(t) ∈ dτ
ρ , it suffices to show that pτσ maps the vertices

of dτ
π into

(3.84)
dτ

ρ = [w0...k
0 , . . . , w

0...kρ(k+1)...ρ(k+i)
0 , . . . , w0...k

0 ]

= [w0...k
0 , . . . , w

0...kπ(k+j1)...π(k+ji)
0 , . . . , w0...k

0 ].

Recall that the vertices of dτ
π are the points w0...k

0 and w
0...kπ(k+1)...π(k+i)
0 ,

1 ≤ i ≤ n− k. We already saw that pτσ(w0...k
0 ) = w0...k

0 ∈ dτ
ρ . To determine

pτσ(w
0...kπ(k+1)...π(k+i)
0 ), note that the set {1, . . . , n − k} is the disjoint sum

of the sets {j1, . . . , jk−k} and {l1, . . . , ln−k}. Let a(i) and b(i) be the largest
integers a and b such that ja ≤ i and lb ≤ i, respectively. Clearly,

(3.85) {1, . . . , i} = {j1, . . . , ja(i)} ⊔ {l1, . . . , lb(i)}, for 1 ≤ i ≤ n− k.

If no element of {j1, . . . , jk−k} is ≤ i, put a(i) = 0 and omit the first summand
and if no element of {l1, . . . , ln−k} is ≤ i, put b(i) = 0 and omit the second

summand. Note that (3.85) implies
(3.86)

{0, . . . , k, π(k + 1), . . . , π(k + i)} =
{0, . . . , k, π(k + j1), . . . , π(k + ja(i))} ∪ {π(k + l1), . . . , π(k + lb(i))},

which yields

(3.87)

b0...kπ(k+1)...π(k+i) =
1

k+i+1 (v0 + . . .+ vk + vπ(k+j1) + . . .+ vπ(k+ja(i))+

vπ(k+l1) + . . .+ vπ(k+lb(i)).

Now note that π(k+ ja) ≤ k implies pτσ(vπ(k+ja)) = vπ(k+ja) and π(k+ lb) ≥

k + 1 implies pτσ(vπ(k+lb)) = bτ . Therefore, (3.87) yields

(3.88)

pτσ(b0...kπ(k+1)...π(k+i)) =
1

k+1+i
(v0 + . . .+ vk + vπ(k+j1), . . . ,+vπ(k+ja(i))) + b(i)

k+1+i
bτ =

k+1+a(i)
k+1+i

b0...kπ(k+j1)...π(k+ja(i)) + b(i)
k+1+i

bτ .

Note that a(i) + b(i) = i and thus,

(3.89) vm = k+1+a(i)
k+1+i

vm + b(i)
k+1+i

vm, 0 ≤ m ≤ k.

Summing up (3.88) and (3.89), one obtains
(3.90)

pτσ(w
0...kπ(k+1)...π(k+i)
m ) = k+1+a(i)

k+1+i
w

0...kπ(k+j1)...π(k+ja(i))
m + b(i)

k+1+i
wτ

m.
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Formula (3.90), for m = 0, shows that the point pτσ(w
0...kπ(k+1)...π(k+i)
0 )

belongs to the 1-simplex [w
0...kπ(k+j1)...π(k+ja(i))
0 , wτ

0 ]. However, this 1-simplex
is contained in dτ

ρ , because of (3.84) and of the fact that a(i) ≤ i implies
ja(i) ≤ ji. This completes the proof of (3.78).

Continuing the proof of assertion (i) of Lemma 3.11, consider the face of
cτπ, whose vertex scheme consists of the last n − jk−k + 1 rows of the vertex
scheme (3.11) for cτπ, i.e., it consists of the rows

(3.91) w
0...kπ(k+1)...π(k+i)
0 . . . w0...kπ(k+1)...π(k+i)

m . . . w
0...kπ(k+1)...π(k+i)
k ,

where jk−k ≤ i ≤ n− k, 0 ≤ m ≤ k. We denote that face of cτπ by cττ
πϑ.

Since a(i) is the largest integer a, 1 ≤ a ≤ k− k, such that ja ≤ i, we see
that jk−k ≤ i implies a(i) = k − k. Therefore,

(3.92)

{0, . . . , k, π(k + j1), . . . , π(k + ja(i))} =
{0, . . . , k, π(k + j1), . . . , π(k + jk−k)} =

{0, . . . , k, k + 1, . . . , k} = {0, . . . , k}.

Moreover, (3.83) implies

(3.93) {π(k + l1), . . . , π(k + lb(i))} = {ϑ(k + 1), . . . , ϑ(k + b(i))}.

Consequently, (3.86) assumes the form

(3.94)
{0, . . . , k, π(k + 1), . . . , π(k + i)} =

{0, . . . , k, ϑ(k + 1), . . . , ϑ(k + b(i))}

and thus, the row (3.91) coincides with the row
(3.95)

w
0...kϑ(k+1)...ϑ(k+b(i))
0 . . . w0...kϑ(k+1)...ϑ(k+b(i))

m . . . w
0...kϑ(k+1)...ϑ(k+b(i))
k .

Let us now extend the vertex scheme of dττ
πϑ with rows written in the form

(3.95), by allowing the subscript m to vary between 0 and k. The new scheme

differs from the previous one by k − k terminal columns. Clearly, every row
of the new scheme is a row of the scheme (3.11) for cτϑ, which consists of the

initial row w0...k
0 , . . . , w0...k

k
(which does not belong to the new scheme) and

of the rows

(3.96) w
0...kϑ(k+1)...ϑ(k+b)
0 . . . w0...kϑ(k+1)...ϑ(k+b)

m . . . w
0...kϑ(k+1)...ϑ(k+b)
k ,

where 1 ≤ b ≤ n− k (not every b is of the form b(i) and thus, (3.96) need not
be a row of the new scheme). All this shows that cττ

πϑ is a (proper) face of cτϑ.
To prove (3.79), first note that, for jk−k ≤ i ≤ n − k, 0 ≤ m ≤ k, (3.92)

implies

(3.97) w
0...k,π(k+j1)...π(k+ja(i))
m = w0...k

m .

Using formula (3.90) and the fact that a(i) + b(i) = i, one concludes that

(3.98) pτσ(w0...kπ(k+1)...π(k+i)
m ) = wτ

m.
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Consequently, pτσ maps the set of vertices of cττ
πϑ onto the set {wτ

0 , . . . , w
τ
k}.

Since the latter set spans the simplex [wτ
0 , . . . , w

τ
k ], it follows that

(3.99) pτσ(cττ
πϑ) = [wτ

0 , . . . , w
τ
k ].

Now cττ
πϑ ⊆ cτπ implies

(3.100) cττ
πϑ ⊆ (pτσ|c

τ
π)−1[wτ

0 , . . . , w
τ
k ].

To prove the opposite inclusion, it suffices to show that, for every point
u ∈ cτπ\c

ττ
πϑ, one has pτσ(u) /∈ [wτ

0 , . . . , w
τ
k ]. We will prove this assertion for

vertices w of cτπ, which do not belong to the face cττ
πϑ of cτπ. Then Lemma

2.1 in Subsection 2.1 (with C = cτπ, C′ = cτρ , p = pτσ|cτπ, D = cττ
πϑ and

D′ = [wτ
0 , . . . , w

τ
k ]) will yield the desired assertion for points u ∈ cτπ\c

ττ
πϑ.

To prove that the vertices w of cτπ, which do not belong to cττ
πϑ, have the

required property, it suffices to show that the barycentric coordinate

(3.101) λρ(k)(pτσ(w)) <
1

2(k + 1)
,

while for points y ∈ [wτ
0 , . . . , w

τ
k ], one has

(3.102) λρ(k)(y) =
1

2(k + 1)
.

To prove (3.102), it suffices to show that, for the vertices wτ
m, 0 ≤ m ≤ k,

one has

(3.103) λρ(k)(w
τ
m) =

1

2(k + 1)
.

Indeed, ρ(k) ∈ {k+1, . . . , k} and thus, λρ(k)(vm) = 0. Since wτ
m = 1

2 (vm+bτ ),

we see that λρ(k)(w
τ
m) = 1

2λρ(k)(b
τ ) = 1

2(k+1)
λρ(k)(v0 + . . .+ vk + vk+1 + . . .+

vk) = 1
2(k+1)

.

To prove (3.101), note that either w belongs to the row wτ
0 . . . w

τ
m . . . wτ

k

or it belongs to one of the rows (3.91), where 1 ≤ i < jk−k. If w = wτ
m,

then pτσ(wτ
m) = wτ

m and thus, λρ(k)pτσ(wτ
m) = λρ(k)(w

τ
m) = 0, because wτ

m =
1
2vm + 1

2(k+1) (v0 + . . .+ vk). Now assume that w = w
0...kπ(k+1)...π(k+i)
m . Since

ja(i) ≤ i, the assumption i < jk−k implies that ja(i) < jk−k and thus, a(i) <

k−k. Since π is an injection, it follows that π(k+jk−k) /∈ {π(k+j1) . . . , π(k+

ja(i))}. By (3.82), π(k + jk−k) = ρ(k + k − k) = ρ(k) and thus, ρ(k) /∈

{π(k + j1) . . . , π(k + ja(i))}. Since also ρ(k) /∈ {0, . . . , k}, it follows that

(3.104) λρ(k)(w
0...kπ(k+j1)...,π(k+ja(i))
m ) = 0.
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Therefore, application of λρ(k) to (3.90) and (3.103) shows that

(3.105)
λρ(k)(pτσ(w

0...kπ(k+1)...π(k+i)
m )) =

b(i)
k+1+i

λρ(k)(w
τ
m) = b(i)

2(k+1+i)(k+1)
< 1

2(k+1)
,

because b(i) ≤ i and k + 1 + i > i.
(ii) Let cτπ be an n-cell from L(σ). To prove (3.80), consider an arbitrary

point u ∈ cτπ. It is of the form u = s + t − w0...k
0 , where s ∈ cτ and t ∈ dτ

π.

Recall that pτσ(s) = s, pτσ(w0...k
0 ) = w0...k

0 and pτσ(t) = w0...k
0 (see (3.51)).

Therefore, pτσ(u) = s+w0...k
0 −w0...k

0 = s ∈ cτ and thus, pτσ(cτπ) ⊆ cτ . Define
cττ
π as the face of cτπ, whose vertex scheme consists of the first k + 1 columns

of the vertex scheme of cτπ. Clearly, cττ
π ≤ cτπ.

If a point u belongs to the left side of (3.81), then u ∈ cτπ and pτσ(u) ∈
[wτ

0 , . . . , w
τ
k ]. Since u = s + t − wτ

0 , where s ∈ cτ and t ∈ dτ
π, we see that

s = pτσ(u) ∈ [wτ
0 , . . . , w

τ
k ] and therefore, u belongs to the convex polytope

spanned by the vertices belonging to the first k + 1 columns of the vertex
scheme of cτπ, i.e., u ∈ cττ

π . Conversely, if u belongs to the right side of (3.81),
then it is of the form u = s + t − wτ

0 , where s ∈ [wτ
0 , . . . , w

τ
k ] and t ∈ dτ

π.
Consequently, pτσ(u) = s + wτ

0 − wτ
0 = s ∈ [wτ

0 , . . . , w
τ
k ], which shows that

also the right side of (3.81) is contained in its left side and thus, equality
(3.81) holds.

3.7.3.2 Proof in Case (c). Recall that τ ′ 6= τ ′′ and τ = Conv (τ ′∪τ ′′) < σ.
If τ ′ ∩ τ ′′ 6= ∅, then τ ′ ∩ τ ′′ = τ is a simplex, which is a common face of both
τ ′ and τ ′′. There is no loss of generality in assuming that τ = [v0, . . . , vk] and
τ = [v0, . . . , vk]. Clearly, τ ≤ τ ′ ≤ τ and τ ≤ τ ′′ ≤ τ . We distinguish two
cases, either τ ′ and τ ′′ are incomparable, i.e, τ ′ � τ ′′ and τ ′′ � τ ′ or they
are comparable, i.e., one of the relations τ ′ ≤ τ ′′, τ ′′ ≤ τ ′ holds. In the first
case one cannot have τ = τ ′, because τ ≤ τ ′′ would imply τ ′ ≤ τ ′′, contrary
to the assumptions that τ ′ and τ ′′ are incomparable. Consequently, τ < τ ′.
Similarly, τ ′ < τ , because τ ′ = τ and τ ′′ ≤ τ would imply τ ′′ ≤ τ ′, which also
contradicts the assumption that τ ′ and τ ′′ are incomparable. Consequently,
in the first case we must have τ < τ ′ < τ and analogously, τ < τ ′′ < τ . In the
second case, there is no loss of generality in assuming that τ ′ ≤ τ ′′ and thus,
τ ′ < τ ′′. By the definition of τ and τ , it follows that τ = τ ′ and τ = τ ′′. In
view of this discussion, the following lemma establishes the desired assertion
in Case (c).

Lemma 3.12.

(i) Let τ ′ = [v0, . . . , vk′ ], τ ′′ = [v0, . . . , vk, vk′+1, . . . , vk], τ ′ ∩ τ ′′ = τ =

[v0, . . . , vk], 0 ≤ k < k′ < k < n, and let cτ
′

π′ , cτ
′′

π′′ be n-cells from L(σ).

Then the intersection cτ
′

π′ ∩ cτ
′′

π′′ is a common face of cτ
′

π′ and cτ
′′

π′′ .
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(ii) Let τ = [v0, . . . , vk], τ = [v0, . . . , vk], 0 ≤ k < k < n, and let cτπ, c
τ
π be

n-cells from L(σ). Then the intersection cτπ ∩ cτπ is a common face of

cτπ and cτπ.

(iii) Let τ ′ = [v0, . . . , vk′ ], τ ′′ = [vk′+1, . . . , vk], 0 ≤ k′ < k < n, and let

cτ
′

π′ , cτ
′′

π′′ be n-cells from L(σ). Then the intersection cτ
′

π′ ∩ cτ
′′

π′′ = ∅.

Proof. Case (i). We will first exhibit two permutations ϑ′, ϑ′′ of the

set {k + 1, . . . , n}, a cell cτ
′τ

π′ϑ′ , which is a common face of cτ
′

π′ and cτϑ′ and a

cell cτ
′′τ

π′′ϑ′′ , which is a common face of cτ
′′

π′′ and cτϑ′′ . We will then prove that

the intersection cτ
′τ

π′ϑ′ ∩ cτ
′′τ

π′′ϑ′′ is a common face of the n-cells cτ
′

π′ and cτ
′′

π′′ .
Therefore, the assertion will be proved if we also show that

(3.106) cτ
′

π′ ∩ cτ
′′

π′′ = cτ
′τ

π′ϑ′ ∩ cτ
′′τ

π′′ϑ′′ .

To carry out this program, we first apply Lemma 3.11.(i) to the n-cells

cτ
′

π′ , cτ
′′

π′′ ∈ L(σ). One obtains a permutation ρ′ of the set {k′ +1, . . . , k} and a

permutation ρ′′ of the set {k+ 1, . . . , k′} such that the n-cells cτ
′

ρ′ , cτ
′′

ρ′′ ∈ L(τ)
satisfy the following relations:

(3.107) pτσ(cτ
′

π′) ⊆ cτ
′

ρ′ ,

(3.108) pτσ(cτ
′′

π′′ ) ⊆ cτ
′′

ρ′′ .

One also obtains permutations ϑ′, ϑ′′ of the set {k+1, . . . , n}, a common face

cτ
′τ

π′ϑ′ of cτ
′

π′ and cτϑ′ and a common face cτ
′′τ

π′′ϑ′′ of cτ
′′

π′′ and cτϑ′′ such that

(3.109) (pτσ|c
τ ′

π′)−1[wτ
0 , . . . , w

τ
k ] = cτ

′τ
π′ϑ′ ,

(3.110) (pτσ|c
τ ′′

π′′)−1[wτ
0 , . . . , w

τ
k ] = cτ

′′τ
π′′ϑ′′ .

We now apply Lemma 3.9 to the n-cells cτϑ′ and cτϑ′′ and conclude that
their intersection cτϑ′ ∩ cτϑ′′ is a common face of both cells cτϑ′ and cτϑ′′ . Since

cτ
′τ

π′ϑ′ ≤ cτϑ′ and cτ
′′τ

π′′ϑ′ ≤ cτϑ′′ , the intersection cτ
′τ

π′ϑ′ ∩ cτ
′′τ

π′′ϑ′′ is a common face of

both cells cτ
′τ

π′ϑ′ and cτ
′′τ

π′′ϑ′′ . This is a consequence of the following elementary
fact.

Let C′, C′′ be convex polytopes in a vector space V and let D′ ≤ C′ and

D′′ ≤ C′′ be their faces. If C′ ∩ C′′ is a common face of C′ and C′′, then

D′ ∩D′′ is a common face of D′ and D′′.

Since, cτ
′τ

π′ϑ′ ≤ cτ
′

π′ and cτ
′′τ

π′′ϑ′′ ≤ cτ
′′

π′′ , one concludes that cτ
′τ

π′ϑ′ ∩ cτ
′′τ

π′′ϑ′′ is

also a common face of the cells cτ
′

π′ and cτ
′′

π′′ .
To complete the proof of Lemma 3.12 in Case (i), it remains to prove

(3.106). We will first show that

(3.111) cτ
′

π′ ∩ cτ
′′

π′′ = (pτσ|(c
τ ′

π′ ∩ cτ
′′

π′′))−1(cτ
′

ρ′ ∩ cτ
′′

ρ′′ ).
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Indeed, (3.107) and (3.108) imply pτσ(cτ
′

π′ ∩ cτ
′′

π′′) ⊆ pτσ(cτ
′

π′) ∩ pτσ(cτ
′′

π′′ ) ⊆

cτ
′

ρ′ ∩ cτ
′′

ρ′′ . Since pτσ(cτ
′

π′ ∩ cτ
′′

π′′) = (pτσ|(cτ
′

π′ ∩ cτ
′′

π′′))(cτ
′

π′ ∩ cτ
′′

π′′), we see that

(3.112) cτ
′

π′ ∩ cτ
′′

π′′ ⊆ (pτσ|(c
τ ′

π′ ∩ cτ
′′

π′′))−1(cτ
′

ρ′ ∩ cτ
′′

ρ′′ ).

The opposite inclusion also holds, because, for an arbitrary function f : X →
Y and for arbitrary subsets A ⊆ X , B ⊆ Y , one has (f |A)−1(B) ⊆ A (by the
very definition of the restriction f |A).

We now apply to (3.111) the following elementary fact. If f : X → Y is
a function and A,A′ ⊆ X , B ⊆ Y are subsets, then (f |(A′ ∩ A′′))−1(B) =
(f |A′)−1(B) ∩ (f |A′′)−1(B). One obtains the equality

(3.113) cτ
′

π′ ∩ cτ
′′

π′′ = ((pτσ|c
τ ′

π′)−1(cτ
′

ρ′ ∩ cτ
′′

ρ′′ )) ∩ ((pτσ|c
τ ′′

π′′)−1(cτ
′

ρ′ ∩ cτ
′′

ρ′′ )).

Since τ = Conv (τ ′ ∪ τ ′′), Lemma 3.10.(i) is applicable to cτ
′

ρ′ , cτ
′′

ρ′′ ∈ L(τ).
It implies that

(3.114) cτ
′

ρ′ ∩ cτ
′′

ρ′′ = [wτ
0 , . . . , w

τ
k ].

Replacing in (3.113) the expression cτ
′

ρ′ ∩cτ
′′

ρ′′ by [wτ
0 , . . . , w

τ
k ] and using (3.109)

and (3.110), one obtains the desired equality (3.106).

Case (ii). We will first exhibit a permutation ϑ of the set {k+ 1, . . . , n},
a cell cττ

πϑ, which is a common face of cτπ and cτϑ and a cell cττ
π , which is a face

of cτπ. We will then prove that the intersection cττ
πϑ ∩ cττ

π is a common face of
the n-cells cτπ and cτπ. Therefore, the assertion will be proved if we also show
that

(3.115) cτπ ∩ cτπ = cττ
πϑ ∩ cττ

π .

To carry out this program, we first apply Lemma 3.11.(i) to the n-cell cτπ ∈
L(σ). One obtains a permutation ρ of the set {k+1, . . . , k}, a permutation ϑ

of the set {k + 1, . . . , n} and a cell cττ
πϑ, which is a common face of cτπ and cτϑ

such that (3.78) and (3.79) hold. Lemma 3.11.(ii), applied to cτπ, shows that
(3.80) holds and there exists a face cττ

π of cτπ such that (3.81) holds.
We now apply Lemma 3.9 to the n-cells cτϑ and cτπ and conclude that

their intersection cτϑ ∩ cτπ is a common face of cτϑ and cτπ. Since cττ
πϑ ≤ cτϑ and

cττ
π ≤ cτπ, it follows that cττ

πϑ ∩ cττ
π is a common face of cττ

πϑ and cττ
π . However,

cττ
πϑ ≤ cτπ, cττ

π ≤ cτπ and thus, cττ
πϑ ∩ cττ

π is a common face of cτπ and cτπ.
To complete the proof of Lemma 3.12 in Case (ii), it remains to prove

(3.115). Using (3.78) and (3.80) and an argument like the one which produced
(3.111), one can see that

(3.116) cτπ ∩ cτπ = (pτσ|(c
τ
π ∩ cτπ))−1(cτρ ∩ cτ ).

The same elementary fact, which we used to derive (3.113) from (3.111), can
be applied to (3.116) to obtain

(3.117) cτπ ∩ cτπ = ((pτσ|c
τ
π)−1(cτρ ∩ cτ )) ∩ ((pτσ|c

τ
π)−1(cτρ ∩ cτ )).
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Applying Lemma 3.10.(ii) to cτρ ∈ L(τ) and cτ , we conclude that

(3.118) cτρ ∩ cτ = [wτ
0 , . . . , w

τ
k ].

Now replace in (3.117) the expression cτρ ∩ cτ by [wτ
0 , . . . , w

τ
k ] and use (3.79)

and (3.81). One obtains the desired formula (3.115).

Case (iii). Since 0 ≤ k′ < k < n, we can apply Lemma 3.11.(i) to

cτ
′

π′ ∈ L(σ) and obtain a permutation ρ′ of the set {k′+1, . . . , k} such that the

k-cell cτ
′

ρ′ ∈ L(τ) satisfies relation (3.107). Analogously, there is a permutation

ρ′′ of the complement {0, . . . , k′} = {0, . . . , k}\{k′ + 1, . . . , k} such that the

k-cell cτ
′′

ρ′′ ∈ L(τ ) satisfies relation (3.108). Since τ = Conv (τ ′ ∪ τ ′′), Lemma

3.10.(iii) is applicable to cτ
′

ρ′ , cτ
′′

ρ′′ ∈ L(τ ) (τ plays the role of σ). Since τ ′∩τ ′′ =

∅, it shows that cτ
′

ρ′ ∩cτ
′′

ρ′′ = ∅. Therefore, (3.107) and (3.108) yield the desired

conclusion that also cτ
′

π′ ∩ cτ
′′

π′′ = ∅.

3.8. To complete the proof that L(σ) is a cellular subdivision of σ, it
only remains to establish the following lemma.

Lemma 3.13. If σ ∈ K is n-dimensional, then the union of all n-cells
from L(σ) equals σ.

Proof. It suffices to prove that the n-cells from L(σ) cover the n-
simplices of the barycentric subdivision σ′ of σ. Let ιn, ιn−1n, . . . , ι1...n denote
the identity permutations of the sets {n}, {n−1, n}, . . . , {1, ..., n}, respectively.
We will prove that the n-cells c0...n, c0...n−1

ιn
, c0...n−2

ιn−1n
, . . . , c0ι1...n

∈ L(σ) cover

the n-simplex [b0, b01, . . . , b0...n] ∈ σ′. The assertion for any other n-simplex
from σ′ is obtained by relabelling the vertices of σ.

Let u be a point from [b0, . . . , b0...n]. We must show that u belongs to
at least one of the cells c0...n, c0...n−1

ιn
, c0...n−2

ιn−1n
, . . . , c0ι1...n

. Obviously, this is

true if u ∈ c0...n. Therefore, we will assume that u ∈ [b0, . . . , b0...n]\c0...n.
Let pi : [b0, . . . , b0...n] → [b0, . . . , b0...i], 0 ≤ i ≤ n, be the simplicial mapping
determined by pi(b

0...j) = b0...j, for 0 ≤ j ≤ i, and pi(b
0...j) = b0...i, for

i ≤ j ≤ n. For u ∈ [b0, b01, . . . , b0...n], put ui = pi(u) and note that u0 =
b0 = v0 and un = u. Also note that u = µ0b

0 + . . .+ µnb
0...n, µ0, . . . , µn ≥ 0,

µ0 + . . .+ µn = 1 imply

(3.119) ui = µ0b
0 + . . .+ µi−1b

0...i−1 + (µi + . . .+ µn)b0...i.

Consequently,

(3.120) ui − ui−1 = (µi + . . .+ µn)(b0...i − b0...i−1), 1 ≤ i ≤ n.

Now note that (3.2) yields

(3.121) w0...i
0 − w0...i−1

0 =
1

2
(b0...i − b0...i−1), 1 ≤ i ≤ n,
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and thus,

(3.122) ui − ui−1 = 2(µi + . . .+ µn)(w0...i
0 − w0...i−1

0 ), 1 ≤ i ≤ n.

If for some integer k, 0 ≤ k ≤ n − 1, we sum the relations (3.122), for
k + 1 ≤ i ≤ n, we obtain

(3.123) u− uk = t− w0...k
0 ,

where

(3.124)
t− w0...k

0 = 2(µk+1 + . . .+ µn)(w0...k+1
0 − w0...k

0 )+

2(µk+2 + . . .+ µn)(w0...k+2
0 − w0...k+1

0 ) + . . .+
2µn(w0...n

0 − w0...n−1
0 ).

We now choose as k the largest integer, 0 ≤ k ≤ n−1, such that uk ∈ c0...k.
It exists because u0 = v0 = w0

0 , c
0 = [w0

0 ] and u = un /∈ c0...n. For that k we
will prove that t ∈ d0...k

ιk+1...n
= [w0...k

0 , . . . , w0...n
0 ] and thus, (3.123) will imply

that u ∈ c0...k + d0...k
ιk+1...n

− w0...k
0 = c0...k

ιk+1...n
. In the proof we will use the

following elementary fact.
If [a0, . . . , am] is an m-simplex, a− a0 = ν1(a1 − a0)+ ν2(a2 − a1)+ . . .+

νn(an − an−1) and 1 ≥ ν1 ≥ ν2 ≥ . . . ≥ νm ≥ 0, then a ∈ [a0, . . . , an].
Since 2(µk+1 + . . . + µn) ≥ 2(µk+2 + . . . + µn) ≥ . . . ≥ 2µn ≥ 0, our

assertion concerning t will be proved if we show that

(3.125)
1

2
≥ µk+1 + . . .+ µn.

However, by (3.119),

(3.126) uk+1 = µ0b
0 + . . .+ µkb

0...k + (µk+1 + . . .+ µn)b0...k+1

and we see that µk+1 + . . .+ µn is the last barycentric coordinate of uk+1 in
(3.126). Since uk+1 ∈ [b0, . . . , b0...k+1]\c0...k+1, we see that (3.125) is a conse-
quence of the following assertion. If u ∈ [b0, . . . , b0...m]\c0...m, 0 ≤ m ≤ n, and
β0, . . . , βm are the barycentric coordinates of u with respect to b0, . . . , b0...m,
then βm < 1

2 . Indeed, it is well known that a point u ∈ σ belongs to

[b0, . . . , b0...m] if and only if its barycentric coordinates λ0, . . . , λm with re-
spect to v0, . . . , vm satisfy the inequality λ0 ≥ . . . ≥ λm. One cannot have
λm ≥ 1

2(m+1) , because that would imply that all coordinates λi ≥ 1
2(m+1) ,

0 ≤ i ≤ m, and thus, u ∈ c0...m, which contradicts our assumption that
u /∈ c0...m. Consequently, λm < 1

2(m+1) . Now, if in u = λ0v0 + . . .+ λmvm =

β0b
0 + . . . + βnb

0...m we substitute the values of b0, . . . , b0...m from (3.1), we

readily see that λm = βm

(m+1) and the desired assertion βm < 1
2 follows.
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3.9. The next lemma will complete the proof of Theorem 3.6.

Lemma 3.14. If σ ∈ K and ζ < σ is a proper face of σ, then L(ζ) ⊆ L(σ)
and (3.17) holds. For any cell c ∈ L(σ), the intersection ζ ∩ c is a face of c,
which belongs to L(ζ). The union L = ∪σ∈KL(σ) is a cellular subdivision of

K.

Proof. Let ζ < σ, dimσ = n and dim ζ = m < n. To prove that
L(ζ) ⊆ L(σ), it suffices to prove the assertion that c ∈ L(ζ) implies c ∈ L(σ)
in the special case, when c ∈ L(ζ) is an m-cell. Indeed, an arbitrary cell
c ∈ L(ζ) is a face of an m-cell c′ ∈ L(ζ) and the special case of the assertion
shows that c′ ∈ L(σ). Now c ≤ c′ implies that also c ∈ L(σ).

Let us now assume that σ = [v0, . . . , vn], ζ = [v0, . . . , vm], 0 ≤ m < n. If c
is the central m-simplex of L(ζ), consider the peripheral n-cell c′ = cζι ∈ L(σ),
where ι is the identity permutation of the set {m + 1, . . . , n}. By Lemma
3.2, the first row in the vertex scheme (3.11) of c′ consists of the vertices
w0...m

0 , . . . , w0...m
m and thus, [w0...m

0 , . . . , w0...m
m ] is a face of c′. However, c =

[w0...m
0 , . . . , w0...m

m ] < [w0...m
0 , . . . , w0...m

n ] < c′. Since c′ ∈ L(σ) and c < c′, it
follows that also c ∈ L(σ).

Now let c = cτπ be a peripheral m-cell from L(ζ). There is no loss of gener-
ality in assuming that τ = [v0, . . . , vk], 0 ≤ k < m, and thus, π is a permuta-
tion of the set {k+1, . . . ,m}. The vertex scheme (3.11) of c consists of its first

row w0...k
0 . . . w0...k

k and of the rows w
0...kπ(k+1)...π(k+i)
0 . . . w

0...kπ(k+1)...π(k+i)
k ,

where 1 ≤ i ≤ m − k. Let π′ be the permutation of the set {k + 1, . . . , n},
which on {k+1, . . . ,m} coincides with π and on {m+1, . . . , n} is the identity.
The vertex scheme of c′ = cτπ′ ∈ L(σ) consists of the row w0...k

0 . . . w0...k
k and

of the rows w
0...kπ(k+1)...π(k+i)
0 . . . w

0...kπ(k+1)...π(k+i)
k , where 1 ≤ i ≤ n − k.

Consequently, the vertex scheme of c coincides with the initial m−k+1 rows
of the vertex scheme of c′ and thus, c ≤ c′, which together with c′ ∈ L(σ)
yields the desired conclusion that c ∈ L(σ).

Note that L(ζ) ⊆ L(σ) implies

(3.127) L(ζ) ⊆ ζ ∩ L(σ).

Indeed, if c ∈ L(ζ), then c ⊆ ζ and thus, c = ζ ∩ c. However, c ∈ L(ζ) implies
c ∈ L(σ) and thus, c ∈ ζ ∩ L(σ).

We will now show that, for a simplex σ ∈ K, for a proper face ζ of σ and
a cell c ∈ L(σ), the intersection ζ ∩ c is a face of c, which belongs to L(ζ).
It suffices to prove the assertion in the special case when dimσ − dim ζ = 1.
Indeed, if dimσ − dim ζ = k > 1, we consider a sequence of faces ζ = ζk <
. . . < ζ1 < σ, where the dimensions of consecutive members differ by 1. The
assertion in the special case shows that ζ1∩c ≤ c and ζ1∩c ∈ L(ζ1). Therefore,
ζ2 ∩ c = ζ2 ∩ ζ1 ∩ c ≤ ζ1 ∩ c ≤ c and ζ2 ∩ c ∈ L(ζ2). Repeating this argument
k times, we obtain the desired conclusion that ζ ∩ c ≤ c and ζ ∩ c ∈ L(ζ).
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We will now show that, for dimσ = n, for a face ζ of σ of dimension
dim ζ = n − 1 and for c ∈ L(σ), the intersection ζ ∩ c is a face of c, which
belongs to L(ζ). It suffices to prove the assertion in the special case when
dim c = n. Indeed, an arbitrary cell c from L(σ) is a face of an n-cell c′ ∈ L(σ).
By the special case, ζ ∩ c′ is a face of c′, which belongs to L(ζ) ⊆ L(σ). Note
that c = c′ ∩ c and thus, ζ ∩ c = (ζ ∩ c′) ∩ c. Since ζ ∩ c′ and c are faces of
c′ ∈ L(σ), it follows that their intersection ζ ∩ c = (ζ ∩ c′)∩ c is a face of ζ ∩ c′

and c. Now ζ ∩ c ≤ ζ ∩ c′ and ζ ∩ c′ ∈ L(ζ) imply that also ζ ∩ c ∈ L(ζ).
Let us now assume that σ = [v0, . . . , vn], 0 ≤ l ≤ n and ζ is the (n− 1)-

dimensional face of σ, which does not contain the vertex vl, i.e., ζ = S ∩ σ,
where S is the (n−1)-dimensional affine manifold S = {u ∈ Aff(σ)|λl(u) = 0}.
Let c be an n-cell of L(σ). If c is the central n-simplex cσ, then c lies in the
interior of σ. Since ζ ⊆ ∂σ, it follows that ζ ∩ c = ∅. However, the empty
set is a face of c and it belongs to L(ζ). We will now assume that c = cτπ is
a peripheral n-cell of L(σ). There is no loss of generality in assuming that
τ = [v0, . . . , vk], where 0 ≤ k < n and thus, π is a permutation of the set {k+
1, . . . , n}. We first consider the case when 0 ≤ l ≤ k. It is readily seen that,
for 0 ≤ m ≤ k, one has λl(w

0...k
m ) ≥ 1

2λl(b
0...k) = 1

2(k+1) > 0. Similarly, for

1 ≤ i ≤ n− k, λl(w
0...kπ(k+1)...π(k+i)
m ) ≥ 1

2λl(b
0...kπ(k+1)...π(k+i)) = 1

2(k+i+1) >

0. In view of Lemma 3.2, this means that all the vertices of c belong to
the convex set {u ∈ Aff(σ)|λl(u) > 0} and thus, c is contained in that set.
Consequently, ζ ∩ c = ∅ and the assertion holds.

Now assume that k + 1 ≤ l ≤ n. We will show that c ∩ ζ is a face of
c, which belongs to L(ζ). In addition, we will show that it is of the form
c ∩ ζ = cτ ⊕ d ′ = cτ + d ′ − wτ

0 , where d ′ is a face of dτ
π, which contains the

vertex wτ
0 . First note that c ⊆ σ implies c = σ∩c and thus, ζ∩c = S∩c. Since

l ≥ k + 1, λl(vm) = 0, for 0 ≤ m ≤ k, and thus, λl(w
0...k
m ) = 1

2λl(b
0...k) = 0.

This shows that the vertices w0...k
0 , . . . , w0...k

k belong to c and S and thus,
S ∩ c 6= ∅. Moreover, since c ⊆ σ, c is contained in the affine halfspace
S+ = {u ∈ Aff(σ)|λl(u) ≥ 0}, which shows that S is a supporting hyperplane,
for the n-cell c = cτπ ∈ L(σ). It follows that ζ ∩ c = S ∩ c is the face of c,
whose vertices are all the vertices w of c, which are contained in S, i.e., for
which λl(w) = 0. Note that there is a unique integer j ∈ {1, . . . , n − k}

such that l = π(k + j). Clearly, λl(w
0...kπ(k+1)...π(k+i)
m ) = 0, for 1 ≤ i < j,

and λl(w
0...kπ(k+1)...π(k+i)
m ) = 1

2λl(b
0...kπ(k+1)...π(k+i)) = 1

2(k+1+i) > 0, for

j ≤ i ≤ n−k. This shows that ζ∩c is the face of c, whose vertices are the points
belonging to the first j rows of (3.11), i.e., the points w0...k

0 , . . . , w0...k
k and the

points w
0...kπ(k+1)...π(k+i)
0 , . . . , w

0...kπ(k+1)...π(k+i)
k , where 1 ≤ i < j. In other

words, ζ ∩ c = cτ + d′ − wτ
0 , where d′ = [w0...k

0 , . . . , w
0...kπ(k+1)...π(k+j−1)
0 ] ≤

dτ
π. Clearly, the simplex η = [v0, . . . , vk, vπ(k+1), . . . , vπ(k+j−1)] is a face of
ζ, because its vertices differ from vl. Consider the identity permutation ι of
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the set {π(k + 1), . . . , π(k + j − 1)} and note that, by Lemma 3.2, the vertex
scheme of the cell cτι ∈ L(η) coincides with the above described vertex scheme
of ζ ∩ c and thus, ζ ∩ c = cτι . However, cτι ∈ L(η). Since L(η) ⊆ L(ζ), it
follows that ζ ∩ c ∈ L(ζ). Note that dim cτι = k + j − 1 = dim η.

The statement which we just proved implies that

(3.128) L(ζ) ⊇ ζ ∩ L(σ),

because c ∈ L(σ) implies ζ∩c ∈ L(ζ). Note that (3.127) and (3.128) yield for-
mula (3.17). The final assertion of Theorem 3.6 that the union L = ∪σ∈KL(σ)
is a cellular subdivision of K is an immediate consequence of (3.17).

The following corollary is an easy consequence of Theorem 3.6.

Corollary 3.15. Let c, c′ be cells from L(σ) and let W (c),W (c′) be

sets of their respective vertices. Then c ∩ c′ is the convex hull of the set

W (c) ∩W (c′).

Proof. Since W (c) ⊆ c, W (c′) ⊆ c′ and c ∩ c′ is convex, it follows that
Conv (W (c) ∩W (c′)) ⊆ c ∩ c′. Conversely, let w be a vertex of c ∩ c′. By
Theorem 3.6, c ∩ c′ ≤ c and c ∩ c′ ≤ c′ and thus, w is a vertex of c and
a vertex of c′. Consequently, w ∈ W (c) ∩ W (c′) ⊆ Conv (W (c) ∩ W (c′)).
Since c ∩ c′ is the convex hull of the set of all of its vertices w, it follows that
c ∩ c′ ⊆ Conv (W (c) ∩W (c′)).

Remark 3.16. The n-cells cτπ = cτ ⊕ dτ
π of L(σ) depend on the or-

dering of the vertices of σ = [v0, . . . , vn], but the subdivision L(σ) itself
is independent of that ordering. More precisely, cτ does not depend on
the ordering of the vertices of τ , because, for τ = [v0, . . . , vk], one has
cτ = [wτ

0 , . . . , w
τ
k ]. However, dτ

π does depend on the ordering of the remaining
vertices of σ. Indeed, write σ in the form σ = [v0, . . . , vk, vπ′(k+1), . . . , vπ′(n)],
where π′ is a permutation of {k + 1, . . . , n}. Consider a permutation η of
{k+1, . . . , n} and the simplex dτ

η , obtained using the new ordering of the ver-
tices of σ. Putting v′0 = v0, . . . , v

′
k = vk, v′k+1 = vπ′(k+1), . . . , v

′
n = vπ′(n),

the new ordering of σ assumes the form σ = [v′0, . . . , v
′
k, v

′
k+1, . . . , v

′
n]

and thus, dτ
η = [w′0...k

0 , w′0...kη(k+1)
0 , . . . , w′0...n

0 ], where w′0...k
0 = 1

2v
′
0 +

1
2(k+1) (v

′
0 + . . .+ v′k) = 1

2v0 + 1
2(k+1) (v0 + . . .+ vk) = w0...k

0 , w′0...kη(k+1)
0 =

1
2v

′
0+

1
2(k+2) (v

′
0+. . .+v′k+v′η(k+1)) = 1

2v0+
1

2(k+2) (v0+. . .+vk+vπ′η(k+1)) =

w
0...kπ′η(k+1)
0 , etc., w′0...n

0 = 1
2v0+

1
2(n+1) (v0+. . .+vn) = w0...n

0 . Consequently,

dτ
η = [w0...k

0 , w
0...kπ′η(k+1)
0 , . . . , w0...n

0 ]. However, this simplex has the form of
dτ

π, when one uses the original ordering v0, . . . , vn of the vertices of σ and
the permutation π = π′η. When η ranges over the set of all permutations
of {k + 1, . . . , n}, π = π′η will also range over the set of all permutations of
{k + 1, . . . , n} and thus, the set of all dτ

η and the set of all dτ
π coincide. It
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follows that also the set of all cτη = cτ ⊕ dτ
η coincides with the set L(σ) of all

cτπ = cτ ⊕ dτ
π.

4. The second canonical subdivision N(K)

4.1. We will first define the cellular complex N(σ), for ordered n-
simplices σ = [v0, . . . , vn], contained in the vector space V . By definition,
N(σ) consists of n + 1 n-dimensional convex polytopes cσvi

, 0 ≤ i ≤ n, and
of their faces. Most of the time there will be no danger of misunderstanding
if we simplify the notation cσvi

to cσi . To define cσi , one considers the ho-

mothetic transformation χσ
i : σ → σ with center vi and ratio 1

2 , i.e., one puts

χσ
i (v)−vi = 1

2 (v−vi), for v ∈ σ. Then c′i
σ

= χσ
i [v0, . . . , vi] is an i-dimensional

simplex, which lies in [v0, . . . , vi] ⊆ Aff[v0, . . . , vi] and c′′i
σ

= χσ
i [vi, . . . , vn] is

an (n−i)-dimensional simplex, which lies in [vi, . . . , vn] ⊆ Aff[vi, . . . , vn]. The
intersection Aff[v0, . . . , vi] ∩ Aff[vi, . . . , vn] = {vi}. Therefore, the direct sum
c′i

σ ⊕ c′′i
σ

is well defined and has vi for its reference point. By definition,

(4.1) cσi = c′i
σ
⊕ c′′i

σ
.

Note that cσi is an n-dimensional convex polytope contained in Aff(σ). More-
over, every point u ∈ cσi admits unique points u′ ∈ c′i

σ
and u′′ ∈ c′′i

σ
such

that u = u′ + u′′ − vi.

e0

e1

e2

e3

σ∆3

0
σ∆3

1

σ∆3

2

σ∆3

3

e0

b01

e1

b12

e2

b02

σ∆2

0 σ∆2

1

σ∆2

2

Figure 3. The decompositions N(∆2) and N(∆3)

The following lemma describes the vertices and the faces of the n-cell
cσi , when σ = [v0, . . . , vn]. Recall that bij is the short notation for b[vi,vj ] =
1
2 (vi + vj) (see (3.1)). Note that bii = vi.

Lemma 4.1. If σ = [v0, . . . , vn] is an ordered simplex and 0 ≤ i ≤ n, then

the vertices of the n-cell cσi are the points

(4.2)

b0i . . . bii

b0i+1 . . . bii+1

. . . . . . . . .
b0n . . . bin

.
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The faces of cσi are the convex hulls of the sets of vertices lying at the crossings

of a collection of rows with a collection of columns of (4.2). The n-cell cσi is

contained in σ.

Proof. Since χσ
i |[v0, . . . , vi] is an affine isomorphism, 0 ≤ i ≤ n, and

χσ
i (vj) = 1

2 (vi + vj) = bji, 0 ≤ j ≤ i, we see that c′
σ
i = χσ

i [v0, . . . , vi] =

[b0i, . . . , bii] is a simplex with vertices b0i, . . . , bii. Analogously, c′′σi =
χσ

i [vi, . . . , vn] = [bii, . . . , bin] is a simplex with vertices bii, . . . , bin. There-
fore, cσi = c′

σ
i ⊕ c′′

σ
i is a convex polytope of dimension n with vertices

bji + bik − vi = 1
2 (vj + vk) = bjk, where 0 ≤ j ≤ i and i ≤ k ≤ n. Since

bjk ∈ σ, it follows that cσi ⊆ σ.

We will refer to (4.2) as to the vertex scheme of cσi . Similarly, we will
refer to the crossings of the rows and columns of (4.2), which span a face of
cσi as to the vertex scheme of that face. Note that when σ = ∆n, then Pn

i , Q
i
i

and Rn−i
i , defined in Section 4 of [7], coincide with cσi , c′i

σ and c′′i
σ.

If σ is the standard n-simplex ∆n = [e0, . . . , en], then cσi is just the convex
polytope Pn

i , defined in [5], I.1.3, using barycentric coordinates λ0, . . . , λn

(with respect to ∆n) of points u ∈ σ and formula (4.3). This assertion follows
from the next lemma, putting σ = [e0, . . . , en].

Lemma 4.2. A point u ∈ σ belongs to cσi , 0 ≤ i ≤ n, if and only if

its barycentric coordinates λ0, . . . , λn with respect to σ satisfy the following

condition,

(4.3)
∑j=i−1

j=0 λj ≤ 1
2 ≤

∑j=i
j=0 λj .

Proof. Assume that (4.3) holds and consider the points

(4.4) w′ =
∑j=i−1

j=0 2λjvj + (1 −
∑j=i−1

j=0 2λj)vi ∈ Aff[v0, . . . , vi],

(4.5) w′′ =
∑j=n

j=i+1 2λjvj + (1 −
∑j=n

j=i+1 2λj)vi ∈ Aff[vi, . . . , vn].

Since
∑j=n

j=0 λj = 1, (4.3) implies 1−
∑j=i−1

j=0 2λj ≥ 0 and 1−
∑j=n

j=i+1 2λj ≥ 0,

which shows that w′ ∈ [v0, . . . , vi] and w′′ ∈ [vi, . . . , vn]. Defining points
u′, u′′ ∈ σ, by putting u′ − vi = 1

2 (w′ − vi), u
′′ − vi = 1

2 (w′′ − vi), we conclude

that u′ ∈ c′i
σ

and u′′ ∈ c′′i
σ
. Moreover, (4.4) and (4.5) imply that u′+u′′−vi =

1
2 (w′ + w′′) =

∑j=n
j=0 λjvj = u, which shows that u ∈ c′i

σ ⊕ c′′i
σ

= cσi .

Conversely, if u ∈ cσi , then u is of the form u = u′ + u′′ − vi, where
u′ ∈ c′i

σ
, u′′ ∈ c′′i

σ
. Therefore, there exist points w′ ∈ [v0, . . . , vi] and w′′ ∈

[vi, . . . , vn] such that u′−vi = 1
2 (w′−vi), u

′′−vi = 1
2 (w′′−vi). Let µ0, . . . , µi

and νi, . . . , νn be the barycentric coordinates of w′ and w′′ with respect to
[v0, . . . , vi] and [vi, . . . , vn], respectively. Then u = u′ + u′′ − vi = 1

2 (w′ +

w′′) = 1
2

∑j=i
j=0 µjvj + 1

2

∑j=n
j=i νjvj . Since u =

∑j=n
j=0 λjvj , it follows that

λj = 1
2µj , for 0 ≤ j ≤ i− 1, and λj = 1

2νj , for i+ 1 ≤ j ≤ n. Consequently,
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∑j=i−1
j=0 λj = 1

2

∑j=i−1
j=0 µj ≤ 1

2 and
∑j=n

j=i+1 λj = 1
2

∑j=n
j=i+1 νj ≤ 1

2 and thus,
∑j=i

j=0 λj = 1 −
∑j=n

j=i+1 λj ≥ 1 − 1
2 = 1

2 .

4.2. The main result in this section is the following theorem.

Theorem 4.3. For any ordered n-simplex σ ∈ K, the n-cells cσi , 0 ≤ i ≤
n, together with their faces, form a cellular complex N(σ), which has σ for

its carrier, i.e., |N(σ)| = σ. If ζ < σ is a proper face of σ, whose ordering is

induced by the ordering of σ, then N(ζ) ⊆ N(σ) and

(4.6) N(ζ) = ζ ∩N(σ) = {ζ ∩ c|c ∈ N(σ)}.

If K is an ordered simplicial complex in V , then the union N = ∪σ∈KN(σ)
is a cellular subdivision of K.

Proof of Theorem 4.3

4.2.1. Let us first prove that the intersection cσi ∩ cσi′ is a common face
of both n-cells cσi and cσi′ . It suffices to consider the case when i < i′. We
will define an (n − 1)-dimensional affine manifold S ⊆ Aff (σ) such that S is
a supporting hyperplane for both convex sets cσi and cσi′ and thus, cσi ∩ S is
a face of cσi and cσi′ ∩ S is a face of cσi′ . Moreover, we will show that the sets
cσi and cσi′ lie in different halfspaces S+, S− of Aff (σ) determined by S. Since
S+ ∩ S− = S, it follows that cσi ∩ cσi′ = (cσi ∩ S)∩ (cσi′ ∩ S). We will also show
that the intersection (cσi ∩ S) ∩ (cσi′ ∩ S) is a common face of cσi ∩ S ≤ cσi and
cσi′ ∩ S ≤ cσi′ and thus, cσi ∩ cσi′ is a common face of cσi and cσi′ .

To define S, S+ and S−, consider the function Λ: Aff(σ) → R, where
Λ(u) =

∑

0≤j≤i λj . Put S = {u ∈ Aff(σ)|Λ(u) = 1
2}, S+ = {u ∈

Aff(σ)|Λ(u) ≥ 1
2} and S− = {u ∈ Aff(σ)|Λ(u) ≤ 1

2}. For the vertices bjk

of cσi , 0 ≤ j ≤ i, i ≤ k ≤ n, Λ(bjk) = 1, if k = i and Λ(bjk) = 1
2 , if i < k.

Consequently, Λ(u) ≥ 1
2 , for every point u ∈ cσi and thus, cσi ⊆ S+. Similarly,

for the vertices bjk of cσi′ , 0 ≤ j ≤ i′, i′ ≤ k ≤ n, Λ(bjk) = 1
2 , if j ≤ i, and

Λ(bjk) = 0, if i < j. Consequently, Λ(u) ≤ 1
2 , for every point u ∈ cσi′ and thus,

cσi′ ⊆ S−. Note that b0n belongs to both sets cσi ∩ S and cσi′ ∩ S, which shows
that these sets are not empty. It follows that S is a supporting hyperplane
for both n-cells cσi and cσi′ .

Let us denote by Wi the set of all vertices bjk ∈ cσi which belong to
S and by Wi′ the set of all vertices bjk ∈ cσi′ , which belong to S. Then
cσi ∩S = Conv(Wi) and cσi′∩S = Conv(Wi′ ) (see [9, Lemma 6.2.3]). The above
stated results show that bjk ∈ Wi, if and only if 0 ≤ j ≤ i and i+ 1 ≤ k ≤ n,
while bjk ∈ Wi′ , if and only if 0 ≤ j ≤ i and i′ ≤ k ≤ n. Since i+ 1 ≤ i′, we
see that Wi′ ⊆ Wi and thus, Wi ∩Wi′ = Wi′ consists of the last n − i′ + 1
rows of the vertex scheme of cσi , which coincides with the first i+ 1 columns
of the vertex scheme of cσi′ . Consequently, cσi′ ∩ S = Conv(Wi′) is a face of
cσi ∩S = Conv(Wi) and thus, cσi′ ∩ c

σ
i = (cσi′ ∩S)∩ (cσi ∩S) = cσi′ ∩S ≤ cσi ∩S.
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It follows that cσi′ ∩ cσi is a common face of cσi′ and cσi . This completes the
proof that N(σ) is a cellular complex.

Let us now show that the union of the n-cells cσi , 0 ≤ i ≤ n, equals σ and
thus, |N(σ)| = σ. Let u ∈ σ and let λ0, . . . , λn be its barycentric coordinates
with respect to σ. Since

∑

0≤j≤n λj = 1 > 1
2 , there is a smallest index i,

0 ≤ i ≤ n, such that
∑

0≤j≤i λj >
1
2 . Therefore,

∑

0≤j≤i−1 λj ≤ 1
2 . Hence,

Lemma 4.2 shows that u ∈ cσi .
4.2.2. The next lemma will complete the proof of Theorem 4.3.

Lemma 4.4. If σ ∈ K and ζ < σ is a proper face of σ, whose ordering is

induced by the ordering of σ, then N(ζ) ⊆ N(σ) and formula (4.6) holds. For

any cell c ∈ N(σ), the intersection ζ ∩ c is a face of c, which belongs to N(ζ).
If K is an ordered simplicial complex in V , then the union N = ∪σ∈KN(σ)
is a cellular subdivision of K.

Proof. Consider an ordered simplex σ in V and a proper face ζ < σ,
whose ordering is induced by the ordering of σ. In order to prove that N(ζ) ⊆
N(σ), it suffices to prove this assertion in the special case when dimσ−dim ζ =
1. Indeed, if dimσ − dim ζ = k > 1, we consider a sequence of faces ζ = ζk <
. . . < ζ1 < σ, where the dimensions of consecutive members differ by 1. By
the special case, one concludes that N(ζ) = N(ζk) ⊆ . . . ⊆ N(ζ1) ⊆ N(σ).
Now assume that σ = [v0, . . . , vn] and ζ is the (n− 1)-dimensional face of σ,
which does not contain the vertex vl, where 0 ≤ l ≤ n, i.e., ζ = S∩σ, where S
is the (n− 1)-dimensional affine manifold S = {u ∈ Aff(σ)|λl(u) = 0}. Since
every cell c1 from N(ζ) is a face of an (n− 1)-cell c from N(ζ), it suffices to
show that every (n − 1)-cell c ∈ N(ζ) belongs to N(σ), because then c1 ≤ c
will imply c1 ∈ N(σ).

Let c = cζvi
, where 0 ≤ i ≤ n and i 6= l. By Lemma 4.1, the vertex scheme

of c = cζvi
is obtained from the vertex scheme (4.2) of cσvi

by deleting the row

b0l . . . bil, when i < l and by deleting the column bli . . . bln, when i > l. In
both cases we see that cζvi

≤ cσvi
. Since cσvi

∈ N(σ), we conclude that also

c = cζvi
∈ N(σ). As in the proof of Lemma 3.14, N(ζ) ⊆ N(σ) implies

(4.7) N(ζ) ⊆ ζ ∩N(σ).

We will now show that, for any cell c ∈ N(σ), the intersection ζ ∩ c
is a face of c, which belongs to N(ζ). By the argument given in the proof
of Lemma 3.14, it suffices to prove the assertion in the special case when
dimσ − dim ζ = 1. Moreover, one can assume that c is an n-cell from N(σ).
Indeed, an arbitrary cell c from N(σ) is a face of an n-cell c′ ∈ N(σ). By the
special case, ζ ∩ c′ is a face of c′, which belongs to N(ζ). Note that c = c′ ∩ c
and thus, ζ ∩ c = (ζ ∩ c′) ∩ c. Since ζ ∩ c′ and c are faces of c′ ∈ N(σ), it
follows that ζ ∩ c′, c ∈ N(σ) and their intersection (ζ ∩ c′)∩ c is a face of ζ ∩ c′

and c. Since ζ ∩ c′ ∈ N(ζ), it follows that also ζ ∩ c = (ζ ∩ c′) ∩ c ∈ N(ζ).
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Let us now assume that σ = [v0, . . . , vn], n ≥ 1, ζ is the (n − 1)-
dimensional face of σ, which does not contain the vertex vl, 0 ≤ l ≤ n,
and c = cσvi

, 0 ≤ i ≤ n, is an n-cell of N(σ). Note that ζ = S ∩ σ, where S
is the (n− 1)-dimensional affine manifold S = {u ∈ Aff(σ)|λl(u) = 0}. Since
c ⊆ σ implies c = σ ∩ c, it follows that ζ ∩ c = S ∩ c.

We will first assume that i = l. In the special cases, when 0 = i = l < n
or 0 < i = l = n, the intersection ζ ∩ c = ∅ and our assertion holds. Indeed,
if 0 = i = l < n, the vertex scheme of c consists of a single column b00 . . . b0n.
Since λl(b

0j) = λ0(b
0j) > 0, for 0 ≤ j ≤ n, we see that all vertices of c are

contained in the convex set S> = {u ∈ Aff(σ)|λl(u) > 0} and thus, c ⊆ S>.
However, S> does not intersect ζ ⊆ S = {u ∈ Aff(σ)|λl(u) = 0} and thus,
c∩ζ = ∅. Similarly, if 0 < i = l = n, the vertex scheme of c consists of a single
row b0n . . . bnn. Now λl(b

jn) = λn(bjn) > 0, for 0 ≤ j ≤ n. Consequently,
c ⊆ S> and again c ∩ ζ = ∅.

Now assume that 0 < i = l < n. Then b0n = 1
2 (v0 + vn) ∈ ζ, because

v0, vn ∈ ζ. Since b0n is a vertex of c, it follows that ζ ∩ c 6= ∅. Clearly, c
and σ are contained in the affine halfspace S+ = {u ∈ Aff(σ)|λl(u) ≥ 0} and
thus, S is a supporting hyperplane, for the n-cell c = cσvi

. This implies that

ζ ∩ c = c∩S is the face of c, whose vertices are all the vertices bjk of c, which
are contained in S, i.e., for which λl(b

jk) = 0. These vertices are obtained
from the vertex scheme (4.2) by deleting the first row and the last column,
i.e., ζ ∩ c is the face of c, having the following vertex scheme.

(4.8)
b0l+1 . . . bl−1l+1

. . . . . . . . .
b0n . . . bl−1n .

Putting on top of (4.8) the row b0l−1 . . . bl−1l−1, we obtain the vertex scheme
of cζvl−1

∈ N(ζ). Consequently, ζ ∩ c is a face of cζvl−1
and thus, it also belongs

to N(ζ).
It remains to consider the case when i 6= l. In that case bii = vi is a vertex

of ζ and thus, S ∩ c = ζ ∩ c 6= ∅. Since c, σ ⊂ S+, one concludes that S is a
supporting hyperplane, for the n-cell c = cσvi

. Consequently, ζ ∩ c = c ∩ S is

the face of c, whose vertices are all the vertices bjk of c, which are contained
in S, i.e., for which λl(b

jk) = 0. If i < l, these are all the vertices from (4.2),
except the ones belonging to the row b0l . . . bil. However, these are just the
vertices of cζvi

∈ N(ζ) and thus, ζ ∩ c = cζvi
. The same formula holds if l < i,

because in that case, the vertices bjk of c, for which λl(b
jk) = 0, are all the

vertices in (4.2), except the ones belonging to the column bli . . . bln. However,
these are just the vertices of cζvi

∈ N(ζ). Hence, for i 6= l, ζ ∩ c = cζvi
belongs

to N(ζ).
It is an immediate consequence of the assertion we just proved that

(4.9) ζ ∩N(σ) ⊆ N(ζ).
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Clearly, (4.6) follows from (4.7) and (4.9). The final assertion of Lemma 4.4
that N = ∪σ∈KN(σ) is a cellular subdivision of K is an immediate conse-
quence of (4.6).

5. The first iterated canonical subdivision L′(K)

5.1. In this section we first extend the definition of the cellular complex
L(σ), associated with a simplex σ ⊆ V (considered in Section 3), to the
case of a cellular complex L(σ ⊕ σ′), associated with the direct sum σ ⊕ σ′

of an ordered pair (σ, σ′) of simplices from V of dimensions dimσ = k and
dimσ′ = k′. We assume that σ ⊕ σ′ is well defined, i.e., Aff(σ) ∩ Aff(σ′) is a
single point w and thus, σ ⊕ σ′ = σ + σ′ − w. We will first define the n-cells
of L(σ ⊕ σ′), where n = k + k′. Then L(σ ⊕ σ′) will consist of all faces of
these n-cells. By definition, an n-cell of L(σ⊕ σ′) is a convex polytope of the
form c⊕ σ′, where c is a k-cell from L(σ). Clearly, Aff(c) = Aff(σ) and thus,
Aff(c) ∩ Aff(σ′) = {w}. Consequently, c ⊕ σ′ = c + σ′ − w is a well-defined
n-dimensional convex polytope. If we denote by Ln(σ ⊕ σ′) the set of all
n-cells of L(σ ⊕ σ′) and we denote by Lk(σ) the set of all k-cells of L(σ), we
put

(5.1) Ln(σ ⊕ σ′) = Lk(σ) ⊕ σ′ = {c⊕ σ′|c ∈ Lk(σ)}.

In other words, Ln(σ⊕ σ′) is obtained from σ⊕ σ′ by applying the operation
Lk to the first summand σ, leaving the second summand σ′ unchanged. If σ′

is a 0-dimensional simplex ∗′, then Aff(σ′) = ∗′. The reference point of σ⊕σ′

is ∗′, because Aff(σ) ∩ Aff(∗′) = ∗′. Consequently, for c ∈ Ln(σ), the direct
sum c ⊕ ∗′ = c + ∗′ − ∗′ = c and thus, Ln(σ ⊕ ∗′) = {c ⊕ ∗′|c ∈ Ln(σ)} =
{c|c ∈ Ln(σ)} = Ln(σ). Therefore, L(σ ⊕ ∗′) = L(σ) and we see that L(σ) is
a special case of L(σ ⊕ σ′).

To show that L(σ ⊕ σ′) is indeed a cellular complex, it suffices to show
that any two n-cells c⊕σ′ and c1 ⊕σ′ from Ln(σ⊕σ′) intersect in a common
face. Let us first show that (c ⊕ σ′) ∩ (c1 ⊕ σ′) = (c ∩ c1) + σ′ − w. Indeed,
dim c = dim σ = k implies Aff(c) = Aff(σ) and thus, Aff(c) ∩ Aff(σ′) =
Aff(σ) ∩ Aff(σ′) = {w} so that c ⊕ σ′ = c + σ′ − w. Analogously, c1 ⊕ σ′ =
c1 + σ′ −w. Now assume that u ∈ (c⊕ σ′) ∩ (c1 ⊕ σ′). Then u = s+ t−w =
s1 + t1 − w, where s ∈ c ⊆ Aff(σ), s1 ∈ c1 ⊆ Aff(σ) and t, t1 ∈ σ′ ⊆ Aff(σ′).
Consequently, s − s1 + w = t1 − t + w ∈ Aff(σ) ∩ Aff(σ′) = {w} and thus,
s = s1 ∈ c ∩ c1, t = t1 ∈ σ′. It follows that u = s+ t− w ∈ (c ∩ c1) + σ′ − w
and one obtains the inclusion (c ⊕ σ′) ∩ (c1 ⊕ σ′) ⊆ (c ∩ c1) + σ′ − w. The
converse inclusion is obvious. Since c ∩ c1 is a common face of c and c1, it
follows that (c ∩ c1) + σ′ − w is a common face of c + σ′ − w = c ⊕ σ′ and
c1 + σ′ − w = c1 ⊕ σ′.

The carrier |L(σ⊕σ′)| = σ⊕σ′. Indeed, if u ∈ σ⊕σ′ = σ+σ′−w, then u
is of the form u = s+ t−w, where s ∈ σ, t ∈ σ′. Since |Lk(σ)| = |L(σ)| = σ,
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there is a cell c ∈ Lk(σ) such that s ∈ c and thus, u = s+ t−w ∈ c+σ′−w =
c⊕ σ′ ∈ Ln(σ ⊕ σ′) ⊆ L(σ ⊕ σ′).

5.2. We will now apply the above described construction to cells c from
the subdivision L(σ) of a simplex σ ∈ K, described in Section 3. Recall that,
for an n-simplex σ, with every n-cell c ∈ Ln(σ) is associated the ordered pair
of simplices (cτ , dτ

π) such that c = cτ ⊕ dτ
π, τ ≤ σ, dim τ = k. Therefore, L(c)

is a well-defined cellular complex with carrier |L(c)| = c. Its n-cells form the
set

(5.2) Ln(c) = Ln(cτ ⊕ dτ
π) = Lk(cτ ) ⊕ dτ

π.

All other cells are faces of these n-cells. The first iterated canonical subdivision

L′(σ) of an n-simplex σ ⊆ V is defined by the formula

(5.3) L′(σ) = ∪c∈Ln(σ)L(c).

If K is a simplicial complex in V , the first iterated canonical subdivision L′(K)
is defined by the formula

(5.4) L′(K) = ∪σ∈KL
′(σ).

Theorem 5.1. If σ is a simplex in V , then L′(σ) is a cellular subdivision

of L(σ), hence, it is also a cellular subdivision of σ. If ζ < σ, then L′(ζ) ⊆
L′(σ) and L′(σ) ∩ ζ = L′(ζ). If K is a simplicial complex in V , then L′(K)
is a cellular subdivision of L(K), hence, it is also a cellular subdivision of K.

Proof. First note that every face e∗ of c∗ ∈ L′(σ) also belongs to L′(σ).
Indeed, if dimσ = n, there exists an n-cell c ∈ Ln(σ) such that c∗ ∈ L(c).
Since L(c) is a cellular complex, it follows that also e∗ belongs to L(c) and
thus, e∗ ∈ L′(σ). To prove that L′(σ) is a cellular complex, we still need to
prove that the intersection of two cells c∗, c∗1 from L′(σ) is a common face of
these cells. By definition, there exist cells c, c1 ∈ Ln(σ) ⊆ L(σ) such that
c∗ ∈ L(c) and c∗1 ∈ L(c1). There is no loss of generality in assuming that
c∗, c∗1 are n-cells, i.e., c∗ ∈ Ln(c), c∗1 ∈ Ln(c1). Indeed, arbitrary cells from
L(c) and L(c1) are faces of n-cells from L(c) and L(c1), respectively. If the
latter cells intersect in a common face, then so do the original cells.

Since L(σ) is a cellular complex, the intersection a = c ∩ c1 is a common
face of both cells c and c1. We will define a cellular complex L(a) and we will
show that

(5.5) a ∩ c∗, a ∩ c∗1 ∈ L(a).

Note that (5.5) implies that the intersection (a∩c∗)∩(a∩c∗1) is a common face
of a∩c∗ and a∩c∗1. Since c∗ ⊆ c and c∗1 ⊆ c1, it follows that c∗∩c∗1 ⊆ c∩c1 = a
and thus, c∗ ∩ c∗1 = (a ∩ c∗) ∩ (a ∩ c∗1). Consequently, (5.5) implies

(5.6) c∗ ∩ c∗1 ≤ a ∩ c∗, c∗ ∩ c∗1 ≤ a ∩ c∗1.
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The desired assertion that c∗ ∩ c∗1 is a common face of the cells c∗ and c∗1 will
follow, if we also show that

(5.7) a ∩ c∗ ≤ c∗, a ∩ c∗1 ≤ c∗1.

We will now define L(a). By Lemma 3.4, applied to a ≤ c = cτπ, there
are simplices ca, da, which are faces of a, such that the vertex scheme of ca is
the first row of the vertex scheme of a and da is the first column of the vertex
scheme of a. Moreover, a = ca ⊕ da and the reference point w is the only

common vertex of ca and da, i.e., w = w
0...kπ(k+1)...π(k+i)
j . We define L(a) by

putting L(a) = L(ca) ⊕ da = L(ca) + da − w.
Let us prove that the cellular complex L(a) is completely determined by

a, i.e., it does not depend on c. This means that, if we have another n-cell c1 =

cτ
1

π1 ∈ L(σ) such that a ≤ c1 and perform the above construction, the resulting
cellular complex L1(a) will coincide with L(a). Indeed, this time Lemma 3.4
will give us faces ca, d

1
a of a such that a = ca ⊕ d1

a = ca + d1
a − w1, where

the reference point w1 is the only common vertex of ca and d1
a. Moreover,

the construction will give us the cellular complex L1(a) = L(ca) ⊕ d1
a =

L(ca)+ d1
a −w1. Note that the first summand ca is the same as in the case of

the n-cell c = cτπ, because ca is completely determined by a alone (see Lemma
3.4). To prove that L1(a) = L(a) we need to prove that da − w = d1

a − w1.
Since d1

a ≤ a, the vertex scheme of d1
a consists of the crossings of a set

of rows with a set of columns of the vertex scheme (3.16) of a. Since w1 is a
vertex of ca and the vertices of ca fill up the first row of (3.16), it follows that

w1 = w
0...kπ(k+1)...π(k+i)
jl

, for some 0 ≤ l ≤ r. Moreover, we see that the set of
rows includes the first row and the set of columns includes the jl-th column.
It cannot include any other column, because the crossing of that column with
the first row would be a vertex of d1

a, different from w1 and belonging to
ca. However, d1

a has only one vertex in common with ca. This proves that
the vertex scheme of d1

a is a subscheme of the jl-th column of (3.16). The
number of vertices of d1

a equals dim d1
a + 1. However, ca ⊕ da = a = ca ⊕ d1

a

implies that dim d1
a = dim da = r. Consequently, d1

a has r + 1 vertices and
thus, the vertex scheme of d1

a is the whole jl-th column of (3.16). Finally,
translation by wτ

jl
−wτ

j is a bijection between the vertices of the j-th column

and those of the jl-th column, which implies that d1
a = da+wτ

jl
−wτ

j . However,

w1 − w = w
0...kπ(k+1)...π(k+i)
jl

− w
0...kπ(k+1)...π(k+i)
j = w0...k

jl
− w0...k

j and we

obtain the desired relation d1
a = da + w1 − w.

We will now show that

(5.8) a ∩ L(c) = L(a), a ∩ L(c1) = L(a).

Recall that c = cτ ⊕ dτ
π = cτ + dτ

π − wτ
0 and thus, L(c) = L(cτ ) ⊕ dτ

π =
L(cτ ) + dτ

π − wτ
0 . Let c′a, d

′
a, ca and da be as in Lemma 3.4. Then c′a ≤ cτ ,
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d′a ≤ dτ
π , a = c′a + d′a − wτ

0 and thus, by 2.7,

a ∩ L(c) = (c′a + d′a − wτ
0 ) ∩ (L(cτ ) + dτ

π − wτ
0 )

= (c′a ∩ L(cτ )) + (d′a ∩ dτ
π) − wτ

0 .

By (3.17) (with σ = cτ and ζ = c′a), c′a∩L(cτ ) = L(c′a). Moreover, d′a∩dτ
π =

d′aand we see that a ∩ L(c) = L(c′a) + d′a − wτ
0 . On the other hand, since

a = ca ⊕ da and w
0...kπ(k+1)...π(k+i)
j is the corresponding reference point, it

follows that L(a) = L(ca) ⊕ da = L(ca) + da − w
0...kπ(k+1)...π(k+i)
j . Taking

into account that da = d′a +wτ
j −wτ

0 , we see that L(a) = L(ca)+ (d′a +wτ
j −

wτ
0 ) − w

0...kπ(k+1)...π(k+i)
j = L(ca) + d′a − w

0...kπ(k+1)...π(k+i)
0 . Now note that

translation by w
0...kπ(k+1)...π(k+i)
0 − w0...k

0 is a bijection between the vertices
of c′a and ca (see Lemma 3.4) and thus, it is an affine isomorphism between

the simplices c′a and ca. Therefore, L(ca) = L(c′a) + w
0...kπ(k+1)...π(k+i)
0 −

w0...k
0 . It follows that L(a) = (L(c′a) + w

0...kπ(k+1)...π(k+i)
0 − w0...k

0 ) + d′a −

w
0...kπ(k+1)...π(k+i)
0 = L(c′a) + d′a − w0...k

0 = a ∩ L(c). This establishes the
first of the two relations in (5.8). The second one, follows by symmetry.

Since c∗ ∈ L(c), we see that a ∩ c∗ ∈ a ∩ L(c) = L(a). Analogously,
a∩c∗1 ∈ a∩L(c∗1) = L(a). Consequently, a∩c∗ and a∩c∗1 are cells of the cellular
complex L(a), i.e., (5.5) holds. To complete the proof that c∗∩c∗1 is a common
face of c∗ and c∗1, it remains to prove (5.7). Since L(c) = L(cτ ) + dτ

π − wτ
0 ,

every n-cell c∗ ∈ L(c) is of the form c∗ = c′ + dτ
π − wτ

0 , where c′ ∈ L(cτ ).
Taking into account that a = c′a + d′a − wτ

0 , where c′a ≤ cτ and d′a ≤ dτ
π,

we see that a ∩ c∗ = (c′a + d′a − wτ
0 ) ∩ (c′ + dτ

π − wτ
0 ) = e+ d′a − wτ

0 , where
e = c′a ∩ c′ ∈ c′a ∩ L(cτ ). Since cτ is a simplex, c′ ∈ L(cτ ) and c′a ≤ cτ ,
Lemma 3.14 (with cτ , c′a and c′ as σ, ζ and c) shows that c′a∩L(cτ ) = L(c′a).
Since c′a ≤ cτ , we see that L(c′a) ⊆ L(cτ ) and thus, e = c′a ∩ c′ is a cell
of the cellular complex L(cτ ). However, c′ is also a cell of L(cτ ). Therefore,
the intersection e ∩ c′ = e of these two cells is a common face of both cells.
In particular, e = c′ ∩ c′a ≤ c′. Since d′a ≤ dτ

π , we conclude that a ∩ c∗ =
e+ d′a − wτ

0 ≤ c′ + dτ
π − wτ

0 = c∗. By symmetry, we also have a ∩ c∗1 ≤ c∗1.

5.3. L′(σ) is a subdivision of L(σ), because the carrier |L(c)| = c, for
c ∈ Ln(σ). Since L(σ) is a subdivision of σ, it follows that L′(σ) is also a
subdivision of σ. That ζ < σ implies L′(ζ) ⊆ L′(σ) is an immediate conse-
quence of definition (5.3) (for ζ and σ) and of the fact that ζ < σ implies
L(ζ) ⊆ L(σ) (see Theorem 3.6). Since all cells in L′(ζ) are contained in ζ, we
see that L′(ζ) ∩ ζ = L′(ζ) and thus, L′(ζ) ⊆ L′(σ) implies

(5.9) L′(ζ) ⊆ L′(σ) ∩ ζ.

To prove the opposite inclusion

(5.10) L′(σ) ∩ ζ ⊆ L′(ζ)
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and thus, obtain the equality L′(σ) ∩ ζ = L′(ζ), it suffices to prove that
e∗ ∈ L′(σ) implies e∗∩ ζ ∈ L′(ζ) in the special case when dim e∗ = n. Indeed,
every cell e∗ ∈ L′(σ) is the face of an n-cell c∗ ∈ L′(σ). Since e∗ ⊆ c∗, it
follows that e∗ = e∗ ∩ c∗ and thus, e∗ ∩ ζ = e∗ ∩ (c∗ ∩ ζ). By the special case,
c∗ ∩ ζ ∈ L′(ζ) ⊆ L′(σ). Since L′(σ) is a cellular complex and e∗, c∗ ∩ ζ are
two cells of L′(σ), their intersection e∗ ∩ (c∗ ∩ ζ) = e∗ ∩ ζ is a common face
of e∗ and c∗ ∩ ζ. In particular, e∗ ∩ ζ is a face of c∗ ∩ ζ. Since c∗ ∩ ζ ∈ L′(ζ)
and L′(ζ) is a cellular complex, it follows that also e∗ ∩ ζ ∈ L′(ζ).

Now assume that c∗ ∈ L′(σ), dim c∗ = n. To prove that c∗ ∩ ζ ∈ L′(ζ),
it suffices to prove the assertion in the special case when dim σ − dim ζ = 1.
Indeed, if dimσ − dim ζ = k > 1, then we consider a sequence of faces ζ =
ζk < . . . < ζ1 < σ, where the dimensions of consecutive members differ by
1. By the special case, L′(σ) ∩ ζ1 ⊆ L′(ζ1) and L′(ζ1) ∩ ζ2 ⊆ L′(ζ2). Since
ζ2 ⊆ ζ1 and |L′(ζ2)| ⊆ ζ2 and thus, ζ1 ∩ ζ2 = ζ2 and L′(ζ2) ∩ ζ2 = L′(ζ2), we
see that L′(σ) ∩ ζ2 ⊆ L′(ζ1) ∩ ζ2 ⊆ L′(ζ2). Repeating this argument k times
we obtain the desired conclusion.

We will now prove the assertion assuming that σ = [v0, . . . , vn], c∗ ∈ L′(σ)
is an n-cell and ζ is the (n−1)-dimensional face of σ not containing the vertex
vl, where 0 ≤ l ≤ n. By definition, there exists a cell c ∈ L(σ) such that
c∗ ∈ L(c). If c is the central n-simplex cσ of L(σ), then c∗ ∩ ζ = ∅ ∈ L(ζ),
because c∗ ⊆ c = cσ ⊆ Int(σ) and ζ ⊆ ∂σ. Therefore, it suffices to consider
the case when c is a peripheral n-cell c = cτ ⊕ dτ

π ∈ L(σ). There is no loss
of generality in assuming that τ = [v0, . . . , vk], where 0 ≤ k < n and π is a
permutation of the set {k + 1, . . . , n}. The proof of Lemma 3.14 contains an
argument which shows that 0 ≤ l ≤ k implies c ∩ ζ = ∅. Since c∗ ⊆ c, it
follows that also c∗ ∩ ζ = ∅.

Now consider the case when k + 1 ≤ l ≤ n. The proof of Lemma 3.14
contains an argument which shows that there is a face d′ of dτ

π and there is
a face η of ζ such that c ∩ ζ = cτ ⊕ d ′ = cτ + d ′ − wτ

0 ∈ L(η). Moreover,
dim(cτ ⊕ d ′) = dim η and thus, cτ ⊕ d′ ∈ L(η). On the other hand, c =
cτ ⊕ dτ

π implies that L(c) = L(cτ ) ⊕ dτ
π. Therefore, c∗ ∈ L(c) is of the form

c∗ = e⊕ dτ
π = e+ dτ

π −wτ
0 , where e ∈ L(cτ ). Since c∗ ⊆ c, e ⊆ cτ and d ′ ≤ dτ

π

and thus, e ∩ cτ = e and d ′ ∩ dτ
π = d ′, we see that c∗ ∩ ζ = c∗ ∩ (c ∩ ζ) =

(e⊕dτ
π)∩ (cτ ⊕d ′) = e⊕d ′ ∈ L(cτ )⊕d ′. Note that L(cτ ⊕d′) is well defined,

because cτ ⊕ d′ ∈ L(η). Consequently, L(c∩ ζ) = L(cτ ⊕ d′) = L(cτ )⊕ d′ and
thus, c∗∩ζ ∈ L(c∩ζ) ⊆ L(c∩ζ). This and the relation c∩ζ = cτ ⊕d ′ ∈ L(η)
show that c∗ ∩ ζ ∈ L′(η) ⊆ L′(ζ).

6. The second iterated canonical subdivision N ′(K)

6.1. In this section we first extend the definition of the cellular complex
N(σ′), associated with an ordered simplex σ′ from V (considered in Section
4), to the case of a cellular complex N(σ ⊕ σ′), associated with the direct
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sum σ ⊕ σ′ of an ordered pair (σ, σ′) of simplices from V , where dimσ = k,
dimσ′ = k′ and σ′ is an ordered simplex. We assume that σ ⊕ σ′ is well
defined, i.e., Aff(σ)∩Aff(σ′) is a single point w and thus, σ⊕σ′ = σ+σ′−w.
We will first define the n-cells of N(σ⊕σ′), where n = k+k′. Then N(σ⊕σ′)
will consist of all faces of these n-cells. By definition, an n-cell of N(σ ⊕ σ′)
is a convex polytope of the form σ ⊕ c′, where c′ is a k′-cell from N(σ′).

Clearly, Aff(c′) = Aff(σ′) and thus, Aff(σ)∩Aff(c′) = {w}. Consequently,
σ ⊕ c′ = σ + c′ − w is a well-defined n-dimensional convex polytope. If we
denote by Nn(σ ⊕ σ′) the set of all n-cells of N(σ ⊕ σ′) and we denote by
Nk′(σ′) the set of all k′-cells of N(σ′), we put

(6.1) Nn(σ ⊕ σ′) = σ ⊕Nk′(σ′) = {σ ⊕ c′|c′ ∈ Nk′(σ′)}.

In other words, Nn(σ⊕ σ′) is obtained from σ⊕σ′ by applying the operation
Nk′ to the second summand σ′, leaving the first summand σ unchanged. If σ
is a 0-dimensional simplex ∗, then Aff(σ) = ∗. The reference point of σ ⊕ σ′

is ∗, because Aff(∗) ∩ Aff(σ′) = ∗. Consequently, for c′ ∈ Nn(σ′), the direct
sum ∗ ⊕ c′ = ∗ + c′ − ∗ = c′ and thus, Nn(∗ ⊕ σ′) = {∗ ⊕ c′|c′ ∈ Nn(σ′)} =
{c′|c′ ∈ Nn(σ′)} = Nn(σ′). Therefore, N(∗ ⊕ σ′) = N(σ′) and we see that
N(σ′) is a special case of N(∗ ⊕ σ′).

The proof that N(σ ⊕ σ′) is a cellular complex with carrier σ ⊕ σ′ is
analogous to the corresponding proof for L(σ ⊕ σ′).

6.2. We will now apply the above described construction to cells c from
the subdivision L(σ) of a simplex σ ∈ K, described in Section 3. Recall that,
for an n-simplex σ, with every n-cell c ∈ Ln(σ) is associated the ordered pair
of simplices (cτ , dτ

π) such that c = cτ ⊕ dτ
π , τ ≤ σ, dim τ = k. Note that dτ

π is
endowed with a natural ordering, given by the ranks of its vertices. Therefore,
N(c) = N(cτ ⊕ dτ

π) is a well-defined cellular complex with carrier |N(c)| = c.
Its n-cells form the set

(6.2) Nn(c) = Nn(cτ ⊕ dτ
π) = cτ ⊕Nn−k(dτ

π).

All other cells are faces of these n-cells. The second iterated canonical subdi-

vision N ′(σ) of an n-simplex σ ⊆ V is defined by the formula

(6.3) N ′(σ) = ∪c∈Ln(σ)N(c).

If K is a simplicial complex in V , the second iterated canonical subdivision

N ′(K) is defined by the formula

(6.4) N ′(K) = ∪σ∈KN
′(σ).

Theorem 6.1. If σ is a simplex in V , then N ′(σ) is a cellular subdivision

of L(σ) and σ. If ζ < σ, then N ′(ζ) ⊆ N ′(σ) and N ′(σ)∩ ζ = N ′(ζ). If K is

a simplicial complex in V , then N ′(K) is a cellular subdivision of L(K) and

K.
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Proof. As in the proof of Theorem 5.1, it readily follows that faces of
cells belonging to N ′(σ) also belong to N ′(σ). Therefore, to prove that N ′(σ)
is a cellular complex in V , it suffices to prove that the intersection c• ∩ c•1
of two cells c•, c•1 from N ′(σ) is a common face of these cells. If dim σ = n,
there are n-cells c, c1 ∈ L(σ) such that c• ∈ N(c), c•1 ∈ N(c1). As in the proof
of Theorem 5.1, there is no loss of generality in assuming that c• and c•1 are
n-cells of N(c) and N(c1), respectively.

Since L(σ) is a cellular complex, the intersection a = c ∩ c1 is a common
face of both cells c and c1. We will define a cellular complex N(a) and we will
show that

(6.5) a ∩ c• ∈ N(a), a ∩ c•1 ∈ N(a).

Note that (6.5) implies that the intersection (a∩c•)∩(a∩c•1) is a common face
of a∩c• and a∩c•1. Since c• ⊆ c and c•1 ⊆ c1, it follows that c•∩c•1 ⊆ c∩c1 = a
and thus, c• ∩ c•1 = (a ∩ c•) ∩ (a ∩ c•1). Consequently, (6.5) implies

(6.6) c• ∩ c•1 ≤ a ∩ c•, c• ∩ c•1 ≤ a ∩ c•1.

The desired assertion that c• ∩ c•1 is a common face of the cells c• and c•1 will
follow, if we also show that

(6.7) a ∩ c• ≤ c•, a ∩ c•1 ≤ c•1.

We will now define N(a). By Lemma 3.4, applied to a ≤ c = cτπ, there
are faces ca, da of a such that the vertex scheme of ca is the first row of
the vertex scheme of a and da is the first column of the vertex scheme of
a. Moreover, a = ca ⊕ da and the reference point w is the only common

vertex of ca and da, i.e., w = w
0...kπ(k+1)...π(k+i)
j . We define N(a) by putting

N(a) = ca ⊕N(da) = ca +N(da) − w. Note that the vertices of any column
of the vertex scheme of a are ordered by their ranks. Consequently, N(da) is
well defined.

Let us prove that the cellular complex N(a) is completely determined by
a, i.e., it does not depend on c. This means that, if we have another n-cell c1 =

cτ
1

π1 ∈ L(σ) such that a ≤ c1 and perform the above construction, the resulting
cellular complex N1(a) will coincide with N(a). Indeed, this time Lemma 3.4
will give us faces ca, d

1
a of a such that a = ca⊕d1

a = ca +d1
a−w

1, the reference
point w1 being the only common vertex of ca and d1

a and the construction
will give us the cellular complex N1(a) = ca ⊕ N(d1

a) = ca + N(d1
a) − w1.

Note that the first summand ca is the same as in the case of the n-cell c = cτπ,
because ca is completely determined by a alone. To prove that N1(a) = N(a)
we need to prove that

(6.8) N(d1
a) = N(da) + (w1 − w).

As in the proof of Theorem 5.1, there is an l, 0 ≤ l ≤ r, such that the
vertex scheme of d1

a is the jl-th column of the vertex scheme (3.16) of a and
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the only common vertex of ca and d1
a is the vertex w1 = w

0...kπ(k+1)...π(k+i)
jl

.

Moreover, w1 −w = w
0...kπ(k+1)...π(k+i)
jl

−w
0...kπ(k+1)...π(k+i)
j = w0...k

jl
−w0...k

j .

We know by Lemma 3.4, that translation by w1−w = w0...k
jl

−w0...k
j is an affine

isomorphism between the simplices da and d1
a, which preserves the ranks of

the vertices and thus, it preserves the ordering of these simplices. The equality
(6.8) is an immediate consequence of this fact.

We will now prove that

(6.9) a ∩N(c) = N(a), a ∩N(c1) = N(a).

Since a = c′a + d′a −wτ
0 , N(c) = cτ +N(dτ

π)−wτ
0 and c′a ≤ cτ , d′a ≤ dτ

π

(notation as in Lemma 3.4), by 2.7, a∩N(c) = (c′a∩cτ )+(d′a∩N(dτ
π))−wτ

0 .
By (4.6) (with σ = dτ

π and ζ = d′a), one has d′a ∩N(dτ
π) = N(d′a). Moreover,

c′a∩cτ = c′a and we see that a∩N(c) = c′a+N(d′a)−wτ
0 . On the other hand,

a = ca ⊕ da and w = w
0...kπ(k+1)...π(k+i)
j is the corresponding reference point.

Therefore, N(a) = ca ⊕N(da) = ca +N(da)−w
0...kπ(k+1)...π(k+i)
j . Since ca =

c′a +w
0...kπ(k+1)...π(k+i)
0 −w0...k

0 , one has N(a) = (c′a +w
0...kπ(k+1)...π(k+i)
0 −

w0...k
0 ) + N(da) − w

0...kπ(k+1)...π(k+i)
j = c′a + N(da) − wτ

j . Now recall that
translation by wτ

j −w
τ
0 is an order preserving bijection between the vertices of

d′a and da (see Lemma 3.4) and thus, it establishes an isomorphism between
N(d′a) and N(da). Consequently, N(da) = N(d′a) + wτ

j − wτ
0 . It follows

that N(a) = ca + (N(d′a) + wτ
j − wτ

0 ) − w
0...kπ(k+1)...π(k+i)
j = ca +N(d′a) −

w
0...kπ(k+1)...π(k+i)
0 = c′a +N(d′a)−wτ

0 = a∩N(c). This establishes the first
of the two relations (6.9). The second one follows by symmetry.

If c• ∈ N(c), then a ∩ c• ∈ a ∩N(c) and by the first of the two relations
(6.9), one concludes that a ∩ c• ∈ N(a). Using the second relation of (6.9),
we see that c•1 ∈ N(c1) implies a ∩ c•1 ∈ a ∩ N(c1) = N(a). Consequently,
both relations (6.5) hold. To complete the proof that c• ∩ c•1 is a common
face of c• and c•1, it remains to prove (6.7). Since N(c) = cτ + N(dτ

π) − wτ
0 ,

every n-cell c• ∈ N(c) is of the form c• = cτ + d′ − wτ
0 , where d′ ∈ N(dτ

π).
Taking into account that a = c′a + d′a − wτ

0 , where c′a ≤ cτ and d′a ≤ dτ
π,

we see that a ∩ c• = (cτ + d′ − wτ
0 ) ∩ (c′a + d′a − wτ

0 ) = c′a + e− wτ
0 , where

e = d′ ∩ d′a ∈ N(dτ
π) ∩ d′a. Since dτ

π is a simplex, d′ ∈ N(dτ
π) and d′a ≤ dτ

π,
Lemma 4.4 (with dτ

π , d
′
a and d′ as σ, ζ and c) shows that d′a∩N(dτ

π) = N(d′a).
Since d′a ≤ dτ

π , we see that N(d′a) ⊆ N(dτ
π) and thus, e = d′ ∩ d′a is a cell of

the cellular complex N(dτ
π). However, d′ is also a cell of N(dτ

π). Therefore,
the intersection e ∩ d′ = e of these two cells is a common face of both cells.
In particular, e = d′ ∩ d′a ≤ d′. Since c′a ≤ cτ , we conclude that a ∩ c• =
c′a +e−wτ

0 ≤ cτ +d′−wτ
0 = c•, which establishes the first of the two relations

in (6.7). The second one, follows by symmetry.
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6.3. The cellular complex N ′(σ) is a subdivision of L(σ), because
|N ′(c)| = c, for c ∈ L(σ). Since L(σ) is a subdivision of σ, it follows that
N ′(σ) is also a subdivision of σ. The proof that ζ < σ implies N ′(ζ) ⊆ N ′(σ)
is analogous to the proof of the corresponding relation for L′ (see Theorem
5.1). The same situation is with the proof of the relation

(6.10) N ′(ζ) ⊆ N ′(σ) ∩ ζ.

To prove the opposite inclusion

(6.11) N ′(σ) ∩ ζ ⊆ N ′(ζ),

we proceed as in the proof of Theorem 5.1 and reduce the proof to the case
when σ = [v0, . . . , vn] and ζ is the (n − 1)-dimensional face not containing
the vertex vl, where 0 ≤ l ≤ n. If c• ∈ N ′(σ), then there exists an n-cell
c ∈ L(σ) such that c• ∈ N(c). If c is the central n-simplex from L(σ), then
c• ∩ ζ = ∅, because c• ⊆ c = cσ ⊆ Int(σ) and ζ ⊆ ∂σ. Therefore, it suffices
to consider the case when c is a peripheral n-cell c = cτπ ∈ L(σ). There is no
loss of generality in assuming that τ = [v0, . . . , vk], where 0 ≤ k < n and π is
a permutation of the set {k + 1, . . . , n}. We saw in the proof of Lemma 3.14
that 0 ≤ l ≤ k implies c∩ ζ = ∅. Since c• ⊆ c, it follows again that c• ∩ ζ = ∅.
Therefore, it suffices to consider the case when k + 1 ≤ l ≤ n.

We saw in the proof of Lemma 3.14 that, for k+1 ≤ l ≤ n, the intersection
c∩ ζ belongs to L(ζ) and it is of the form c∩ ζ = cτ ⊕d ′, where d ′ is a face of
dτ

π. Moreover, N(c) = N(cτ ⊕dτ
π) = cτ ⊕N(dτ

π). Since c• ∈ N(c), there exists
a face c′ ≤ cτ and there exists a cell e ∈ N(dτ

π) such that c• = c′ ⊕ e. Since
c• ⊆ c, it follows that c•∩ζ = c•∩(c∩ζ) = (c′⊕e)∩(cτ⊕d ′) = (c′∩cτ )⊕(e∩d ′).
By (4.6), d ′ ≤ dτ

π and e ∈ N(dτ
π) imply N(dτ

π) ∩ d ′ = N(d ′) and thus,
e ∩ d ′ ∈ N(d ′). On the other hand, c′ ∩ cτ = c′ is a face of cτ . Therefore,
c•∩ζ = (c′∩cτ )⊕(e∩d ′) = c′⊕(e∩d ′) ∈ cτ ⊕N(d ′) = N(cτ ⊕d ′) = N(c∩ζ).
Since, c∩ζ ∈ L(ζ), we obtain the desired conclusion that c•∩ζ ∈ N ′(ζ). This
completes the proof of (6.11). That N ′ = N ′(K) is a cellular subdivision of
L(K) is an immediate consequence of the equality N ′(σ) ∩ ζ = N ′(ζ).

7. The isomorphism ϑ : L′(K) → N ′(K) and the selfhomeomorphism

θ : |K| → |K|

The main results of this section and of the whole paper are the following
theorems, valid for every simplicial complex K in V .

Theorem 7.1. There exists an isomorphism of cellular complexes

ϑ : L′(K) → N ′(K), given by a sequence of functions ϑk : L′
k(K) → N ′

k(K),
k ∈ {0, 1, . . .}. For every n-simplex σ ∈ K, the restrictions ϑk|L′

k(σ),
0 ≤ k ≤ n, form an isomorphism of cellular complexes ϑσ : L′(σ) → N ′(σ).

Theorem 7.2. There exists a selfhomeomorphism θ : P → P of the car-

rier P = |K| such that, for every simplex σ ∈ K, θ|σ is a selfhomeomorphism
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of σ. Moreover, for every k-cell c∗ ∈ L′(σ), 0 ≤ k ≤ n, n = dim σ, the restric-

tion θ|c∗ is an affine isomorphism between c∗ and the k-cell ϑk(c∗) ∈ N ′(K).

Figure 4 shows the complexes L′[v0, v1, v2] and N ′[v0, v1, v2]. In that
case, there is an obvious way of defining an isomorphism ϑ between the two
complexes and a selfhomeomorphism θ : [v0, v1, v2] → [v0, v1, v2], whose re-
strictions to the cells c∗ of L′[v0, v1, v2] are affine isomorphisms between c∗

and ϑ(c∗).

v0 v1

v2

v0 v1

v2

Figure 4. The decompositions L′[v0, v1, v2] and N ′[v0, v1, v2]

Proof of Theorems 7.1 and 7.2. In the general case, a complete proof
of these theorems is rather lengthy and consists of a sequence of steps.

7.1. Step (i). We begin the proof with the following lemma.

Lemma 7.3. For any n-simplex σ ∈ K, the sets of n-cells L′
n(σ) and

N ′
n(σ) have the same cardinal numbers,

(7.1) card(L′
n(σ)) = card(N ′

n(σ)) = (n+ 1)!

n
∑

k=0

(n− k + 1)

(k + 1)!
.

Proof. If σ = [v0, . . . , vn], then the n-cells of L(σ) are of the form cτπ,
where τ is a face of σ and π is a permutation of the set of vertices of σ, which
do not belong to τ . If dim τ = k, there are n−k such vertices and thus, there
are (n− k)! such permutations. There are

(

n+1
k+1

)

k-faces τ of σ and therefore,

the n-cells cτπ with dim τ = k yield
(

n+1
k+1

)

(n−k)! = (n+1)!
(k+1)!(n−k)! (n−k)! = (n+1)!

(k+1)!

n-cells of L(σ). Since k ranges from 0 to n, one concludes that

(7.2) card(Ln(σ)) =

n
∑

k=0

(n+ 1)!

(k + 1)!
.

On the other hand, the n-cells of N(σ) are of the form cσi , where 0 ≤ i ≤ n.
Therefore,

(7.3) card(Nn(σ)) = n+ 1.
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In order to obtain the n-cells of L′
n(σ), every n-cell cτπ = cτ ⊕dτ

π of Ln(σ)
with dim τ = k is subdivided by replacing the k-simplex cτ by the k-cells of
Lk(cτ ). Therefore, it yields card(Lk(cτ )) n-cells of L′

n(σ). Since there are
(n+1)!
(k+1)! n-cells cτπ with dim τ = k, they generate (n+1)!

(k+1)! card(Lk(cτ )) n-cells of

L′
n(σ). Formula (7.2), applied to the k-simplex cτ , shows that

(7.4) card(Lk(cτ )) =

n
∑

l=0

(k + 1)!

(l + 1)!
.

Since k ranges from 0 to n, one concludes that

(7.5) card(L′
n(σ)) =

n
∑

k=0

((n+ 1)!

(k + 1)!

k
∑

l=0

(k + 1)!

(l + 1)!

)

=

n
∑

k=0

k
∑

l=0

(n+ 1)!

(l + 1)!
.

On the other hand, to obtain the n-cells ofN ′
n(σ), every n-cell cτπ = cτ⊕dτ

π

of Ln(σ) with dim τ = k is subdivided by replacing the (n − k)-simplex dτ
π

by the (n− k)-cells of Nn−k(dτ
π)). Therefore, it yields card(Nn−k(dτ

π)) n-cells

of N ′
n(σ). Since there are (n+1)!

(k+1)! n-cells cτπ with dim τ = k, they generate
(n+1)!
(k+1)! card(Nn−k(dτ

π)) n-cells of N ′
n(σ). Formula (7.3), applied to dτ

π , shows

that

(7.6) card(Nn−k(dτ
π)) = n− k + 1.

Since k ranges from 0 to n, one concludes that

(7.7) card(N ′
n(σ)) =

n
∑

k=0

(n+ 1)!

(k + 1)!
(n− k + 1).

To see that the right sides in (7.5) and (7.7) are equal, it suffices to change
the order of summation in the double sum of (7.5). Indeed,

(7.8)

n
∑

k=0

k
∑

l=0

(n+ 1)!

(l + 1)!
=

n
∑

l=0

n
∑

k=l

(n+ 1)!

(l + 1)!
=

n
∑

l=0

(n+ 1)!

(l+ 1)!
(n− l+ 1).

Example 7.4. For σ = [v0, v1, v2, v3], card(L3(σ)) = 41, card(N3(σ)) = 4
and card(L′

3(σ)) = card(N ′
3(σ)) = 141.

7.2. Step (ii). For every n-simplex σ = [v0, . . . , vn] ∈ K, we will define
a function ϑσ

n : L′
n(σ) → N ′

n(σ) from the set of n-cells of L′(σ) to the set
of n-cells of N ′(σ). Recall that every n-cell c∗ ∈ L′

n(σ) admits an n-cell
c ∈ Ln(σ) such that c∗ ∈ Ln(c). By the definition of L(σ), c is of the form
c = cτ ⊕ dτ

π and has wτ
0 for its reference point. It suffices to define ϑσ

n(c∗) in
the case when τ = [v0, . . . , vk], 0 ≤ k ≤ n, and thus, π is a permutation of
the set {k+1, . . . , n}. Let ατ : cτ → τ be the affine isomorphism, which maps
the vertices w0...k

0 , . . . , w0...k
k of cτ to the vertices v0, . . . , vk of τ , respectively.
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Clearly, Lk(cτ ) coincides with (ατ )−1(Lk(τ)) and thus, Ln(c) = Lk(cτ )⊕dτ
π =

(ατ )−1(Lk(τ))⊕dτ
π , the reference point being wτ

0 . Since c∗ is a cell from Ln(c),

there exists a k-cell cτ
′

π′ = cτ
′

⊕ dτ ′

π′ ∈ Lk(τ) with reference point wτ ′

0 , such
that

(7.9) c∗ = (ατ )−1(cτ
′

π′) ⊕ dτ
π ,

the reference point being wτ
0 . It suffices to define ϑσ

n(c∗) in the case when
τ ′ = [v0, . . . , vk′ ], 0 ≤ k′ ≤ k, and thus, π′ is a permutation of the set
{k′ + 1, . . . , k}. In this and similar situations in this section one encounters

chains of simplices τ ′ < τ < σ and cells cτ
′

π′ = cτ
′

⊕ dτ ′

π′ . Note that π′ is the
permutation of the vertices of τ (not of σ), which do not belong to τ ′.

Recall that every c• ∈ N ′
n(σ) admits a cell c ∈ Ln(σ) such that c• ∈

Nn(c). Note that c is of the form c = cτ ⊕ dτ
π. If τ = [v0, . . . , vk], 0 ≤ k ≤

n, then c has wτ
0 for its reference point and π is a permutation of the set

{k+1, . . . , n}. Consider the affine isomorphism βτ
π : dτ

π → ∆n−k, which maps

the vertices w0...k
0 , w

0...kπ(k+1)
0 , . . . , w0...n

0 of dτ
π to the vertices e0, . . . , en−k of

∆n−k, respectively. Clearly, Nn−k(dτ
π) coincides with (βτ

π)−1(Nn−k(∆n−k))

and thus, Nn−k(c) = cτ ⊕ Nn−k(dτ
π) = cτ ⊕ (βτ

π)−1(Nn−k(∆n−k)). Since c•

is an n-cell from N(c), there exists an (n − k)-cell Pn−k
i in Nn−k(∆n−k),

0 ≤ i ≤ n− k, such that

(7.10) c• = cτ ⊕ (βτ
π)−1(Pn−k

i ),

the reference point being wτ
0 . Recall that the cells Pn

i were defined in 4.1.
Given c∗ as in (7.9), we define ϑσ

n(c∗) = c• ∈ N ′
n(σ) by specifying the

data (τ , π, i) in (7.10) as follows. Put τ = τ ′ and note that k = dim τ =
dim τ ′ = k′. Put i = k − k′, where k = dim τ . Define the permutation π of
{k + 1, . . . , n} = {k′ + 1, . . . , k, . . . , n} by putting π = π′ ⊔ π, where

(7.11) (π′ ⊔ π)|{k′ + 1, . . . , k} = π′,

(7.12) (π′ ⊔ π)|{k + 1, . . . , n} = π.

Consequently,

(7.13) c• = ϑσ
n(c∗) = cτ

′

⊕ (βτ ′

π′⊔π)−1(Pn−k′

k−k′ ),

the reference point being wτ ′

0 .

7.3. Step (iii).

Lemma 7.5. The function ϑσ
n : L′

n(σ) → N ′
n(σ) is a bijection.

Proof. In view of Lemma 7.3, it suffices to prove that ϑσ
n : c∗ ∈ L′

n(σ) →
N ′

n(σ) is a surjection. Indeed, let c• ∈ N ′
n(σ) be as in (7.10). Consider

c∗ ∈ L′
n(σ) as in (7.9), where τ, τ ′, π, π′ are specified as follows. Put τ ′ =

τ = [v0, . . . , vk], τ = [v0, . . . , vk, vπ(k+1), . . . , vπ(k+i)]. Note that k′ = k and
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k = k + i. For π′ take the identity permutation of {π(k + 1), . . . , π(k + i)}
and for π take the identity permutation of {π(k+ i+ 1), . . . , π(n)}. We claim
that ϑσ

n(c∗) = c•. Indeed, τ ′ in (7.11) becomes τ . The role of {k′ + 1, . . . , k}
in (7.11) is now taken by {π(k+ 1), . . . , π(k+ i)} and the permutation π′ ⊔ π
of that set reduces to π′, which coincides with the identity. Therefore, the
permutation π′⊔π of {π(k+1), . . . , π(k+i)} is also the identity. Analogously,
the role of {k + 1, . . . , n} in (7.11) is now taken by {π(k + i + 1), . . . , π(n)}
and the permutation π′ ⊔ π of that set reduces to π, which coincides with the
identity. Therefore, π′ ⊔ π on {π(k + i + 1), . . . , π(n)} is also the identity.
Consequently, the permutation π′ ⊔ π of {π(k + 1), . . . , π(n)} is the identity

permutation. It follows that the permutation π′⊔π of {π(k+1), . . . , π(k+ i)}
is also the identity. It follows that the sequence (π′ ⊔ π)(π(k + 1)), . . . , (π′ ⊔
π)(π(n)) coincides with the sequence (π(k + 1)), . . . , (π(n)). Now note that

the vertices of dτ ′

π′⊔π form the sequence w
0...k(π′⊔π)π(k+1)
0 , . . . , w

0...k...(π′⊔π)π(n)
0 ,

which coincides with the sequence w
0...kπ(k+1)
0 , . . . , w

0...k...π(n)
0 of the vertices

of dτ
π . Consequently, βτ ′

π′⊔π = βτ
π . Finally, Pn−k′

k−k′ in (7.11) becomes Pn−k

k−k
=

Pn−k
i and we conclude that indeed, ϑσ

n(c∗) = c•.

7.4. Step (iv). For an n-simplex σ ∈ K and for c∗ ∈ L′
n(σ), c• = ϑσ

n(c∗) ∈
N ′

n(σ), we will now define an affine isomorphism θσ
c∗ : c∗ → c•. By definition,

θσ
c∗ is the composition θσ

c∗ = θσ2
c∗ θ

σ1
c∗ of two affine isomorphisms θσ1

c∗ and θσ2
c∗ .

The first one θσ1
c∗ : c∗ = (ατ )−1(cτ

′

π′) ⊕ dτ
π → cτ

′

π′ ⊕ dτ
π = (cτ

′

⊕ dτ ′

π′) ⊕ dτ
π is

defined by putting

(7.14) θσ1
c∗ = (ατ |(ατ )−1(cτ

′

π′)) ⊕ 1,

the reference point being wτ
0 . This is a well-defined affine isomorphism, be-

cause the mapping ατ |(ατ )−1(cτ
′

π′) : (ατ )−1(cτ
′

π′) → cτ
′

π′ is an affine isomor-

phism and the direct sum cτ
′

π′ ⊕ dτ
π is well defined and has wτ

0 for its reference
point. The first assertion is a consequence of the fact that ατ : cτ → τ is an
affine isomorphism and cτ

′

π′ ⊆ τ . To verify the second assertion, it suffices

to see that Aff(cτ
′

π′) ∩ Aff(dτ
π) = {wτ

0}. Indeed, Aff(cτ
′

π′) ⊆ Aff(τ) implies

Aff(cτ
′

π′)∩Aff(dτ
π) ⊆ Aff(τ)∩Aff(dτ

π) = {wτ
0}. Moreover, wτ

0 is a vertex of cτ
′

π′

and of dτ
π and thus, {wτ

0} ⊆ Aff(cτ
′

π′) ∩ Aff(dτ
π).

Before describing θσ2
c∗ , let us show that

(7.15) (cτ
′

⊕ dτ ′

π′) ⊕ dτ
π = cτ

′

⊕ (dτ ′

π′ ⊕ dτ
π) = cτ

′

+ dτ ′

π′ + dτ
π − wτ ′

0 − wτ
0 .

Formula (7.15) is obtained by applying the following elementary fact.
If A,B,C are sets in a vector space V and the direct sums A⊕B, (A⊕B)⊕

C, B⊕C and A⊕(B⊕C) are well defined, then (A⊕B)⊕C = A⊕(B⊕C) and

one can use the notation A⊕B⊕C. Moreover, if A⊕B and B⊕C have the

points w and w′ for their reference points, then A⊕B⊕C = A+B+C−w−w′.
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In order to be able to apply this fact, we first note that the direct sum
cτ

′

⊕ dτ ′

π′ is well defined and its reference point is wτ ′

0 . Furthermore, dτ ′

π′ ⊕ dτ
π

is well defined and its reference point is wτ
0 , i.e., Aff(dτ ′

π′) ∩ Aff(dτ
π) = {wτ

0}.

Indeed, dτ ′

π′ ⊆ cτ
′

π′ ⊆ cτ implies Aff(dτ ′

π′ )∩Aff(dτ
π) ⊆ Aff(cτ ) ∩Aff(dτ

π) = {wτ
0}

and wτ
0 ∈ dτ ′

π′ ∩ dτ
π. Moreover, let us show that cτ

′

⊕ (dτ ′

π′ ⊕ dτ
π) is also well

defined and its reference point is wτ ′

0 , i.e., Aff(cτ
′

) ∩ Aff(dτ ′

π′ ⊕ dτ
π) = {wτ ′

0 }.
Consider the permutation π′⊔π of {k′+1, . . . , n}, defined by (7.11) and (7.12)

and consider the n-cell cτ
′

π′⊔π = cτ
′

⊕ dτ ′

π′⊔π ∈ L(σ). By the definition of the

n-cells from L(σ), we know that Aff(cτ
′

) ∩ Aff(dτ ′

π′⊔π) = {wτ ′

0 }. To complete

the proof of the assertion, it suffices to show that Aff(dτ ′

π′⊔π) = Aff(dτ ′

π′ ⊕ dτ
π).

First note that the union of the sets of vertices of dτ ′

π′ and dτ
π coincides with

the set of vertices of dτ ′

π′⊔π. Therefore, dτ ′

π′ and dτ
π are faces of dτ ′

π′⊔π. Since

dτ ′

π′ ⊕ dτ
π = dτ ′

π′ + dτ
π − wτ ′

0 and wτ ′

0 ∈ dτ ′

π′⊔π ⊆ Aff(dτ ′

π′⊔π), it follows that

dτ ′

π′ ⊕ dτ
π ⊆ Aff(dτ ′

π′⊔π), hence also Aff(dτ ′

π′ ⊕ dτ
π) ⊆ Aff(dτ ′

π′⊔π). On the other

hand, every vertex w of dτ ′

π′⊔π is a vertex of dτ ′

π′ ⊆ dτ ′

π′ ⊕ dτ
π or a vertex of

dτ
π ⊆ dτ ′

π′ ⊕ dτ
π . Since Aff(dτ ′

π′⊔π) coincides with the affine hull of the set of

vertices of dτ ′

π′⊔π, one concludes that Aff(dτ ′

π′⊔π) ⊆ Aff(dτ ′

π′ ⊕ dτ
π).

Consider the affine isomorphism γc∗ : dτ ′

π′ → Qk−k′

k−k′ , which maps the ver-

tices w0...k′

0 , w
0...k′π′(k′+1)
0 , . . . , w0...k

0 of dτ ′

π′ to the vertices b0k−k′

, b1k−k′

, . . .,

bk−k′k−k′

of Qk−k′

k−k′ , respectively. Similarly, consider the affine isomorphism

δc∗ : dτ
π → Rn−k

k−k′ , which maps the vertices w0...k
0 , w

0...kπ(k+1)
0 , . . . , w0...n

0 of dτ
π

to the vertices bk−k′k−k′

, bk−k′k−k′+1, . . . , bk−k′n−k′

of Rn−k
k−k′ , respectively.

These isomorphisms determine the affine isomorphism γc∗ ⊕ δc∗ : dτ ′

π′ ⊕ dτ
π →

Qk−k′

k−k′ ⊕ Rn−k
k−k′ = Pn−k′

k−k′ (recall that the cells Qi
i and Rn−i

i were defined in

4.1.) Now note that βτ ′

π′⊔π : dτ ′

π′⊔π → ∆n−k′

is an affine isomorphism and

Pn−k′

k−k′ ⊆ ∆n−k′

. Therefore,

(7.16) εc∗ = (βτ ′

π′⊔π)−1|Pn−k′

k−k′

is an affine isomorphism εc∗ : Pn−k′

k−k′ → (βτ ′

π′⊔π)−1(Pn−k′

k−k′ ). We now define

θσ2
c∗ : cτ

′

⊕ (dτ ′

π′ ⊕ dτ
π) → cτ

′

⊕ (βτ ′

π′⊔π)−1(Pn−k′

k−k′ ) = c•, by putting

(7.17) θσ2
c∗ = 1 ⊕ εc∗(γc∗ ⊕ δc∗).

The isomorphisms θσ1c∗ and θσ2c∗ can be composed, because of (7.15).
Since θσ

c∗ is an affine mapping, it is completely determined by its values at
the vertices w of the n-cell c∗. We will now determine explicitly these values.
Since the direct sum (ατ )−1(cτ

′

π′)⊕dτ
π has wτ

0 for its reference point, the vertices

of c∗ = (ατ )−1(cτ
′

π′)⊕dτ
π are the points (ατ )−1(w′)⊕w′′ = (ατ )−1(w′)+w′′ −

wτ
0 , where w′ ranges over the set of vertices of cτ

′

π′ and w′′ ranges over the set

of vertices of dτ
π. By (3.11), w′ is of the form w

0...k′π′(k′+1)...π′(k′+r)
s , where
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0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′ and w′′ is of the form w
0...kπ(k+1)...π(k+l)
0 , where

0 ≤ l ≤ n− k. Consequently, the vertices w of c∗ are of the form

(7.18) w = (ατ )−1(w0...k′π′(k′+1)...π′(k′+r)
s ) ⊕ w

0...kπ(k+1)...π(k+l)
0 ,

where 0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′ and 0 ≤ l ≤ n − k, and the reference point

is wτ
0 . By (7.14), θσ1

c∗ (w) = w
0...k′π′(k′+1)...π′(k′+r)
s + w

0...kπ(k+1)...π(k+l)
0 − wτ

0 .

Since w
0...k′π′(k′+1)...π′(k′+r)
s = w

0...k′π′(k′+1)...π′(k′+r)
0 + w0...k′

s − w0...k′

0 , one
concludes that

(7.19)
θσ1

c∗ (w) = w0...k′

s − w0...k′

0 +

(w
0...k′π′(k′+1)...π′(k′+r)
0 + w

0...kπ(k+1)...π(k+l)
0 − w0...k

0 ).

The expression in the parenthesis equals

w
0...k′π′(k′+1)...π′(k′+r)
0 ⊕ w

0...kπ(k+1)...π(k+l)
0 ∈ dτ ′

π′ ⊕ dτ
π,

because w
0...k′π′(k′+1)...π′(k′+r)
0 ∈ dτ ′

π′ , w
0...kπ(k+1)...π(k+l)
0 ∈ dτ

π and dτ ′

π′ ⊕ dτ
π

has wτ
0 for its reference point. Since w0...k′

s ∈ cτ
′

and cτ
′

⊕ (dτ ′

π′ ⊕ dτ
π) have

wτ ′

0 for their reference point, one sees that the right side of (7.19) equals
(7.20)

w0...k′

s ⊕ (w
0...k′π′(k′+1)...π′(k′+r)
0 ⊕ w

0...kπ(k+1)...π(k+l)
0 ) ∈ cτ

′

⊕ (dτ ′

π′ ⊕ dτ
π).

Now note that

(7.21)
(γc∗ ⊕ δc∗)(w

0...k′π′(k′+1)...π′(k′+r)
0 ⊕ w

0...kπ(k+1)...π(k+l)
0 ) =

γc∗(w
0...k′π′(k′+1)...π′(k′+r)
0 ) ⊕ δc∗(w

0...kπ(k+1)...π(k+l)
0 ).

However,

(7.22) γc∗(w
0...k′π′(k′+1)...π′(k′+r)
0 ) = brk−k′

,

(7.23) δc∗(w
0...kπ(k+1)...π(k+l)
0 ) = bk−k′,k−k′+l

and thus,

(7.24)
(γc∗ ⊕ δc∗)(w

0...k′π′(k′+1)...π′(k′+r)
0 ⊕ w

0...kπ(k+1)...π(k+l)
0 ) =

brk−k′

⊕ bk−k′,k−k′+l.

Since 0 ≤ r ≤ k − k′, (π′ ⊔ π)(k′ + 1) = π′(k′ + 1), . . . , (π′ ⊔ π)(k′ +

r) = π′(k′ + r), one concludes that βτ ′

π′⊔π(w
0...k′π′(k′+1)...π′(k′+r)
0 ) = er. In

particular, βτ ′

π′⊔π(w0...k
0 ) = ek−k′ . Therefore, βτ ′

π′⊔π(1
2 (w

0...k′π′(k′+1)...π′(k′+r)
0 +

w0...k
0 )) = 1

2 (er + ek−k′ ) = br,k−k′

. Similarly, since 0 ≤ l ≤ n − k, we see
that (π′ ⊔ π)(k + 1) = π(k + 1), . . . , (π′ ⊔ π)(k + l) = π(k + l) and thus,

βτ ′

π′⊔π(w
0...kπ(k+1)...π(k+l)
0 ) = ek−k′+l. Consequently,

βτ ′

π′⊔π(
1

2
(w

0...kπ(k+1)...π(k+l)
0 + w0...k

0 )) =
1

2
(ek−k′+l + ek−k′ ) = bk−k′+l,k−k′

.
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It follows that

(7.25)
(βτ ′

π′⊔π)−1(brk−k′

⊕ bk−k′,k−k′+l) =
1
2 (w

0...k′π′(k′+1)...π′(k′+r)
0 + w

0...kπ(k+1)...π(k+l)
0 ).

Now (7.16) and (7.25) show that

(7.26)
εc∗(γc∗ ⊕ δc∗)(w

0...k′π′(k′+1)...π′(k′+r)
0 ⊕ w

0...kπ(k+1)...π(k+l)
0 ) =

1
2 (w

0...k′π′(k′+1)...π′(k′+r)
0 + w

0...kπ(k+1)...π(k+l)
0 ).

Finally, (7.17) and (7.26) show that θσ
c∗ maps the vertex w of c∗, given by

(7.18), to the vertex

(7.27) θσ
c∗(w) = w0...k′

s ⊕
1

2
(w

0...k′π′(k′+1)...π′(k′+r)
0 + w

0...kπ(k+1)...π(k+l)
0 ),

where the reference point is wτ ′

0 .

7.5. Step (v). Let σ ∈ K be an n-simplex. We define a mapping θσ : σ →
σ, by putting

(7.28) θσ|c∗ = θσ
c∗ ,

for every n-cell c∗ ∈ L′
n(σ). Note that θσ

c∗ maps c∗ to ϑσ
n(c∗) ∈ N ′

n(σ) and
thus, θσ

c∗(c
∗) ⊆ ϑσ

n(c∗) ⊆ σ. To see that the mapping θσ is well defined, it
suffices to prove the following lemma.

Lemma 7.6. Let σ be an n-simplex from K. For any two n-cells c∗, c∗1 ∈
L′(σ), the restrictions of θσ

c∗ and θσ
c∗1

to the intersection c∗ ∩ c∗1 coincide, i.e.,

(7.29) θσ
c∗ |(c

∗ ∩ c∗1) = θσ
c∗1
|(c∗ ∩ c∗1).

Proof. It suffices to prove (7.29) in the special case when c∗ ∩ c∗1 is a
common (n−1)-face of the n-cells c∗ and c∗1. Indeed, assume that c∗∩c∗1 = e∗

is an l-cell, 0 ≤ l < n − 1. Note that all n-cells C of L′(σ) which contain
e∗, together with their faces, form a cellular complex, whose carrier is an
n-cell. Since n-cells are manifolds with boundary, there exists a sequence of
n-cells c∗ = C0, . . . , Ck = c∗1 of L′(σ) such that the intersections Ci ∩ Ci+1

of consecutive members of the sequence are common (n− 1)-faces of Ci and
Ci+1. By the special case of the lemma, θσ

Ci
|(Ci ∩Ci+1) = θσ

Ci+1
|(Ci ∩Ci+1).

Since e∗ ⊆ Ci ∩ Ci+1, one concludes that θσ
c∗ |e

∗ = . . . = θσ
Ci
|e∗ = θσ

Ci+1
|e∗ =

. . . = θσ
c∗1
|e∗.

We now consider the special case when c∗, c∗1 are different n-cells, c∗∩c∗1 =
e∗ and dim e∗ = n− 1. To prove that θσ

c∗ |e
∗ = θσ

c∗1
|e∗, it suffices to prove that

(7.30) θσ
c∗(w) = θσ

c∗1
(w),

for all vertices w of the cell e∗. There is no loss of generality in assuming
that τ = [v0, . . . , vk], 0 ≤ k ≤ n, τ ′ = [v0, . . . , vk′ ], 0 ≤ k′ ≤ k, π′ = ι′

is the identity permutation of the set {k′ + 1, . . . , k}, π = ι is the identity
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permutation of the set {k + 1, . . . , n} and thus, π′ ⊔ π = η is the identity
permutation of {k′ + 1, . . . , n}. Then (7.9) assumes the form

(7.31) c∗ = (ατ )−1(cτ
′

ι′ ) ⊕ dτ
ι ,

the direct sum having w0...k
0 for its reference point. Consequently, the vertices

w of c∗ are of the form

(7.32) w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 ,

where 0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′, 0 ≤ l ≤ n − k and the reference point is
w0...k

0 . Furthermore, (7.27) shows that

(7.33) θσ
c∗(w) = w0...k′

s ⊕
1

2
(w0...k′+r

0 + w0...k+l
0 ),

the direct sum having w0...k′

0 for its reference point. Given the n-cell c∗ of
L′(σ) and an (n−1)-face e∗ of c∗, either there is no n-cell c∗1 6= c∗ with e∗ < c∗1
or there is a unique n-cell c∗1 having this property (σ is an n-manifold). We
will now consider all (n−1)-faces e∗ of c∗, we will determine the corresponding
n-cells c∗1 (if they exist) and we will verify (7.30). Concerning e∗, two cases
are possible: Case I, when

(7.34) e∗ = (ατ )−1(e′) + dτ
ι − wτ

0

and e′ is a (k − 1)-face of cτ
′

ι′ = cτ
′

⊕ dτ ′

ι′ , k ≥ 1, and Case II, when

(7.35) e∗ = (ατ )−1(cτ
′

ι′ ) + d− wτ
0 ,

and d is a (n− k − 1)-face of dτ
ι , n ≥ k + 1.

7.5.1. Case I. We distinguish two subcases, I.1, when e′ = c′+dτ ′

ι′ −w
0...k′

0 ,

where c′ is a (k′ − 1)-face of cτ
′

and I.2, when e′ = cτ
′

+ d′ −w0...k′

, where d′

is a (k − k′ − 1)-face of dτ ′

ι′ .
Subcase I.1. This subcase can appear only when k′ ≥ 1. For symmetry

reasons, it suffices to consider the situation, when c′ = [w0...k′

0 , . . . , w0...k′

k′−1 ].
Then the vertex scheme of e′ is obtained from the vertex scheme (3.11) for

cτ
′

ι′ , by deleting the last column. This is the scheme

(7.36)
w0...k′

0 . . . w0...k′

k′−1

. . . . . . . . .
w0...k

0 . . . w0...k
k′−1

and thus, the vertices of e′ are of the form (ατ )−1(w′), where w′ = w0...k′+r
s ,

0 ≤ s ≤ k′ − 1, 0 ≤ r ≤ k − k′. It follows that the vertices w of e∗ are given
by (7.32), where 0 ≤ s ≤ k′ − 1, 0 ≤ r ≤ k − k′ and 0 ≤ l ≤ n− k. Moreover,
the θσ

c∗-images of the vertices w of e∗ are given by (7.33).

Adding to the scheme (7.36) an initial row w0...k′−1
0 . . . w0...k′−1

k′−1 produces

the vertex scheme of the k-cell c
τ ′

1

ι′1
= cτ

′

1⊕d
τ ′

1

ι′1
∈ Lk(τ), where τ ′1 = [v0, . . . , vk′

1
],

k′1 = k′−1 and ι′1 is the identity permutation of {k′1 +1, . . . , k} = {k′, . . . , k}.
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Clearly, e′ is a (k − 1)-face of c
τ ′

1

ι′1
and thus, e∗ is also an (n − 1)-face of the

n-cell (ατ )−1(c
τ ′

1

ι′1
) ⊕ dτ

ι ∈ L′(σ). Since e∗ can be the face of only two n-cells,

we conclude that

(7.37) c∗1 = (ατ )−1(c
τ ′

1

ι′1
) ⊕ dτ

ι .

To prove that θc∗ |e∗ = θc∗1
|e∗, it suffices to see that the mappings

θσ
c∗ and θσ

c∗1
assume the same values at the vertices w of e∗. The vertex

w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of e∗ can be written in the form w =

(ατ )−1(w
0...k′

1+r+1
s ) ⊕ w0...k+l

0 . Therefore, (7.33) for c∗1, shows that θσ
c∗1

(w) =

w
0...k′

1
s ⊕ 1

2 (w
0...k′

1+r+1
0 +w0...k+l

0 ), the reference point being w
0...k′

1
0 = w0...k′−1

0 .

Consequently, θσ
c∗1

(w) = w0...k′−1
s + 1

2 (w0...k′+r
0 + w0...k+l

0 ) − w0...k′−1
0 . On the

other hand, by (7.33) for c∗, one has θσ
c∗(w) = w0...k′

s + 1
2 (w0...k′+r

0 +w0...k+l
0 )−

w0...k′

0 and thus, θσ
c∗1

(w) = θσ
c∗(w), because w0...k′

s −w0...k′

0 = w0...k′−1
s −w0...k′−1

0

(see (3.14) for k = k′, i = s and k = k′ − 1, i = s).

Subcase I.2. In this subcase e′ = cτ
′

+d′−w0...k′

, where d′ is a (k−k′−1)-

face of dτ ′

ι′ = [w0...k′

0 , . . . , w0...k
0 ]. We distinguish three subsubcases, I.2.1,

when d′ = [w0...k′+1
0 , . . . , w0...k

0 ], 0 ≤ k′ < k, Subsubcase I.2.2, when d′ =

[w0...k′

0 , ..., w0...k′+i−1
0 , w0...k′+i+1

0 , . . . , w0...k
0 ], 0 < i < k − k′, and Subsubcase

I.2.3, when d′ = [w0...k′

0 , . . . , w0...k−1
0 ], 0 ≤ k′ < k.

Subsubcase I.2.1. This time d′ = [w0...k′+1
0 , . . . , w0...k

0 ], 0 ≤ k′ < k. There-

fore, if one omits the first row in the vertex scheme (3.11) for cτ
′

ι′ , one obtains

the vertex scheme of e′ = cτ
′

+ d′ − w0...k′

, which has the form

(7.38)
w0...k′+1

0 . . . w0...k′+1
k′

. . . . . . . . .
w0...k

0 . . . w0...k
k′ .

Adding to that scheme a terminal column w0...k′+1
k′+1 . . . w0...k

k′+1 produces the

vertex scheme of the k-cell c
τ ′

1

ι′1
∈ Lk(τ), where this time τ ′1 = [v0, . . . , vk′

1
],

k′1 = k′+1 and ι′1 is the identity permutation of {k′1+1, . . . , k} = {k′+2, . . . , k}

(if k′ + 1 = k, ι′1 is empty). Since e′ is a (k − 1)-face of c
τ ′

1

ι′1
, it follows

that e∗ is also an (n − 1)-face of the n-cell c∗1 ∈ L′(σ), which has the form

(7.37). The vertex w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of c∗ is a vertex of e∗

provided 0 ≤ s ≤ k′, 1 ≤ r ≤ k − k′, 0 ≤ l ≤ n − k. Note that w can be

written in the form w = (ατ )−1(w
0...k′

1+r−1
s ) ⊕ w0...k+l

0 , the reference point
being w0...k

0 . By formula (7.33), applied to c∗1, one concludes that θc∗1
(w) =

w
0...k′

1
s ⊕ 1

2 (w
0...k′

1+r−1
0 + w0...k+l

0 ) = w0...k′+1
s ⊕ 1

2 (w0...k′+r
0 + w0...k+l

0 ), the

reference point being w
0...k′

1
0 = w0...k′+1

0 . It follows that θc∗1
(w) = w0...k′+1

s +
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1
2 (w0...k′+r + w0...k+l

0 ) − w0...k′+1
0 . Comparing this with (7.33) for c∗, one

concludes that θc∗1
(w) = θc∗(w), because w0...k′

s −w0...k′

0 = w0...k′+1
s −w0...k′+1

0 .
Subsubcase I.2.2. This time

d′ = [w0...k′

0 , ..., w0...k′+i−1
0 , w0...k′+i+1

0 , . . . , w0...k
0 ], 0 < i < k − k′,

and the vertex scheme of e′ = cτ
′

+ d′ − w0...k′

is obtained from the vertex
scheme (3.11) for cτ

′

ι′ by omitting the i-th row w0...k′+i
0 . . . w0...k′+i

k′ . Let π′

be the permutation of the set {k′ + 1, . . . , k}, which interchanges k′ + i and
k′+i+1 and otherwise coincides with the identity mapping η′ of {k′+1, . . . , k}.

Then the vertex scheme of cτ
′

π′ is

(7.39)

w0...k′

0 . . . w0...k′

k′

. . . . . . . . .

w0...k′+i−1
0 . . . w0...k′+i−1

k′

w0...k′+i−1k′+i+1
0 . . . w0...k′+i−1k′+i+1

k′

w0...k′+i+1
0 . . . w0...k′+i+1

k′

w0...k′+i+2
0 . . . w0...k′+i+2

k′

. . . . . . . . .
w0...k

0 . . . w0...k
k′ .

Note that the omission of the i-th row w0...k′+i−1k′+i+1
0 . . . w0...k′+i−1k′+i+1

k′

of (7.39) yields the vertex scheme of e′ and thus, e′ is also a face of the n-cell

(7.40) c∗1 = (ατ )−1(cτ
′

π′) ⊕ dτ
ι .

Note that the vertex w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of c∗ is a vertex of
e∗ provided 0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′, r 6= i and 0 ≤ l ≤ n − k. In

that case w = (ατ )−1(w
0...k′π′(k′+1)...π′(k′+r)
s ) ⊕ w0...k+l

0 , because {π′(k′ +
1), . . . , π′(k′ + r)} = {k′ + 1, . . . , k′ + r}, for 0 ≤ r 6= i. E.g., for r = i + 1
one has {π′(k′ + 1), . . . , π′(k′ + i − 1), π′(k′ + i), π′(k′ + i + 1)} = {k′ +
1, . . . , k′ + i − 1, k′ + i + 1, k′ + i} = {k′ + 1, . . . , k′ + i + 1}. Now (7.27)

shows that, for r 6= i, θc∗1
(w) = w0...k′

s ⊕ 1
2 (w

0...k′π′(k′+1)...π′(k′+r)
0 +w0...k+l

0 ) =

w0...k′

s ⊕ 1
2 (w0...k′+r

0 + w0...k+l
0 ) = θc∗(w).

Subsubcase I.2.3. This time d′ = [w0...k′

0 , . . . , w0...k−1
0 ], 0 ≤ k′ < k, and

the vertex scheme of the (k − 1)-cell e′ = cτ
′

+ d′ −w0...k′

0 ∈ L(τ) is obtained

from the vertex scheme (3.11), for the k-cell cτ
′

ι′ , by omitting the last row.

Consequently, the vertices of e′ are of the form w′ = w0...k′+r
s , where 0 ≤ s ≤

k′, 0 ≤ r ≤ k − k′ − 1. The vertices w of e∗ = (ατ )−1(e′) + dτ
ι − wτ

0 are of
the form (7.32), where 0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′ − 1 and 0 ≤ l ≤ n − k.
Furthermore, their θc∗ -images are given by (7.33). Now note that the vertex

scheme of e′ coincides with the vertex scheme of the (k− 1)-cell cτ
′

ι′1
, where ι′1

is the identity permutation of the set {k′ + 1, . . . , k − 1} so that cτ
′

ι′1
= e′.
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Let τ1 = [v0, . . . , vk−1] and let ι1 be the identity permutation of the set

{k, . . . , n}. Then the direct sum (ατ1)−1(cτ
′

ι′1
) ⊕ dτ1

ι1
is well defined and its

reference point is w0...k−1
0 . Let us now show that

(7.41) c∗1 = (ατ1)−1(cτ
′

ι′1
) ⊕ dτ1

ι1
.

It suffices to show that e∗ is a face of the right side of (7.41). First note that
τ1 < τ and

(7.42) (ατ )−1|τ1 = (ατ1)−1 + w0...k
0 − w0...k−1

0 .

This formula holds, because both sides are affine mappings defined on τ1,
which at each of the vertices v0, . . . , vk−1 of τ1 assume the same values. Indeed,
(ατ )−1(vi) = w0...k

i and (ατ1)−1(vi) + w0...k
0 − w0...k−1

0 = w0...k−1
i + w0...k

0 −

w0...k−1
0 = w0...k

i . Since e′ ⊆ τ1, (7.42) implies that (ατ )−1(e′) = (ατ1)−1(e′)+

w0...k
0 − w0...k−1

0 and thus,

(7.43) e∗ = (ατ1)−1(e′) + dτ
ι − w0...k−1

0 .

Now note that dτ
ι = [w0...k, . . . , w0...n

0 ] < [w0...k−1, . . . , w0...n
0 ] = dτ1

ι1
. Since the

direct sum in (7.41) has w0...k−1
0 for its reference point, we see that it equals

(ατ1)−1(e′)+dτ1
ι1
−w0...k−1

0 . A comparison with (7.43) shows that e∗ is indeed
a face of the right side of (7.41).

Now consider a vertex w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of e∗ and note

that 0 ≤ r ≤ k − k′ − 1. Since (ατ )−1(cτ
′

ι′ ) ⊕ dτ
ι has w0...k

0 for its refer-

ence point, we see that w = (ατ )−1(w0...k′+r
s ) + w0...k+l

0 − w0...k
0 . Also note

that 0 ≤ r ≤ k − k′ − 1 implies w0...k′+r
s ∈ τ1 and thus, (7.42) shows that

(ατ )−1(w0...k′+r
s ) = (ατ1)−1(w0...k′+r

s ) + w0...k
0 − w0...k−1

0 . Consequently, the

vertex w can also be written in the form w = (ατ1)−1(w0...k′+r
s ) + w0...k+l

0 −

w0...k−1
0 = (ατ1)−1(w0...k′+r

s )+w0...k1+l+1
0 −w0...k1

0 ∈ (ατ1)−1(cτ
′

ι′1
)⊕dτ1

ι1
, where

k1 = k − 1. Now (7.33) for c∗1 shows that

(7.44) θc∗1
(w) = w0...k′

s ⊕
1

2
(w0...k′+r

0 + w0...k1+l+1
0 ).

However, this equals θc∗(w) = w0...k′

s ⊕ 1
2 (w0...k′+r

0 + w0...k+l
0 ), because k1 +

l + 1 = k + l and both direct sums have w0...k′

0 for their reference point.
7.5.2. Case II. In this case e∗ is given by (7.35), where d is an

(n − k − 1)-face of dτ
ι = [w0...k

0 , . . . , w0...n
0 ], 0 ≤ k < n. We distin-

guish three subcases, II.1, when d = [w0...k+1
0 , . . . , w0...n

0 ], II.2, when d =

[w0...k
0 , . . . , w0...k+i−1

0 , w0...k+i+1
0 , . . . , w0...n

0 ], 0 < i < n − k, and II.3, when

d = [w0...k
0 , . . . , w0...n−1

0 ].
Subcase II.1. Put τ1 = [v0, . . . , vk+1] and let ι′1 be the identity permutation

of {k′ + 1, . . . , k + 1}. Then cτ
′

ι′1
= cτ

′

⊕ dτ ′

ι′1
is a (k + 1)-cell from L(τ1). Note

that d = [w0...k+1
0 , . . . , w0...n

0 ] = dτ1
ι1

, where ι1 is the identity permutation of
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{k + 2, . . . , n}. Consequently, cτ1
ι1

= cτ1 ⊕ dτ1
ι1

= cτ1 ⊕ d is well defined and

w0...k+1
0 is its reference point. Since dim cτ

′

ι′1
= dim τ1 = k+1 and cτ

′

ι′1
⊆ τ1, one

has Aff(cτ
′

ι′1
) = Aff(τ1) and thus also Aff(ατ1)−1(cτ

′

ι′1
) = Aff(cτ1). It follows

that Aff(ατ1)−1(cτ
′

ι′1
) ∩ Aff(d) = Aff(cτ1) ∩ Aff(d) = {w0...k+1

0 }. This proves

that (ατ1)−1(cτ
′

ι′1
)⊕ d is a well-defined n-cell of L′(σ), also having w0...k+1

0 for

its reference point. Let us now show that

(7.45) c∗1 = (ατ1)−1(cτ
′

ι′1
) ⊕ d.

To prove this assertion, it suffices to prove that e∗ is a face of the right
side of (7.45). First note that τ < τ1 and

(7.46) (ατ1)−1|τ = (ατ )−1 + w0...k+1
0 − w0...k

0 .

This formula holds because both sides are affine mappings defined on τ , which
at each of the vertices v0, . . . , vk of τ assume the same values. Indeed, for
0 ≤ i ≤ k, one has (ατ1)−1(vi) = w0...k+1

i and (ατ )−1(vi)+w0...k+1
0 −w0...k

0 =

w0...k
i + w0...k+1

0 − w0...k
0 = w0...k+1

i . Since cτ
′

ι′ ⊆ τ , (7.46) implies that

(7.47) (ατ1)−1(cτ
′

ι′ ) = (ατ )−1(cτ
′

ι′ ) + w0...k+1
0 − w0...k

0

and thus, (7.35) assumes the form

(7.48) e∗ = (ατ1)−1(cτ
′

ι′ ) + d− w0...k+1
0 .

Having w0...k+1
0 for its reference point, the right side of (7.45) equals

(ατ1)−1(cτ
′

ι′1
) + d − w0...k+1

0 . Comparing this with (7.48) and taking into ac-

count that d < dτ
ι , one concludes that indeed, e∗ is a face of the right side of

(7.45).

Now consider a vertex w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of e∗ and note

that 1 ≤ l ≤ n− k. Since (ατ )−1(cτ
′

ι′ )⊕ dτ
ι and w0...k

0 is its reference point, we

see that w = (ατ )−1(w0...k′+r
s ) + w0...k+l

0 − w0...k
0 . Moreover, w0...k′+r

s ∈ cτ
′

ι

and (7.47) imply that (ατ )−1(w0...k′+r
s ) = (ατ1)−1(w0...k′+r

s )−w0...k+1
0 +w0...k

0 .

Consequently, w = (ατ1)−1(w0...k′+r
s )−w0...k+1

0 +w0...k+l
0 . Putting k1 = k+1,

we see that w = (ατ1)−1(w0...k′+r
s ) + w0...k1+l−1

0 − w0...k1
0 . Now (7.33) shows

that θc∗1
(w) = w0...k′

s ⊕ 1
2 (w0...k′+r

0 + w0...k1+l−1
0 ), the reference point being

w0...k′

0 . This coincides with θc∗(w), given by (7.33), because both direct sums

have the same point w0...k′

0 for their reference point and k1 + l− 1 = k + l.
Subcase II.2. Consider the permutation π1 of {k+ 1, . . . , n}, which inter-

changes k+ i and k+ i+1 and otherwise coincides with the identity mapping
η of {k + 1, . . . , n}. Then the vertices of dτ

π1
coincide with the vertices of dτ

η,

except for the i-th vertex, which equals w0...k+i−1k+i+1
0 and w0...k+i

0 , respec-
tively. By Lemma 3.8,

dτ
η ∩ dτ

π1
= [w0...k

0 , . . . , w0...k+i−1
0 , w0...k+i+1

0 , . . . , w0...n
0 ] = d
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is a common face of dτ
η and dτ

π1
. Since the direct sum (ατ )−1(cτ

′

ι′ )⊕d
τ
π1

is well
defined and wτ

0 is its reference point, it follows that e∗, given by (7.35), is a
face of that direct sum and thus,

(7.49) c∗1 = (ατ )−1(cτ
′

ι′ ) ⊕ dτ
π1
.

Now note that the vertex w = (ατ )−1(w0...k′+r
s ) ⊕ w0...k+l

0 of c∗ is a
vertex of e∗ provided 0 < l < n − k and l 6= i. Such a vertex can also be

written in the form w = (ατ )−1(w0...k′+r
s ) ⊕ w

0...kπ1(k+1)...π1(k+l)
0 , because

{π1(k+1), . . . , π(k+ l)} = {k+1, . . . , k+ l}, for l 6= i. E.g., for l = i+1, one
has {π1(k+1), . . . , π1(k+i−1), π1(k+i), π1(k+i+1)} = {k+1, . . . , k+i−1, k+
i+1, k+ i} = {k+1, . . . , k+ i+1}. Now (7.27) shows that, for l 6= i, θc∗1

(w) =

w0...k′

s ⊕ 1
2 (w0...k′+r

0 +w
0...kπ1(k+1)...π1(k+l)
0 ) = w0...k′+r

s ⊕ 1
2 (w0...k′+r

0 +w0...k+l
0 ),

the reference point being w0...k′

0 . However, this expression coincides with the
expression (7.33) for θc∗(w) and thus, θc∗1

(w) = θc∗(w).

Subcase II.3. This subcase cannot occur. Indeed, d = [w0...k
0 , . . . , w0...n−1

0 ]

and the vertices w of e∗ are of the form w = (ατ )−1(w0...k′+r
s )⊕w0...k+l

0 , where

0 ≤ l ≤ n − k − 1. Clearly, (ατ )−1(w0...k′+r
s ) ⊆ cτ ⊆ τ = [v0, . . . , vk] ⊆

[v0, . . . , vn−1], because k < n. Furthermore, w0...k+l
0 ∈ [v0, . . . , vk+l] ⊆

[v0, . . . , vn−1] and w0...k
0 ∈ τ ⊆ [v0, . . . , vn−1]. Hence, w ∈ [v0, . . . , vn−1]

and thus, also e∗ ⊆ [v0, . . . , vn−1]. Since [v0, . . . , vn−1] ⊆ ∂σ, one can have
only one n-cell, whose face is e∗.

Remark 7.7. Let σ ∈ K and dim σ = n. If an (n− 1)-cell e∗ from L′(σ)
admits only one n-cell c∗ ∈ L′(σ) such that e∗ < c∗, then e∗ is contained in
an (n− 1)-face ζ of σ. Indeed, there is no loss of generality in assuming that
σ = [v0, . . . , vn]. In the proof of Lemma 7.6, we found a second n-cell c∗1 such
that e∗ < c∗1 in all but the last Subcase II.3. However, in that situation we
proved that e∗ ⊆ ζ = [v0, . . . , vn−1].

7.6. Step (vi). In Step (ii), for every n-simplex σ ∈ K, we have defined a
function ϑσ

n : L′
n(σ) → N ′

n(σ) and in Step (iv), for every n-cell c∗ ∈ L′
n(σ), we

have defined an affine isomorphism θσ
c∗ : c∗ → c•, where c• = ϑσ

n(c∗). We will
now define functions ϑσ

k : L′
k(σ) → N ′

k(σ), 0 ≤ k < n, which together with
ϑσ

n form a morphism of cellular complexes ϑσ : L′(σ) → N ′(σ). Moreover, for
every k-cell e∗ ∈ L′

k(σ), we will define an affine isomorphism θσ
e∗ : e∗ → e•,

where e• = ϑσ
k(e∗).

If e∗ ∈ L′
k(σ), we choose an n-cell c∗ ∈ L′(σ) such that e∗ < c∗. Then we

put

(7.50) ϑσ
k (e∗) = θσ

c∗(e
∗).

Since θσ
c∗ is an affine isomorphism, e• = θσ

c∗(e
∗) is a k-face of c•. We define

θσ
e∗ by putting

(7.51) θσ
e∗ = θσ

c∗ |e
∗.
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The mapping θσ
e∗ , hence also e• = θσ

c∗(e
∗), does not depend on the choice of

the n-cell c∗. Indeed, if we have another n-cell c∗1 ∈ L′
n(σ) such that e∗ < c∗1,

then e∗ ⊆ c∗1 ∩ c
∗ and thus, by Lemma 7.6, θσ

c∗1
|e∗ = θσ

c∗ |e
∗. Note that (7.51)

and (7.50) imply

(7.52) θσ
e∗(e∗) = ϑσ

k (e∗).

To prove that the functions ϑσ
k preserve faces, consider two cells e∗ ∈

L′
k(σ), e∗1 ∈ L′

k1
(σ) such that e∗1 < e∗. Choose an n-cell c∗ ∈ L′(σ) such

that e∗ < c∗, hence also e∗1 < c∗. It follows that ϑσ
k(e∗) = θσ

c∗(e
∗) and

ϑσ
k1

(e∗1) = θσ
c∗(e

∗
1). Being an affine isomorphism, θσ

c∗ : c∗ → c• preserves faces.
Therefore, e∗1 < e∗ implies θσ

c∗(e
∗
1) < θσ

c∗(e
∗) and thus, ϑσ

k1
(e∗1) < ϑσ

k(e∗).
Now consider an m-face ζ of an n-simplex σ ∈ K, 0 ≤ m < n. Since

L′(ζ) ⊆ L′(σ), a k-cell e∗ of L′
k(ζ), 0 ≤ k ≤ m, can also be viewed as a k-cell

of L′(σ). Let us show that

(7.53) θζ
e∗ = θσ

e∗ .

It suffices to consider the case when σ = [v0, . . . , vn] and ζ = [v0, . . . , vm]. Let

us prove that θζ
e∗(w) = θσ

e∗(w), for all the vertices w of e∗. These vertices are
of the form (7.32), where 0 ≤ s ≤ k′, 0 ≤ r ≤ k − k′, 0 ≤ l ≤ n − k. By

(7.33) for ζ and e∗, one sees that θζ
e∗(w) = w0...k′

s ⊕ 1
2 (w0...k′+r

0 + w0...k+l
0 ).

Choose an n-cell c∗ ∈ L′(σ) such that e∗ < c∗. Viewing e∗ as an element
of L′

k(σ), one concludes that θσ
e∗(w) = θσ

c∗(w). However, (7.33) for σ and c∗

gives to θσ
c∗(w) again the value w0...k′

s ⊕ 1
2 (w0...k′+r

0 + w0...k+l
0 ). The fact we

just proved implies that the restriction of the function ϑσ
k : L′

k(σ) → N ′
k(σ) to

L′
k(ζ) = L′

k(σ) ∩ ζ coincides with ϑζ
k : L′

k(ζ) → N ′
k(ζ), i.e.,

(7.54) ϑζ
k = ϑσ

k |L
′
k(ζ).

Indeed, if e∗ ∈ L′
k(ζ), (7.52) and (7.53) show that ϑζ

k(e∗) = θζ
e∗(e∗) =

θσ
e∗(e∗) = ϑσ

k (e∗).

Lemma 7.8. Let σ be an n-simplex from K. The functions ϑσ
k , 0 ≤ k ≤ n,

form an isomorphism of cellular complexes ϑσ : L′(σ) → N ′(σ).

Proof. We need a morphism of cellular complexes ϕσ : N ′(σ) → L′(σ),
consisting of functions ϕσ

k : N ′
k(σ) → L′

k(σ), 0 ≤ k ≤ n, which is inverse to
ϑσ. For k = n, we put ϕσ

n = (ϑσ
n)−1 : N ′

n(σ) → L′
n(σ). Since ϑσ

n is a bijection,
ϕσ

n is well defined. If c• ∈ N ′
n(σ) and c∗ = ϕσ

n(c•), then c• = ϑσ
n(c∗) and the

affine isomorphism θσ
c∗ : c∗ → c• is defined. Therefore, φσ

c• = (θσ
c∗)

−1 : c• → c∗

is also an affine isomorphism. For 0 ≤ k < n and e• ∈ N ′
k(σ), we now define

ϕσ
k (e•), by choosing an n-cell c• ∈ N ′

n(σ) such that e• ≤ c• and by putting

(7.55) ϕσ
k (e•) = φσ

c•(e
•)

(formula (7.55) holds also in the case when k = n, because then e• = c•).
Clearly, φσ

c•(e
•) is a k-face of φσ

c•(c
•) = c∗. As in the case of ϑσ, to see that
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the functions ϕσ
k , 0 ≤ k ≤ n, are well defined and preserve faces, it suffices to

prove that

(7.56) φσ
c• |(c

• ∩ c•1) = φσ
c•1
|(c• ∩ c•1),

whenever c• and c•1 are n-cells of N ′(σ).
As in the proof of Lemma 7.6, it suffices to prove the assertion in the

special case, when c•∩ c•1 is a common (n−1)-face e• of the n-cells c• and c•1.
In that case, e∗ = φσ

c•(e
•) is an (n − 1)-face of c∗ = ϕσ

n(c•). We distinguish
two cases: Case (i), when c∗ is the only n-cell from L′(σ) such that e∗ < c∗

and Case (ii), when there is another n-cell c∗1 from L′(σ) such that e∗ < c∗1.
In Case (i), Remark 7.7 shows that e∗ is contained in an (n− 1)-face ζ of σ
and thus, e∗ ∈ L′

n−1(σ) ∩ ζ = L′
n−1(ζ). Now (7.50) and (7.52) imply that

e• = θσ
c∗(e

∗) = ϑσ
n−1(e

∗) = ϑζ
n−1(e

∗) ∈ N ′
n−1(ζ) and thus, e• ⊆ ζ ⊆ ∂σ.

However, this is impossible, because e• is the face of two n-cells c• and c•1.
This shows that only Case (ii) is possible.

In Case (ii), c∗ 6= c∗1 implies ϑσ
n(c∗) 6= ϑσ

n(c∗1), because ϑσ
n is a bijection.

Since θσ
c∗(c

∗) = ϑσ
n(c∗) and θσ

c∗1
(c∗1) = ϑσ

n(c∗1), we conclude that θσ
c∗1

(c∗1) is an

n-cell from N ′(σ) such that θσ
c∗1

(c∗1) 6= θσ
c∗(c

∗) = c•. Moreover, c∗∩c∗1 = e∗ and

Lemma 7.6 show that θσ
c∗1
|e∗ = θσ

c∗ |e
∗ and thus, θσ

c∗1
(e∗) = θσ

c∗(e
∗) = e•. Since

e∗ < c∗1 implies θσ
c∗1

(e∗) < θσ
c∗1

(c∗1), we conclude that θσ
c∗1

(c∗1) is an n-cell from

N ′(σ), different from c• and such that the (n−1)-cell e• is a face of θσ
c∗1

(c∗1) and

c•. Since c• and c•1 are the only two such n-cells, it follows that θσ
c∗1

(c∗1) = c•1
and thus, ϕσ

n(c•1) = c∗1. Moreover, φσ
c•1
|e• = (θσ

c∗1
)−1|e•. Since θσ

c∗1
|e∗ = θσ

c∗ |e
∗,

it follows that also (θσ
c∗1

)−1|e• = (θσ
c∗)

−1|e• and thus, φσ
c•1
|e• = φσ

c• |e
•.

Let us now show that the functions ϕσ
k : N ′

k(σ) → L′
k(σ), 0 ≤ k ≤ n,

preserve faces and therefore, they form a morphism of cellular complexes
ϕσ : N ′(σ) → L′(σ). Consider two cells e• ∈ N ′

k(σ) and e•1 ∈ N ′
k1

(σ) such that
e•1 < e•. Choose an n-cell c• ∈ N ′

n(σ) such that e• < c•, hence also e•1 < c•.
It follows, by (7.55), that ϕσ

k (e•) = φσ
c•(e

•) and ϕσ
k1

(e•1) = φσ
c•(e

•
1). Being an

affine isomorphism, φσ
c• : c• → c∗ = ϕσ

n(c•) preserves faces. Therefore, e•1 < e•

implies φσ
c•(e

•
1) < φσ

c•(e
•) and thus, ϕσ

k1
(e•1) < ϕσ

k (e•).
To complete the proof of Lemma 7.8, it suffices to show that, for 0 ≤ k ≤

n, the function ϕσ
k : N ′

k(σ) → L′
k(σ) is the inverse of the function ϑσ

k : L′
k(σ) →

N ′
k(σ), i.e.,

(7.57) ϕσ
kϑ

σ
k = id, ϑσ

kϕ
σ
k = id.

Indeed, ϕσ
nϑ

σ
n(c∗) = c∗, for c∗ ∈ L′

n(σ). If e∗ is a k-cell of L′(σ), 0 ≤ k < n,
and c∗ is an n-cell of L′(σ) such that e∗ < c∗, then (7.50) shows that ϑσ

k(e∗) =
θσ

c∗(e
∗). Clearly, e• = θσ

c∗(e
∗) < θσ

c∗(c
∗) = c•. Consequently, ϕσ

kϑ
σ
k (e∗) =

ϕσ
kθ

σ
c∗(e

∗) = ϕσ
k (e•) = φσ

c•(e
•) = (θσ

c∗)
−1(θσ

c∗(e
∗)) = e∗. Similarly, ϑσ

nϕ
σ
n(c•) =

c•, for c• ∈ N ′
n(σ). If e• is a k-cell of N ′(σ), 0 ≤ k < n, and c• is an n-

cell of N ′(σ) such that e• < c•, then (7.55) shows that ϕσ
k (e•) = φσ

c•(e
•).
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Clearly, e∗ = φσ
c•(e

•) < φσ
c•(c

•) = c∗. Consequently, ϑσ
kϕ

σ
k (e•) = ϑσ

kφ
σ
c•(e

•) =
ϑσ

k (e∗) = θσ
c∗(e

∗) = θσ
c∗((θ

σ
c∗)

−1(e•)) = e•. This completes the proof that ϕσ

is an inverse of ϑσ and thus, ϑσ is an isomorphism of cellular complexes.

7.7. Step (vii). For every n-simplex σ ∈ K, we have defined in Step (vi)
functions ϑσ

k : L′
k(σ) → N ′

k(σ), 0 ≤ k ≤ n, which form an isomorphism of
cellular complexes ϑσ : L′(σ) → N ′(σ). Moreover, for every k-cell e∗ ∈ L′

k(σ),
we have defined an affine isomorphism θσ

e∗ : e∗ → e•, where e• = ϑσ
k (e∗). We

will now define a sequence of face-preserving functions ϑk : L′
k(K) → N ′

k(K),
k ∈ {0, 1, . . .}, which form an isomorphism of cellular complexes ϑ : L′(K) →
N ′(K).

If e∗ ∈ L′
k(K), then there exists a simplex σ ∈ K such that e∗ ∈ L′

k(σ).
We put

(7.58) ϑk(e∗) = ϑσ
k(e∗).

Note that ϑσ
k (e∗) ∈ N ′

k(σ) ⊆ N ′
k(K). Let us prove that ϑk(e∗) does not depend

on the choice of σ. Indeed, assume that σ1 is another simplex of K such that
e∗ ∈ L′

k(σ1). Note that σ∩σ1 ∈ K and σ∩σ1 ≤ σ, σ∩σ1 ≤ σ1. Also note that
e∗ ⊆ σ∩σ1. Consequently, by Theorem 5.1, e∗ ∈ L′

k(σ)∩(σ∩σ1) = L′
k(σ∩σ1).

For ζ = σ ∩ σ1 ≤ σ, (7.54) shows that ϑσ∩σ1

k (e∗) = ϑσ
k(e∗). Analogously,

σ ∩ σ1 ≤ σ1 implies ϑσ∩σ1

k (e∗) = ϑσ1

k (e∗) and thus, ϑσ
k (e∗) = ϑσ1

k (e∗).
To prove that the functions ϑk preserve faces, consider two cells e∗ ∈

L′
k(K), e∗1 ∈ L′

k1
(K) such that e∗1 < e∗. Choose a simplex σ ∈ K

such that e∗ ∈ L′
k(σ). Then ϑk(e∗) = ϑσ

k (e∗). Since L′
k(σ) is a cellu-

lar complex, e∗ ∈ L′
k(σ) and e∗1 < e∗ imply that also e∗1 ∈ L′

k(σ). Con-
sequently, ϑk1(e

∗
1) = ϑσ

k1
(e∗1). Taking into account that the functions ϑσ

k ,
0 ≤ k ≤ dimσ, preserve faces, one concludes that ϑσ

k1
(e∗1) < ϑσ

k (e∗) and
thus, ϑk(e∗1) < ϑk(e∗). Consequently, the functions ϑk : L′

k(K) → N ′
k(K),

k ∈ {0, 1, . . .}, form a morphism of cellular complexes ϑ : L′(K) → N ′(K).
By (7.58), ϑk|L

′
k(σ) = ϑσ

k |L
′
k(σ), 0 ≤ k ≤ n, dimσ = n. Therefore, Lemma

7.8 shows that the restrictions ϑk|L′
k(σ), 0 ≤ k ≤ n, form an isomorphism of

cellular complexes ϑσ : L′
k(σ) → N ′

k(σ).
The proof of Theorem 7.1 will be completed if we prove the following

lemma.

Lemma 7.9. The functions ϑk : L′
k(K) → N ′

k(K), k ∈ {0, 1, . . .}, form an

isomorphism of cellular complexes ϑ : L′(K) → N ′(K).

Proof. To prove the lemma we need a sequence of functions ϕk : N ′
k(K)

→ L′
k(K), k ∈ {0, 1, . . .}, which forms an inverse ϕ : N ′(K) → L′(K) of the

morphism of cellular complexes ϑ : L′(K) → N ′(K). If e• ∈ N ′
k(K), then

there exists a simplex σ ∈ K such that e• ∈ N ′
k(σ). We put

(7.59) ϕk(e•) = ϕσ
k (e•),
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where ϕσ
k is the inverse of ϑσ

k . Note that ϕσ
k (e•) ∈ L′

k(σ) ⊆ L′
k(K). We

will prove that ϕk(e•) does not depend on the choice of σ and therefore,
ϕk : N ′

k(K) → L′
k(K) is well defined.

Let us first prove the analogue of (7.54), i.e., let us prove that ζ < σ
implies

(7.60) ϕζ
k = ϕσ

k |N
′
k(ζ).

For e• ∈ N ′
k(ζ), put e∗ = ϕζ

k(e•) ∈ L′
k(ζ). Then ϑζ

k(e∗) = ϑζ
kϕ

ζ
k(e•) = e•.

By (7.54), ϑζ
k(e∗) = ϑσ

k(e∗) and thus, ϑσ
k(e∗) = e•. Consequently, e∗ =

ϕσ
kϑ

σ
k (e∗) = ϕσ

k (e•). Comparing this with e∗ = ϕζ
k(e•), one concludes that

indeed, ϕσ
k (e•) = ϕζ

k(e•).
Now assume that σ, σ1 ∈ K and e• ∈ N ′

k(σ) ∩N ′
k(σ1). We have to prove

that ϕσ
k (e•) = ϕσ1

k (e•). Since |N ′
k(σ)| ⊆ σ and |N ′

k(σ1)| ⊆ σ1, it follows that
e• ⊆ σ∩σ1. Since ζ = σ∩σ1 ∈ K, one concludes that e• ∈ N ′

k(σ)∩ζ = N ′
k(ζ).

Since ζ ≤ σ, (7.60) implies that ϕσ
k (e•) = ϕζ

k(e•) = ϕσ1

k (e•).
To prove that the functions ϕk preserve faces, consider two cells e• ∈

N ′(K), e•1 ∈ N ′(K), such that e∗1 < e∗. Choose an n-simplex σ ∈ K such
that e• ∈ N ′

k(σ). Then ϕk(e•) = ϕσ
k (e•). Since N ′

k(σ) is a cellular com-
plex, e• ∈ N ′

k(σ) and e•1 < e• imply that also e•1 ∈ N ′
k(σ). Consequently,

ϕk1(e
•
1) = ϕσ

k1
(e•1). Taking into account that the functions ϕσ

k , 0 ≤ k ≤ n, pre-
serve faces, one concludes that ϕσ

k1
(e•1) < ϕσ

k (e•) and thus, ϕk(e•1) < ϕk(e•).
Consequently, the functions ϕk : N ′

k(K) → L′
k(K), k ∈ {0, 1, . . .}, form a

morphism of cellular complexes ϕ : N ′(K) → L′(K).
To complete the proof of Lemma 7.9, it suffices to show that the morphism

ϕ is an inverse of ϑ, i.e., for k ∈ {0, 1, . . .},

(7.61) ϕkϑk = id, ϑkϕk = id.

If e∗ ∈ L′
k(K), choose a simplex σ ∈ K such that e∗ ∈ L′

k(σ). By (7.58),
ϑk(e∗) = ϑσ

k (e∗) ∈ N ′
k(σ) and by (7.59) and (7.57), ϕkϑk(e∗) = ϕσ

kϑ
σ
k (e∗) =

e∗. Analogously, if e• ∈ N ′
k(K), choose a simplex σ ∈ K such that e• ∈ N ′

k(σ).
By (7.59), ϕk(e•) = ϕσ

k (e•) ∈ L′
k(σ) and by (7.58) and (7.57), ϑkϕk(e•) =

ϑσ
kϕ

σ
k (e•) = e•.

7.8. Step (viii). In Step (v), for an n-simplex σ ∈ K, we have defined a
mapping θσ : σ → σ, by putting θσ|c∗ = θσ

c∗ , for every n-cell c∗ ∈ L′
n(σ).

Lemma 7.10. For every n-simplex σ ∈ K, the mapping θσ : σ → σ is a

selfhomeomorphism. For every k-cell c∗ ∈ L′
k(σ), 0 ≤ k ≤ n, the restriction

θσ|c∗ is an affine isomorphism c∗ → ϑk(c∗).

Proof. We will define a mapping φσ : σ → σ, which is the inverse of θσ,
by putting

(7.62) φσ|c• = φσ
c• ,
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where c• ∈ N ′
n(σ). This mapping is well defined, because of (7.56). One has

to show that

(7.63) φσθσ = id, θσφσ = id.

Since φσ
c• = (θσ

c∗)
−1, where c∗ = ϑσ

n(c•), we see that θσφσ|c• = θσφσ
c• =

θσ
c∗φ

σ
c• = id. Since the n-cells c• ∈ N ′

n(σ) cover σ, we conclude that θσφσ = id.
Analogously, φσθσ = id.

Step (ix). We now define a mapping θ : P → P , P = |K|, by putting

(7.64) θ|σ = θσ,

for σ ∈ K. To see that this mapping is well defined, it suffices to show that,
for any two simplices σ, σ1 ∈ K, one has θσ|(σ ∩ σ1) = θσ1 |(σ ∩ σ1). Let us
first show that

(7.65) θσ|ζ = θζ ,

for ζ < σ. Indeed, if dim ζ = m, then ζ = |L′
m(ζ)|. Therefore, it suffices to

show that θσ|e∗ = θζ |e∗, for every m-cell e∗ ∈ L′
m(ζ). Since e∗ ∈ ζ ⊆ σ, (7.28)

shows that θζ |e∗ = θζ
e∗ and θσ|e∗ = θσ

e∗ . However, (7.53) shows that θζ
e∗ = θσ

e∗

and thus, θσ|e∗ = θζ |e∗. Now put ζ = σ∩σ1 and note that ζ ≤ σ and ζ ≤ σ1.
Consequently, (7.64) implies that θσ|ζ = θζ = θσ1 |ζ, as desired. Note that
(7.63) and Lemma 7.10 imply that the mapping θ : P → P has the following
property. For every σ ∈ K and every k-cell c∗ ∈ L′(σ), the restriction θ|c∗ is
an affine isomorphism between c∗ and the k-cell ϑk(c∗) ∈ N ′(K).

7.9. In view of Lemma 7.10, the following lemma will complete the proof
of Theorem 7.2.

Lemma 7.11. The mapping θ : P → P is a selfhomeomorphism of P .

Moreover, for every simplex σ ∈ K, the restriction θ|σ is a selfhomeomor-

phism of σ.

Proof. We define a mapping φ : P → P , which is the inverse of θ, by
putting

(7.66) φ|σ = φσ,

for σ ∈ K. To see that this mapping is well defined, it suffices to show that, for
any two simplices σ, σ1 ∈ K, one has φσ |(σ∩σ1) = φσ1 |(σ∩σ1). An argument
already used in Step (ix) shows that it suffices to prove that φσ|ζ = φζ , for
ζ < σ. If dim ζ = m, then the m-cells e• ∈ N ′

m(ζ) cover ζ. Therefore,
it suffices to show that φσ|e• = φζ |e•, for every m-cell e• ∈ N ′

m(ζ). Since

N ′
m(ζ) ⊆ N ′

m(σ), (7.62) shows that φζ |e• = φζ
e• and φσ|e• = φσ

e• . However,

by (7.53), one has θζ
e∗ = θσ

e∗ . Since φζ
e• = (θζ

e∗)−1 and φσ
e• = (θσ

e∗)−1, one

concludes that φζ
e• = φσ

e• and thus, φσ|e• = φζ |e•.
To complete the proof that θ is a selfhomeomorphism, we now only have

to prove that φθ = id and θφ = id. To prove the first of these relations, it
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suffices to prove that (φθ)|σ = id, because the simplices σ ∈ K cover P = |K|.
However, by (7.64) and (7.66), one has (φθ)|σ = φθσ = φσθσ and by (7.63),
one has φσθσ = id. Consequently, φθ = id. One proves analogously, that also
θφ = id.

To complete the proof of Lemma 7.11, it only remains to see that θ|σ : σ →
σ is a selfhomeomorphism, for every simplex σ ∈ K. Indeed, (7.64) shows that
θ|σ = θσ and Lemma 7.10 asserts that θσ is a selfhomeomorphism of σ.
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