Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces
 Ismat $\mathrm{Beg}^{1, *}$ and Asma Rashid Butt ${ }^{1}$
 ${ }^{1}$ Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences, Lahore-54 792, Pakistan

Received June 12, 2009; accepted October 18, 2009

Abstract

Let (X, d, \preceq) be a partially ordered metric space. Let F, G be two set valued mappings on X. We obtained sufficient conditions for the existence of a common fixed point of F, G satisfying an implicit relation in X. AMS subject classifications: $47 \mathrm{H} 10,47 \mathrm{H} 04,47 \mathrm{H} 07$

Key words: fixed point, partially ordered metric space, set valued mapping, implicit relation

1. Introduction and preliminaries

Let (X, d) be a metric space and $B(X)$ be the class of all nonempty bounded subsets of X. For $A, B \in B(X)$, let

$$
\delta(A, B):=\sup \{d(a, b): a \in A, b \in B\}
$$

and

$$
\operatorname{dist}(a, B):=\inf \{d(a, b): a \in A, b \in B\}
$$

If $A=\{a\}$, then we write $\delta(A, B)=\delta(a, B)$. Also in addition, if $B=\{b\}$, then $\delta(A, B)=d(a, b)$. Note that

$$
\begin{aligned}
\delta(A, B) & =0 \text { if and only if } A=B=\{x\}, \\
\operatorname{dist}(A, B) & \leq \delta(A, B) \\
\delta(A, B) & =\delta(B, A) \\
\delta(A, A) & =\operatorname{diam} A .
\end{aligned}
$$

Let $F: X \rightarrow X$ be a set valued mapping, i.e., $X \ni x \mapsto F x$ is a subset of X. A point $x \in X$ is said to be a fixed point of the set valued mapping F if $x \in F x$.

Definition 1. A partially ordered set consists of a set X and a binary relation \preceq on X which satisfies the following conditions:

[^0]1. $x \preceq x$ (reflexivity),
2. if $x \preceq y$ and $y \preceq x$, then $x=y$ (antisymmetry),
3. if $x \preceq y$ and $y \preceq z$, then $x \preceq z$ (transitivity),
for all x, y and z in X. A set with a partial order \preceq is called a partially ordered set. Let (X, \preceq) be a partially ordered set and $x, y \in X$. Elements x and y are said to be comparable elements of X if either $x \preceq y$ or $x \preceq y$.
Definition 2. Let A and B be two nonempty subsets of (X, \preceq), the relations between A and B are denoted and defined as follows:
4. $A \prec_{1} B$: if for every $a \in A$ there exists $b \in B$ such that $a \preceq b$,
5. $A \prec_{2} B$: if for every $b \in B$ there exists $a \in A$ such that $a \preceq b$,
6. $A \prec_{3} B$: if $A \prec_{1} B$ and $A \prec_{2} B$.

Implicit relations in metric spaces have been considered by several authors in connection with solving nonlinear functional equations (see for instance [2, 3, 4, 23] and reference cited therein).

Let R_{+}be the set of non negative real numbers and \mathcal{T} are set of continuous real valued functions $T: R_{+}^{5} \rightarrow R$ satisfying the following conditions:
$\mathcal{T}_{1}: T\left(t_{1}, t_{2}, \ldots, t_{5}\right)$ is non-decreasing in t_{1} and non-increasing in t_{2}, \ldots, t_{5},
$\mathcal{T}_{2}:$ there exists $h \in(0,1)$ such that

$$
T(u, v, v, u, v+u) \leq 0
$$

or

$$
T(u, v, u, v, u+v) \leq 0
$$

implies

$$
u \leq h v
$$

$\mathcal{T}_{3}: T(u, 0,0, u, u)>0$ and $T(u, 0, u, 0, u)>0$, for all $u>0$.
Next we give some examples for such T.
Example 1. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-(1-\alpha) \beta t_{5}$, where $0 \leq \alpha<1$, $0 \leq \beta<1 / 2$.
\mathcal{T}_{1} : It is obvious.
$\mathcal{T}_{2}:$ Let $u>0, T(u, v, v, u, u+v)=u-\alpha \max \{u, v\}-(1-\alpha) \beta(u+v) \leq 0$ or $u \leq \alpha \max \{u, v\}+(1-\alpha) \beta(u+v)$. If $u \geq v$, then $u \leq \alpha u+(1-\alpha) \beta(u+v)$ and so $(1-\beta) u \leq \beta u$, it implies that $\beta \geq 1 / 2$, a contradiction. Thus $u<v$ and $u \leq \frac{\alpha+(1-\alpha) \beta}{1-(1-\alpha) \beta} v$. Similarly, let $u>0$ and $T(u, v, u, v, u+v) \leq 0$, then we have $u \leq \frac{\alpha+(1-\alpha) \beta}{1-(1-\alpha) \beta}$ v. If $u=0$, then $u \leq \frac{\alpha+(1-\alpha) \beta}{1-(1-\alpha) \beta} v$. Thus \mathcal{T}_{2} is satisfied with $h=\frac{\alpha+(1-\alpha) \beta}{1-(1-\alpha) \beta} v<1$.
$\mathcal{T}_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=(1-\alpha)(1-\beta) u>0$, for all $u>0$.
Therefore $T \in \mathcal{T}$.
Example 2. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-\alpha t_{2}-\beta \max \left\{t_{3}, t_{4}\right\}-\gamma t_{5}$, where $\alpha, \beta, \gamma \geq 0$ and $\alpha+2 \beta+\gamma<1$.
\mathcal{T}_{1} : It is obvious.
$\mathcal{T}_{2}:$ Let $u>0, T(u, v, v, u, u+v)=u-\alpha v-\beta \max \{u, v\}-\gamma(u+v) \leq 0$ or $u \leq$ $\alpha v+\beta \max \{u, v\}+\gamma(u+v)$. Thus $u \leq \max \{(\alpha+\beta+\gamma) u+\beta v,(\alpha+\beta+\gamma) v+\beta u\}$. If $u \geq v$, then $u \leq(\alpha+\beta+\gamma) u+\beta v$, it implies that $\alpha+2 \beta+\gamma \geq 1$, a contradiction. Thus $u<v$ and $u \leq \frac{\alpha+\beta+\gamma}{1-\beta} v$. Similarly, let $u>0$ and $T(u, v, u, v, u+v) \leq 0$, then we have $u \leq \frac{\alpha+\beta+\gamma}{1-\beta} v$. If $u=0$, then $u \leq \frac{\alpha+\beta+\gamma}{1-\beta} v$. Thus \mathcal{I}_{2} is satisfied for $h=\frac{\alpha+\beta+\gamma}{1-\beta}<1$.
$\mathcal{T}_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=(1-\beta-\gamma) u>0$, for all $u>0$.
Therefore $T \in \mathcal{T}$.
Example 3. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}, t_{5} / 2\right\}$, where $0 \leq \alpha<1$.
\mathcal{T}_{1} : It is obvious.
$\mathcal{T}_{2}:$ Let $u>0, T(u, v, v, u, u+v)=u-\alpha \max \{u, v\} \leq 0$ or $u \leq \alpha \max \{u, v\}$. If $u \geq v$, then $u \leq \alpha u$, it implies that $\alpha \geq 1$ a contradiction. Thus $u<v$ and $u \leq \alpha v$. Similarly, let $u>0$ and $T(u, v, u, v, u+v) \leq 0$, then we have $u \leq \alpha v$. If $u=0$, then $u \leq \alpha v$. Thus \mathcal{T}_{2} is satisfied with $h=\alpha<1$.
$\mathcal{T}_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=(1-\alpha) u>0$, for all $u>0$.
Therefore $T \in \mathcal{T}$.
Example 4. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-\beta t_{5}$, where $\alpha, \beta>0$ and $\alpha+2 \beta<1$.
\mathcal{T}_{1} : It is obvious.
$\mathcal{T}_{2}:$ Let $u>0, T(u, v, v, u, u+v)=u-\alpha \max \{u, v\}-\beta(u+v) \leq 0$ or $u \leq \alpha$ $\cdot \max \{u, v\}+\beta(u+v)$. Thus $u \leq \max \{(\alpha+\beta) u+\beta v,(\alpha+\beta) v+\beta u\}$. If $u \geq v$, then $u \leq(\alpha+\beta) u+\beta v \leq(\alpha+2 \beta) u$, it implies that $\alpha+2 \beta \geq 1$, a contradiction. Thus $u<v$ and $u \leq(\alpha+\beta) v+\beta u$ and so $u \leq \frac{\alpha+\beta}{1-\beta} v$. Similarly, let $u>0$ and $T(u, v, u, v, u+v) \leq 0$, then we have $u \leq \frac{\alpha+\beta}{1-\beta} v$. If $u=0$, then $u \leq \frac{\alpha+\beta}{1-\beta} v$. Thus \mathcal{T}_{2} is satisfied with $h=\frac{\alpha+\beta}{1-\beta}<1$.
$\mathcal{T}_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=(1-\alpha-\beta) u>0$, for all $u>0$.
Therefore $T \in \mathcal{T}$.

The existence of a fixed point in partially ordered metric spaces has been recently considered in $[18,19,16,15,17,22,20,8,21,1,7,10,12,14,5,6]$. It is of interest to determine the existence of a fixed point in such a setting. The first result in this direction was given by Ran and Reurings in [22] where they extended the Banach contraction principle [13], in partially ordered sets with some application to linear and nonlinear matrix equations. Ran and Reurings [22] proved the following seminal result:

Theorem 1 (see [22]). Let (X, \preceq) be a partially ordered set such that for every pair $x, y \in X$ has an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric space. Let $f: X \rightarrow X$ be a continuous monotone (either order preserving or order reversing) mapping. Suppose that the following conditions hold:

1. there exists $\kappa \in(0,1)$ with

$$
d(f x, f y) \leq \kappa d(x, y) \text { for all } x \preceq y
$$

2. there exists $x_{0} \in X$ with $x_{0} \preceq f x_{0}$ or $f x_{0} \preceq x_{0}$.

Then f is a Picard Operator (PO), that is, f has a unique fixed point $x^{*} \in X$ and for each $x \in X$,

$$
\lim _{n \rightarrow \infty} f^{n} x=x^{*}
$$

Theorem 1 was further extended and refined in [18, 19, 16, 20, 21]. These results are hybrid of the two fundamental and classical theorems; Banach's fixed point theorem [13] and Tarski's fixed point theorem [24, 9, 11]. Motivated and inspired by [22], our aim in this paper is to give some new common fixed point results for set valued mappings satisfying an implicit relation in partially ordered metric spaces.

2. Main results

Let (X, \preceq) be a partially ordered set and d a metric on X such that (X, d) is a complete metric space.

We begin this section with the following theorem that gives the existence of a fixed point (not necessarily unique) in a partially ordered metric space X for the set valued mappings satisfying an implicit relation.

Theorem 2. Let $F, G: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \prec_{1} F x_{0}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $G y \prec_{3} F x$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, G y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, G y), \operatorname{dist}(x, G y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x=G x$.
Proof. Let $x_{0} \in X$, then from assumption 1, there exists $x_{1} \in F x_{0}$ such that $x_{0} \preceq x_{1}$. Now by using assumptions $2, G x_{1} \prec_{3} F x_{0}$ which implies $G x_{1} \prec_{2} F x_{0}$. From this we get the existence of $x_{2} \in G x_{1}$ such that $x_{2} \preceq x_{1}$. Since $x_{0} \preceq x_{1}$, therefore by using assumption 4 , we have

$$
\begin{aligned}
& T\left(\delta\left(F x_{0}, G x_{1}\right), d\left(x_{0}, x_{1}\right), \operatorname{dist}\left(x_{0}, F x_{0}\right), \operatorname{dist}\left(x_{1}, G x_{1}\right), \operatorname{dist}\left(x_{0}, G x_{1}\right)\right. \\
& \left.\quad+\operatorname{dist}\left(x_{1}, F x_{0}\right)\right) \leq 0 .
\end{aligned}
$$

Using the facts

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq \delta\left(F x_{0}, G x_{1}\right) \\
\operatorname{dist}\left(x_{0}, F x_{0}\right) & \leq d\left(x_{0}, x_{1}\right) \\
\operatorname{dist}\left(x_{1}, G x_{1}\right) & \leq d\left(x_{1}, x_{2}\right) \\
\operatorname{dist}\left(x_{0}, G x_{1}\right) & +\operatorname{dist}\left(x_{1}, F x_{0}\right) \leq d\left(x_{0}, x_{2}\right)
\end{aligned}
$$

and by \mathcal{T}_{1} we have

$$
T\left(d\left(x_{1}, x_{2}\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right) \leq 0
$$

that is

$$
T(u, v, v, u, u+v) \leq 0
$$

where $u=d\left(x_{1}, x_{2}\right), v=d\left(x_{0}, x_{1}\right)$.
Next, by \mathcal{T}_{2} there exists $h \in(0,1)$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right) \tag{1}
\end{equation*}
$$

Again since $x_{2} \preceq x_{1}$, therefore by assumption $2, G x_{1} \prec_{3} F x_{2}$ which implies $G x_{1} \prec_{1}$ $F x_{2}$. From this we get the existence of $x_{3} \in F x_{2}$ such that $x_{2} \preceq x_{3}$. Now by assumption 4,

$$
\begin{aligned}
& T\left(\delta\left(F x_{2}, G x_{1}\right), d\left(x_{2}, x_{1}\right), \operatorname{dist}\left(x_{2}, F x_{2}\right), \operatorname{dist}\left(x_{1}, G x_{1}\right), \operatorname{dist}\left(x_{2}, G x_{1}\right)\right. \\
& \left.\quad+\operatorname{dist}\left(x_{1}, F x_{2}\right)\right) \leq 0
\end{aligned}
$$

By \mathcal{T}_{1} we have

$$
T\left(d\left(x_{3}, x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)\right) \leq 0
$$

that is,

$$
T(u, v, u, v, u+v) \leq 0
$$

where $u=d\left(x_{2}, x_{3}\right), v=d\left(x_{1}, x_{2}\right)$. Now by \mathcal{T}_{2} there exists $h \in(0,1)$ such that

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leq h d\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

and from (1) and (2), we get

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leq h^{2} d\left(x_{0}, x_{1}\right) \tag{3}
\end{equation*}
$$

Continuing in this manner we can define a sequence $\left\{x_{n}\right\}$ whose consecutive terms are comparable such that $x_{2 n+1} \in F x_{2 n}$ and $x_{2 n+2} \in G x_{2 n+1}$, for $n=0,1,2 \ldots$. Again by assumption 4,

$$
\begin{aligned}
& T\left(\delta\left(F x_{2 n}, G x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), \operatorname{dist}\left(x_{2 n}, F x_{2 n}\right), \operatorname{dist}\left(x_{2 n+1}, G x_{2 n+1}\right),\right. \\
& \left.\quad \operatorname{dist}\left(x_{2 n}, G x_{2 n+1}\right)+\operatorname{dist}\left(x_{2 n+1}, F x_{2 n}\right)\right) \leq 0
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& T\left(d\left(x_{2 n+1}, x_{2 n+2}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& \left.\quad d\left(x_{2 n}, x_{2 n+1}\right)+d t\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq 0
\end{aligned}
$$

that is,

$$
T(u, v, v, u, u+v) \leq 0
$$

where $u=d\left(x_{2 n+1}, x_{2 n+2}\right), v=d\left(x_{2 n}, x_{2 n+1}\right)$. Next, by \mathcal{T}_{2} there exists $h \in(0,1)$ such that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq h d\left(x_{2 n}, x_{2 n+1}\right) \tag{4}
\end{equation*}
$$

Therefore, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right) \leq h^{2} d\left(x_{n-2}, x_{n-1}\right) \leq \cdots \leq h^{n} d\left(x_{0}, x_{1}\right)
$$

Next, we will show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Let $m>n$. Then

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
& \leq\left[h^{n}+h^{n+1}+h^{n+2}+\cdots+h^{m-1}\right] d\left(x_{0}, x_{1}\right) \\
& =h^{n}\left[1+h+h^{2} \cdots+h^{m-n-1}\right] d\left(x_{0}, x_{1}\right) \\
& =h^{n} \frac{1-h^{m-n}}{1-h} d\left(x_{0}, x_{1}\right) \\
& <\frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

because $h \in(0,1), 1-h^{m-n}<1$. Therefore $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$ implies that $\left\{x_{n}\right\}$ is a Cauchy sequence and thus there exists some point (say) x in the complete metric space X such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=x \in \lim _{n \rightarrow \infty} F x_{2 n}, \\
& \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+2}=x \in \lim _{n \rightarrow \infty} G x_{2 n+1},
\end{aligned}
$$

and by assumption $2, x_{n} \preceq x$ for all n. Next, by assumption 4 ,

$$
\begin{aligned}
& T\left(\delta\left(F x_{2 n}, G x\right), d\left(x_{2 n}, x\right), \operatorname{dist}\left(x_{2 n}, F x_{2 n}\right), \operatorname{dist}(x, G x),\right. \\
& \left.\quad \operatorname{dist}\left(x_{2 n}, G x\right)+\operatorname{dist}\left(x, F x_{2 n}\right)\right) \leq 0
\end{aligned}
$$

which gives

$$
\begin{aligned}
& T\left(\delta\left(x_{2 n+1}, G x\right), d\left(x_{2 n}, x\right), d\left(x_{2 n}, x_{2 n+1}\right), \operatorname{dist}(x, G x)\right. \\
& \left.\quad \operatorname{dist}(x, G x)+d\left(x, x_{2 n+1}\right)\right) \leq 0 .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using \mathcal{T}_{1} we get

$$
T(\delta(x, G x), 0,0, \delta(x, G x), \delta(x, G x)) \leq 0
$$

that is

$$
T(u, 0,0, u, u) \leq 0
$$

and from \mathcal{T}_{3} we have $u=\delta(x, G x)=0$, which gives $G x=\{x\}$. Similarly,

$$
\begin{aligned}
& T\left(\delta\left(F x, G x_{2 n+1}\right), d\left(x, x_{2 n+1}\right), \operatorname{dist}(x, F x), \operatorname{dist}\left(x_{2 n+1}, G x_{2 n+1}\right)\right. \\
& \left.\quad \operatorname{dist}\left(x, G x_{2 n+1}\right)+\operatorname{dist}\left(x_{2 n+1}, F x\right)\right) \leq 0
\end{aligned}
$$

which implies

$$
\begin{aligned}
& T\left(\delta\left(F x, x_{2 n+2}\right), d\left(x, x_{2 n+1}\right), \operatorname{dist}(x, F x), d\left(x_{2 n+1}, x_{2 n+2}\right),\right. \\
& \left.\quad d\left(x, x_{2 n+2}\right)+\operatorname{dist}\left(x_{2 n+1}, F x\right)\right) \leq 0 .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using \mathcal{T}_{1} we get

$$
T(\delta(F x, x), 0, \delta(F x, x), 0, \delta(F x, x)) \leq 0
$$

that is,

$$
T(u, 0, u, 0, u) \leq 0
$$

and from \mathcal{T}_{3} we have $u=\delta(F x, x)=0$, which gives $F x=\{x\}$. Hence $x=F(x)$ $=G(x)$.

Theorem 3. Let $F, G: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $F x_{0} \prec_{2}\left\{x_{0}\right\}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $F y \prec_{3} G x$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, G y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, G y), \operatorname{dist}(x, G y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x=G x$.
Proof. The proof follows along the similar lines as in Theorem 2.
Next, we have the following analogue of Theorem 2 and Theorem 3.
Theorem 4. Let $F, G: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \prec_{1} G x_{0}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $F y \prec_{3} G x$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, G y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, G y), \operatorname{dist}(x, G y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x=G x$.
Theorem 5. Let $F, G: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $G x_{0} \prec_{2}\left\{x_{0}\right\}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $G y \prec_{3} F x$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, G y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, G y), \operatorname{dist}(x, G y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x=G x$.
By taking $F=G$ in Theorems 2-5 we obtain the following consequence:
Corollary 1. Let $F: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \prec_{1} F x_{0}$ or $F x_{0} \prec_{2}\left\{x_{0}\right\}$,
2. if $x, y \in X$ is such, that $x \preceq y$ then $F y \prec_{3} F x$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, F y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, F y), \operatorname{dist}(x, F y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x$.
Example 5. Let $X=\{(0,0),(0,-1 / 2),(-1 / 8,1 / 8)\}$ be a subset of R^{2} with a usual order defined as: for $(u, v),(x, y) \in X,(u, v) \leq(x, y)$ if and only if $u \leq x, y \leq v$. Let d be a metric on X defined as:

$$
d(\underline{x}, \underline{y})=d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}, \text { for all } \underline{x}, \underline{y} \in X
$$ so that (X, d) is a complete metric space. Mapping $F: X \rightarrow B(X)$ is defined as:

$$
F(\underline{x})=\left\{\begin{array}{ll}
\left\{\left(-\frac{1}{8}, \frac{1}{8}\right)\right\}, & \text { if } \underline{x}=\left(-\frac{1}{8}, \frac{1}{8}\right) \\
\left\{(0,0),\left(-\frac{1}{8}, \frac{1}{8}\right)\right\}, & \text { if } \underline{x} \in\left\{(0,0),\left(0,-\frac{1}{2}\right)\right\}
\end{array} .\right.
$$

For $\left(0,-\frac{1}{2}\right) \leq(0,0)$;

$$
\delta\left(F\left(0,-\frac{1}{2}\right), F(0,0)\right)=\frac{1}{8} \leq \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{3} d((0,-1 / 2),(0,0) .
$$

Thus for all $\underline{x} \leq \underline{y}$ we have

$$
\begin{gathered}
\delta(F \underline{x}, F \underline{y}) \leq \frac{1}{3} d(\underline{x}, \underline{y}) \leq \frac{1}{3} \max \{d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, F y), \\
\left.\frac{\operatorname{dist}(x, F y)+\operatorname{dist}(y, F x)}{2}\right\}
\end{gathered}
$$

Also note that $(0,0) \in X$ is such that $\{(0,0)\} \prec_{1} F(0,0)$ and for all $\underline{x} \preceq \underline{y}$, then $F \underline{y} \prec F \underline{x}$. Consequently, all conditions of Corollary 1 are satisfied and $\left\{\left(-\frac{1}{8}, \frac{1}{8}\right)\right\}$ $=F\left(-\frac{1}{8}, \frac{1}{8}\right)$.

Remark 1. The conclusion of Corollary 1 still holds if we replace assumption 2 by:

- if $x, y \in X$ is such that $x \preceq y$, then $F y \prec_{3} F x$ or $F x \prec_{3} F y$.

Corollary 1 is further extended as:
Corollary 2. Let $F: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \prec_{1} F x_{0}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $F x \prec_{1} F y$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, F y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, F y), \operatorname{dist}(x, F y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x$.
Proof. Let $x_{0} \in X$, then from assumption 1 there exists $x_{1} \in F x_{0}$ such that $x_{0} \preceq x_{1}$. Now by using assumptions $2, F x_{0} \prec_{1} F x_{1}$. From this we get the existence of $x_{2} \in F x_{1}$ such that $x_{1} \preceq x_{2}$. Since $x_{0} \preceq x_{1}$, therefore by using assumption 4 we have

$$
\begin{aligned}
& T\left(\delta\left(F x_{0}, F x_{1}\right), d\left(x_{0}, x_{1}\right), \operatorname{dist}\left(x_{0}, F x_{0}\right), \operatorname{dist}\left(x_{1}, F x_{1}\right),\right. \\
& \left.\quad \operatorname{dist}\left(x_{0}, F x_{1}\right)+\operatorname{dist}\left(x_{1}, F x_{0}\right)\right) \leq 0 .
\end{aligned}
$$

Using \mathcal{T}_{1} we have

$$
T\left(d\left(x_{1}, x_{2}\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right) \leq 0
$$

that is,

$$
T(u, v, v, u, u+v) \leq 0
$$

where $u=d\left(x_{1}, x_{2}\right), v=d\left(x_{0}, x_{1}\right)$. Next, by using \mathcal{T}_{2}, there exists $h \in(0,1)$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right) \tag{5}
\end{equation*}
$$

Again since $x_{1} \preceq x_{2}$, therefore by assumption 2, $F x_{1} \prec_{1} F x_{2}$. From this we get the existence of $x_{3} \in F x_{2}$ such that $x_{2} \preceq x_{3}$. By assumption 4 ,

$$
\begin{aligned}
& T\left(\delta\left(F x_{1}, F x_{2}\right), d\left(x_{1}, x_{2}\right), \operatorname{dist}\left(x_{1}, F x_{1}\right), \operatorname{dist}\left(x_{2}, F x_{2}\right),\right. \\
& \left.\quad \operatorname{dist}\left(x_{1}, F x_{2}\right)\right)+\operatorname{dist}\left(x_{2}, F x_{1}\right) \leq 0 .
\end{aligned}
$$

By using \mathcal{T}_{1} we have

$$
T\left(d\left(x_{2}, x_{3}\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)\right) \leq 0
$$

that is,

$$
T(u, v, u, v, u+v) \leq 0
$$

where $u=d\left(x_{2}, x_{3}\right), v=d\left(x_{1}, x_{2}\right)$. Next, by using \mathcal{T}_{2} there exists $h \in(0,1)$ such that

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leq h d\left(x_{1}, x_{2}\right) \tag{6}
\end{equation*}
$$

and from (5) and (6) we get

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leq h^{2} d\left(x_{0}, x_{1}\right) \tag{7}
\end{equation*}
$$

Continuing in this manner we can define a non-decreasing sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in F\left(x_{n}\right)$, for $n=0,1,2 \ldots$. By using induction, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right) \leq h^{2} d\left(x_{n-2}, x_{n-1}\right) \cdots \leq h^{n} d\left(x_{0}, x_{1}\right)
$$

Next we will show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Let $m>n$. Then

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
& \leq\left[h^{n}+h^{n+1}+h^{n+2}+\cdots+h^{m-1}\right] d\left(x_{0}, x_{1}\right) \\
& =h^{n}\left[1+h+h^{2}+\cdots+h^{m-n-1}\right] d\left(x_{0}, x_{1}\right) \\
& =h^{n} \frac{1-h^{m-n}}{1-h} d\left(x_{0}, x_{1}\right) \\
& <\frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

because $h \in(0,1), 1-h^{m-n}<1$. Therefore $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$ implies that $\left\{x_{n}\right\}$ is a Cauchy sequence and thus there exists some point (say) x in the complete metric space X such that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

and by assumption $3, x_{n} \preceq x$ for all n. Next by assumption 4 ,

$$
T\left(\delta\left(F x_{n}, F x\right), d\left(x_{n}, x\right), \operatorname{dist}\left(x_{n}, F x_{n}\right), \operatorname{dist}(x, F x), \operatorname{dist}\left(x_{n}, F x\right)+\operatorname{dist}\left(x, F x_{n}\right)\right) \leq 0
$$

which gives

$$
T\left(\delta\left(x_{n+1}, F x\right), d\left(x_{n}, x\right), d\left(x_{n}, x_{n+1}\right), \operatorname{dist}(x, F x), \operatorname{dist}\left(x_{n}, F x\right)+d\left(x, x_{n+1}\right)\right) \leq 0
$$

Letting $n \rightarrow \infty$ and using \mathcal{T}_{1} we get

$$
T(\delta(x, F x), 0,0, \delta(x, F x), \delta(x, F x)) \leq 0,
$$

that is,

$$
T(u, 0,0, u, u) \leq 0,
$$

and from \mathcal{T}_{3}, we have $u=\delta(x, F x)=0$, which gives $F x=\{x\}$.
Remark 2. If we replace assumption 4; for all comparable elements x, y of Corollary 2 by: for all $x \preceq y$ of a partially ordered set X, then the conclusion still holds.

Corollary 3. Let $F: X \rightarrow B(X)$ be such that the following conditions are satisfied:

1. there exists $x_{0} \in X$ such that $F x_{0} \prec_{2}\left\{x_{0}\right\}$,
2. if $x, y \in X$ is such that $x \preceq y$, then $F x \prec_{2} F y$,
3. if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x_{n} \preceq x$, for all n,
4. $T(\delta(F x, F y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, F y), \operatorname{dist}(x, F y)+\operatorname{dist}(y, F x)) \leq 0$, for all distinct comparable elements x, y of X and for some $T \in \mathcal{T}$.

Then there exists $x \in X$ with $\{x\}=F x$.
Remark 3. If we replace assumption 3 and 4 of Corollary 1, respectively, by:

- if $x_{n} \rightarrow x$ is any sequence in X whose consecutive terms are comparable, then $x \preceq x_{n}$, for all n.
- $T(\delta(F x, F y), d(x, y), \operatorname{dist}(x, F x), \operatorname{dist}(y, F y), \operatorname{dist}(x, F y)+\operatorname{dist}(y, F x)) \leq 0$, for all $y \preceq x$ and for some $T \in \mathcal{T}$.

Then the conclusion still holds.

Acknowledgement

Research partially supported by Higher Education Commission of Pakistan research grant number 20-918/R\&D/07.

References

[1] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(2008), 109-116.
[2] I. Altun, Fixed point and homotopy results for multivalued maps satisfying an implicit relation, J. Fixed Point Theory and Applications, to appear.
[3] I. Altun, H. A. Hancer, D. Türkoğlu, A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces, Math. Commun. 11(2006), 17-23.
[4] İ. Altun, D. Türkoğlu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math. 13(2009), 1291-1304.
[5] I.Beg, A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71(2009), 3699-3704.
[6] I.Beg, A. R. Butt, Fixed point for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. 25(2009), 1-12.
[7] A. Cabada, J. J. Nieto, Fixed points and approximate solutions for nonlinear operator equations, J. Comput. Appl. Math. 113(2000), 17-25.
[8] Z. Drici, F. A. McRae, J. V. Devi, Fixed point theorems in partially ordered metric space for operators with PPF dependence, Nonlinear Anal. 67(2007), 641-647.
[9] F. Echenique, A short and constructive proof of Tarski's fixed-point theorem, Internat. J. Game Theory 33(2005), 215-218.
[10] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(2006), 1379-1393.
[11] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[12] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis, to appear.
[13] W. A. Kirk, K. Goebel, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[14] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, to appear.
[15] J. J. Nieto, Applications of contractive-like mapping principles to fuzzy equations, Revista Matematica Complutense 19(2006), 361-383.
[16] J. J. Nieto, R. L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc. 135(2007), 2505-2517.
[17] J. J. Nieto, R. Rodríguez-López, Existence of extremal solutions for quadratic fuzzy equations, Fixed Point Theory and Appl. 3(2005), 321-342.
[18] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorms in partially ordered sets and applications to ordinary differential equations, Order 22(2005), 223-239.
[19] J. J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica 23(2007), 2205-2212.
[20] D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341(2008), 1241-1252.
[21] A. Petrusel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134(2005), 411-418.
[22] A. C. M. Ran, M. C. B. Reurings, A fixed point theorm in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132(2003), 1435-1443.
[23] S. Sedghi, I. Altun, N. Shobe, A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math. 2(2008), 189-196.
[24] A. Tarski, A lattice theoretical fixed point theorem and its application, Pacific J. Math. 5(1955), 285-309.

[^0]: *Corresponding author. Email addresses: ibeg@lums.edu.pk (I. Beg), asma.05070002@gmail.com (A. R. Butt)

