On an application of almost increasing sequences

HÜSEYIN BOR ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Erciyes University, Kayseri-38 039, Turkey

Received January 28, 2009; accepted October 18, 2009

Abstract. In the present paper, a general theorem on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series has been proved under weaker conditions. Some new results have also been obtained dealing with $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1 ; \delta|_{k}$ summability factors.
AMS subject classifications: 40D15, 40F05, 40G99
Key words: absolute summability, summability factors, almost increasing sequences

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} and t_{n}^{α} the n-th Cesàro means of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$ and ($n a_{n}$), respectively, i.e.,

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1}\\
t_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \alpha>-1, A_{0}^{\alpha}=1 \text { and } A_{-n}^{\alpha}=0 \text { for } n>0 . \tag{3}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [8], [11])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty \tag{4}
\end{equation*}
$$

and it is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{6}
\end{equation*}
$$

[^0]The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{7}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [10]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2], [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{8}
\end{equation*}
$$

and it is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=\sigma_{n}-\sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{10}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n}($ resp. $\delta=0)\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $|C, 1 ; \delta|_{k}$ (resp. $\left|\bar{N}, p_{n}\right|_{k}$) summability. Also, if we take $\delta=0$ and $k=1$, then we get $\left|\bar{N}, p_{n}\right|$ summability.

2. Known results

Bor [4] has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors.
Theorem 1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{11}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{12}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{13}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \tag{14}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{16}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{17}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Recently, Bor [7] has generalized Theorem 1 for the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors.

Theorem 2. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ are such that conditions (11)-(17) of Theorem A are satisfied with condition (15) replaced by:

$$
\begin{equation*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{18}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}}\right) \text { as } m \rightarrow \infty \tag{19}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
It should be noted that if we take $\delta=0$ in Theorem 2, then we get Theorem 1. In this case condition (19) reduces to

$$
\sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=\sum_{n=v+1}^{m+1}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right)=O\left(\frac{1}{P_{v}}\right) \text { as } m \rightarrow \infty
$$

which always holds.

3. The main result

The aim of this paper is to prove Theorem 2 under weaker conditions. For this we need the concept of an almost increasing sequence. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=n e^{(-1)^{n}}$. Now, we shall prove the following theorem.

Theorem 3. Let $\left(X_{n}\right)$ be an almost increasing sequence. If conditions (11)-(14) and (16)-(19) are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$, $k \geq 1$ and $0 \leq \delta<1 / k$.

We need the following lemmas for the proof of Theorem 3.
Lemma 1 (see [12]). If $\left(X_{n}\right)$ is an almost increasing sequence, then under conditions (12)-(13) we have that

$$
\begin{align*}
n X_{n} \beta_{n} & =O(1), \tag{20}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n} & <\infty \tag{21}
\end{align*}
$$

Lemma 2 (see [4]). If conditions (16) and (17) are satisfied, then we have

$$
\begin{equation*}
\Delta\left(\frac{P_{n}}{n^{2} p_{n}}\right)=O\left(\frac{1}{n^{2}}\right) \tag{22}
\end{equation*}
$$

Lemma 3 (see [4]). If conditions (11)-(14) are satisfied, then we have that

$$
\begin{align*}
\lambda_{n} & =O(1) \tag{23}\\
\Delta \lambda_{n} & =O\left(\frac{1}{n}\right) \tag{24}
\end{align*}
$$

4. Proof of Theorem 3

Let $\left(T_{n}\right)$ be the sequence of an $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}} \tag{25}
\end{equation*}
$$

Then, for $n \geq 1$

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} v \lambda_{v}}{v^{2} p_{v}}
\end{aligned}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\lambda_{n}}{n^{2}} \sum_{v=1}^{n} v a_{v} \\
= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}(v+1) t_{v} p_{v} \frac{\lambda_{v}}{v^{2}}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}(v+1) \frac{t_{v}}{v^{2} p_{v}} \\
& -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1}(v+1) t_{v} \Delta\left(P_{v} / v^{2} p_{v}\right)+\lambda_{n} t_{n}(n+1) / n^{2} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3,4 \tag{26}
\end{equation*}
$$

Now, applying Hölder's inequality, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right|^{k}= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|t_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \frac{1}{v^{k}} \frac{1}{P_{v}}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \frac{1}{v^{k}}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} v^{k-1} \frac{1}{v^{k}}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \\
&=\left.O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{r}{r}\right|^{k} \\
&+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left.t_{v}\right|^{k}}{v} \\
&= O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
&= O(1), \\
& v=1
\end{aligned} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m},
$$

as $m \rightarrow \infty$, by (11), (14), (16), (18), (19), (22) and (24).
Now using the fact that $\left(P_{v} / v\right)=O\left(p_{v}\right)$ by (16), we have that

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|\Delta \lambda_{v}\right| p_{v}\left|t_{v}\right|\right\}^{k}
$$

$$
\begin{aligned}
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} p_{v} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} p_{v} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta \lambda_{v}\right|^{k-1}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} v^{k-1} \frac{1}{v^{k-1}}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m} \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|t_{v}\right|^{k}=O(1) \sum_{v=1}^{m} v \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \\
&=O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
&=O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by (11), (13), (16), (18), (19), (21), (22) and (25).
Now, since $\Delta\left(\frac{P_{v}}{p_{v} v^{2}}\right)=O\left(\frac{1}{v^{2}}\right)$ by Lemma 2, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|\lambda_{v+1}\right|\left|t_{v}\right| \frac{1}{v} \frac{v+1}{v} Q\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|\lambda_{v+1}\right| \frac{1}{v}\left|t_{v}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} v^{k-1} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left.t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \sum_{v=2}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \sum_{v=1}^{m} \beta_{v} X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by (11), (14), (16), (18), (19), (22) and (24). Finally, as in $T_{n, 3}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\frac{n+1}{n}\right)^{k} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} n^{k-1} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|t_{n}\right|^{k}}{n}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Therefore, we get that

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \text { for } r=1,2,3,4
$$

This completes the proof of the Theorem.
If we take $\delta=0$, then we get a result of Bor [6] for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Also, if we take $p_{n}=1$ for all values of n , then we get a new result dealing with $|C, 1 ; \delta|_{k}$ summability factors.

References

[1] S. Aljančić, D. Arandelović, O-regularly varying functions, Publ. Inst. Math. 22(1977), 5-22.
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97(1985), 147149.
[3] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98(1986), 81-84.
[4] H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19(1988), 664-671.
[5] H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 179(1993), 646-649.
[6] H. Bor, A note on absolute Riesz summability factors, Math. Inequal. Appl. 10(2007), 619-625.
[7] H. Bor, A study on absolute Riesz summability factors, Rend. Circ. Mat. Palermo 56(2007), 358-386.
[8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7(1957), 113-141.
[9] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc. 8(1958), 357-387.
[10] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[11] E. Kogbetliantz, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49(1925), 234-256.
[12] S. M. Mazhar, A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica $\mathbf{2 5}(1997), 233-242$.

[^0]: *Corresponding author. Email address: bor@erciyes.edu.tr (H. Bor)
 http://www.mathos.hr/mc

