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On an application of almost increasing sequences
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Abstract. In the present paper, a general theorem on | N̄ , pn; δ |k summability factors of
infinite series has been proved under weaker conditions. Some new results have also been
obtained dealing with | N̄ , pn |k and | C, 1; δ |k summability factors.
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1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by uα
n and tαn

the n-th Cesàro means of order α, with α > −1, of the sequence (sn) and (nan),
respectively, i.e.,

uα
n =

1
Aα

n

n∑
v=0

Aα−1
n−vsv, (1)

tαn =
1

Aα
n

n∑
v=1

Aα−1
n−vvav, (2)

where
Aα

n = O(nα), α > −1, Aα
0 = 1 and Aα

−n = 0 for n > 0. (3)

A series
∑

an is said to be summable | C,α |k, k ≥ 1, if (see [8], [11])

∞∑
n=1

nk−1 | uα
n − uα

n−1 |k=
∞∑

n=1

| tαn |k
n

< ∞. (4)

and it is said to be summable | C,α; δ |k, k ≥ 1 and δ ≥ 0, if (see [9])

∞∑
n=1

nδk−1 | tαn |k< ∞. (5)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (6)
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The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv (7)

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn) generated by the sequence of coefficients (pn) (see [10]). The series∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2], [3])
∞∑

n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞, (8)

and it is said to be summable | N̄ , pn; δ |k, k ≥ 1 and δ ≥ 0, if (see [5])
∞∑

n=1

(Pn/pn)δk+k−1 | ∆σn−1 |k< ∞, (9)

where

∆σn−1 = σn − σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1. (10)

In the special case pn = 1 for all values of n (resp. δ = 0) | N̄ , pn; δ |k summability
is the same as | C, 1; δ |k (resp. | N̄ , pn |k) summability. Also, if we take δ = 0 and
k = 1, then we get | N̄ , pn | summability.

2. Known results

Bor [4] has proved the following theorem for | N̄ , pn |k summability factors.

Theorem 1. Let (Xn) be a positive non-decreasing sequence and let there be se-
quences (βn) and (λn) such that

| ∆λn |≤ βn, (11)
βn → 0 as n →∞, (12)
∞∑

n=1

n | ∆βn | Xn < ∞, (13)

| λn | Xn = O(1). (14)

If
n∑

v=1

| tv |k
v

= O(Xn) as n →∞, (15)

where (tn) is the n-th (C,1) mean of the sequence (nan), and (pn) is a sequence such
that

Pn = O(npn), (16)
Pn∆pn = O(pnpn+1), (17)

then the series
∑∞

n=1 an
Pnλn

npn
is summable | N̄ , pn |k, k ≥ 1.
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Recently, Bor [7] has generalized Theorem 1 for the | N̄ , pn; δ |k summability
factors.

Theorem 2. Let (Xn) be a positive non-decreasing sequence and the sequences (βn)
and (λn) are such that conditions (11)-(17) of Theorem A are satisfied with condition
(15) replaced by:

n∑
v=1

(
Pv

pv

)δk | tv |k
v

= O(Xn) as n →∞. (18)

If
m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1
= O((

Pv

pv
)δk 1

Pv
) as m →∞, (19)

then the series
∑∞

n=1 an
Pnλn

npn
is summable | N̄ , pn; δ |k, k ≥ 1 and 0 ≤ δ < 1/k.

It should be noted that if we take δ = 0 in Theorem 2, then we get Theorem 1.
In this case condition (19) reduces to

m+1∑
n=v+1

pn

PnPn−1
=

m+1∑
n=v+1

(
1

Pn−1
− 1

Pn

)
= O

(
1
Pv

)
as m →∞,

which always holds.

3. The main result

The aim of this paper is to prove Theorem 2 under weaker conditions. For this we
need the concept of an almost increasing sequence. A positive sequence (bn) is said
to be almost increasing if there exist a positive increasing sequence (cn) and two
positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Obviously every
increasing sequence is almost increasing. However, the converse need not be true
as can be seen by taking the example, say bn = ne(−1)n

. Now, we shall prove the
following theorem.

Theorem 3. Let (Xn) be an almost increasing sequence. If conditions (11)-(14)
and (16)-(19) are satisfied, then the series

∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn; δ |k,

k ≥ 1 and 0 ≤ δ < 1/k.

We need the following lemmas for the proof of Theorem 3.

Lemma 1 (see [12]). If (Xn) is an almost increasing sequence, then under conditions
(12)-(13) we have that

nXnβn = O(1), (20)
∞∑

n=1

βnXn < ∞. (21)
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Lemma 2 (see [4]). If conditions (16) and (17) are satisfied, then we have

∆
(

Pn

n2pn

)
= O

(
1
n2

)
. (22)

Lemma 3 (see [4]). If conditions (11)-(14) are satisfied, then we have that

λn = O(1) (23)

∆λn = O

(
1
n

)
. (24)

4. Proof of Theorem 3

Let (Tn) be the sequence of an (N̄ , pn) mean of the series
∑∞

n=1
anPnλn

npn
. Then, by

definition, we have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr
=

1
Pn

n∑
v=1

(Pn − Pv−1)
avPvλv

vpv
. (25)

Then, for n ≥ 1

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv

=
pn

PnPn−1

n∑
v=1

Pv−1Pvavvλv

v2pv
.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

∆
(

Pv−1Pvλv

v2pv

) v∑
r=1

rar +
λn

n2

n∑
v=1

vav

=
pn

PnPn−1

n−1∑
v=1

Pv

pv
(v + 1)tvpv

λv

v2
+

pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v + 1)
tv

v2pv

− pn

PnPn−1

n−1∑
v=1

Pvλv+1(v + 1)tv∆(Pv/v2pv) + λntn(n + 1)/n2

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of Theorem 3, by Minkowski’s inequality, it is sufficient to
show that

∞∑
n=1

(
Pn

pn

)δk+k−1

| Tn,r |k< ∞, for r = 1, 2, 3, 4. (26)
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Now, applying Hölder’s inequality, we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1

| Tn,1 |k = O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑
v=1

Pv

pv
pv | tv || λv | 1

v

}k

= O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑
v=1

(
Pv

pv

)k

pv | tv |k| λv |k 1
vk

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv | tv |k| λv |k 1
vk

m+1∑
n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv

)k

| λv |k−1| λv | pv | tv |k 1
vk

1
Pv

(
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv

)k−1

| λv || tv |k 1
vk

(
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv
)δkvk−1 1

vk
| λv || tv |k

= O(1)
m∑

v=1

| λv | (Pv

pv
)δk | tv |k

v

= O(1)
m−1∑
v=1

∆ | λv |
v∑

r=1

(
Pr

pr
)δk | tr |k

r

+ O(1) | λm |
m∑

v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑
v=1

| ∆λv | Xv + O(1) | λm | Xm

= O(1)
m−1∑
v=1

βvXv + O(1) | λm | Xm

= O(1),

as m →∞, by (11), (14), (16), (18), (19), (22) and (24).
Now using the fact that (Pv/v) = O(pv) by (16), we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1

| Tn,2 |k = O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑
v=1

Pv

pv
| ∆λv | pv | tv |

}k
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= O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑
v=1

(
Pv

pv

)k

| ∆λv |k| tv |k pv

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

| ∆λv |k| tv |k pv

m+1∑
n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

| ∆λv |k| tv |k (
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv
)δk

(
Pv

pv

)k−1

| ∆λv |k−1| ∆λv || tv |k

= O(1)
m∑

v=1

(
Pv

pv
)δkvk−1 1

vk−1
| ∆λv || tv |k

= O(1)
m∑

v=1

βv(
Pv

pv
)δk | tv |k= O(1)

m∑
v=1

vβv(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

(
Pr

pr
)δk | tr |k

r
+ O(1)mβm

m∑
v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑
v=1

v | ∆βv | Xv + O(1)
m−1∑
v=1

βvXv + O(1)mβmXm

= O(1) as m →∞,

by (11), (13), (16), (18), (19), (21), (22) and (25).
Now, since ∆( Pv

pvv2 ) = O( 1
v2 ) by Lemma 2, we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1

|Tn,3 |k = O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑
v=1

Pv |λv+1 || tv | 1
v

v + 1
v

Q

}k

= O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑
v=1

Pv

pv
pv | λv+1 | 1

v
| tv |

}k

= O(1)
m+1∑
n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑
v=1

(
Pv

pv

)k

pv
1
vk

| λv+1 |k| tv |k

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv
1
vk

| λv+1 |k−1| λv+1 || tv |k
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×
m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1 1
vk

| λv+1 || tv |k (
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv
)δkvk−1 1

vk
| λv+1 || tv |k

= O(1)
m∑

v=1

(
Pv

pv
)δk | λv+1 | | tv |

k

v

= O(1)
m−1∑
v=1

∆ | λv+1 |
v∑

r=1

(
Pr

pr
)δk | tr |k

r
+ O(1) | λm+1 |

m∑
v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑
v=1

| ∆λv+1 | Xv + O(1) | λm+1 | Xm

= O(1)
m−1∑
v=1

| ∆λv+1 | Xv+1 + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=2

| ∆λv | Xv + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=1

βvXv + O(1) | λm+1 | Xm+1 = O(1)

as m →∞, by (11), (14), (16), (18), (19), (22) and (24). Finally, as in Tn,3, we have
that

m∑
n=1

(
Pn

pn

)δk+k−1

| Tn,4 |k = O(1)
m∑

n=1

(
Pn

pn
)δk

(
Pn

pn

)k−1 (
n + 1

n

)k 1
nk

| λn |k| tn |k

= O(1)
m∑

n=1

(
Pn

pn
)δknk−1 1

nk
| λn |k−1| λn || tn |k

= O(1)
m∑

n=1

| λn | (Pn

pn
)δk | tn |k

n
= O(1) as m →∞.

Therefore, we get that
m∑

n=1

(
Pn

pn

)δk+k−1

| Tn,r |k= O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of the Theorem.
If we take δ = 0, then we get a result of Bor [6] for | N̄ , pn |k summability factors.

Also, if we take pn = 1 for all values of n, then we get a new result dealing with
| C, 1; δ |k summability factors.
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