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1. Introduction and preliminaries

Let (X, d) be a metric space and B(X) be the class of all nonempty bounded subsets
of X. For A,B ∈ B(X), let

δ(A, B) := sup{d(a, b) : a ∈ A, b ∈ B},

and
dist(a, B) := inf{d(a, b) : a ∈ A, b ∈ B}.

If A = {a}, then we write δ(A,B) = δ(a,B). Also in addition, if B = {b}, then
δ(A,B) = d(a, b). Note that

δ(A,B) = 0 if and only if A = B = {x},
dist(A,B) ≤ δ(A,B),

δ(A,B) = δ(B,A),
δ(A, A) = diamA.

Let F : X → X be a set valued mapping, i.e., X 3 x 7→ Fx is a subset of X. A
point x ∈ X is said to be a fixed point of the set valued mapping F if x ∈ Fx.

Definition 1. A partially ordered set consists of a set X and a binary relation ¹
on X which satisfies the following conditions:
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1. x ¹ x (reflexivity),

2. if x ¹ y and y ¹ x, then x = y (antisymmetry),

3. if x ¹ y and y ¹ z, then x ¹ z (transitivity),

for all x, y and z in X. A set with a partial order ¹ is called a partially ordered
set. Let (X,¹) be a partially ordered set and x, y ∈ X. Elements x and y are said
to be comparable elements of X if either x ¹ y or x ¹ y.

Definition 2. Let A and B be two nonempty subsets of (X,¹), the relations between
A and B are denoted and defined as follows:

1. A ≺1 B: if for every a ∈ A there exists b ∈ B such that a ¹ b,

2. A ≺2 B: if for every b ∈ B there exists a ∈ A such that a ¹ b,

3. A ≺3 B: if A ≺1 B and A ≺2 B.

Implicit relations in metric spaces have been considered by several authors in
connection with solving nonlinear functional equations (see for instance [2, 3, 4, 23]
and reference cited therein).

Let R+ be the set of non negative real numbers and T are set of continuous real
valued functions T : R5

+ → R satisfying the following conditions:

T1 : T (t1, t2, ..., t5) is non-decreasing in t1 and non-increasing in t2, ..., t5,

T2 : there exists h ∈ (0, 1) such that

T (u, v, v, u, v + u) ≤ 0,

or
T (u, v, u, v, u + v) ≤ 0,

implies
u ≤ hv,

T3 : T (u, 0, 0, u, u) > 0 and T (u, 0, u, 0, u) > 0, for all u > 0.

Next we give some examples for such T .

Example 1. Let T (t1, ..., t5) = t1−α max{t2, t3, t4}−(1−α)β t5, where 0 ≤ α < 1,
0 ≤ β < 1/2.

T1: It is obvious.

T2: Let u > 0, T (u, v, v, u, u + v) = u − α max{u, v} − (1 − α)β(u + v) ≤ 0 or
u ≤ α max{u, v}+ (1 − α)β(u + v). If u ≥ v, then u ≤ αu + (1 − α)β(u + v)
and so (1 − β)u ≤ βu, it implies that β ≥ 1/2, a contradiction. Thus u < v

and u ≤ α+(1−α)β
1−(1−α)β v. Similarly, let u > 0 and T (u, v, u, v, u + v) ≤ 0, then we

have u ≤ α+(1−α)β
1−(1−α)β v. If u = 0, then u ≤ α+(1−α)β

1−(1−α)β v. Thus T2 is satisfied with

h = α+(1−α)β
1−(1−α)β v < 1 .
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T3: T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = (1− α)(1− β)u > 0, for all u > 0.

Therefore T ∈ T .

Example 2. Let T (t1, ..., t5) = t1−α t2− β max{t3, t4}− γ t5, where α, β, γ ≥ 0
and α + 2β + γ < 1.

T1: It is obvious.

T2: Let u > 0, T (u, v, v, u, u + v) = u− αv − β max{u, v} − γ(u + v) ≤ 0 or u ≤
αv+β max{u, v}+γ (u+v). Thus u ≤ max{(α+β+γ)u+βv, (α+β+γ)v+βu}.
If u ≥ v, then u ≤ (α + β + γ)u + βv, it implies that α + 2β + γ ≥ 1,
a contradiction. Thus u < v and u ≤ α+β+γ

1−β v. Similarly, let u > 0 and
T (u, v, u, v, u+v) ≤ 0, then we have u ≤ α+β+γ

1−β v. If u = 0, then u ≤ α+β+γ
1−β v.

Thus T2 is satisfied for h = α+β+γ
1−β < 1.

T3: T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = (1− β − γ)u > 0, for all u > 0.

Therefore T ∈ T .

Example 3. Let T (t1, ..., t5) = t1 − α max{t2, t3, t4, t5/2}, where 0 ≤ α < 1.

T1: It is obvious.

T2: Let u > 0, T (u, v, v, u, u + v) = u − α max{u, v} ≤ 0 or u ≤ α max{u, v}. If
u ≥ v, then u ≤ αu, it implies that α ≥ 1 a contradiction. Thus u < v and
u ≤ αv. Similarly, let u > 0 and T (u, v, u, v, u + v) ≤ 0, then we have u ≤ αv.
If u = 0, then u ≤ αv. Thus T2 is satisfied with h = α < 1 .

T3: T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = (1− α)u > 0, for all u > 0.

Therefore T ∈ T .

Example 4. Let T (t1, ..., t5) = t1 − α max{t2, t3, t4} − βt5, where α, β > 0 and
α + 2β < 1.

T1: It is obvious.

T2: Let u > 0, T (u, v, v, u, u + v) = u − α max{u, v} − β(u + v) ≤ 0 or u ≤ α
·max{u, v} + β(u + v). Thus u ≤ max{(α + β)u + βv, (α + β)v + βu}. If
u ≥ v, then u ≤ (α + β)u + βv ≤ (α + 2β)u, it implies that α + 2β ≥ 1, a
contradiction. Thus u < v and u ≤ (α+β)v+βu and so u ≤ α+β

1−β v. Similarly,
let u > 0 and T (u, v, u, v, u + v) ≤ 0, then we have u ≤ α+β

1−β v. If u = 0, then
u ≤ α+β

1−β v. Thus T2 is satisfied with h = α+β
1−β < 1 .

T3: T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = (1− α− β)u > 0, for all u > 0.

Therefore T ∈ T .
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The existence of a fixed point in partially ordered metric spaces has been recently
considered in [18, 19, 16, 15, 17, 22, 20, 8, 21, 1, 7, 10, 12, 14, 5, 6]. It is of interest
to determine the existence of a fixed point in such a setting. The first result in this
direction was given by Ran and Reurings in [22] where they extended the Banach
contraction principle [13], in partially ordered sets with some application to linear
and nonlinear matrix equations. Ran and Reurings [22] proved the following seminal
result:

Theorem 1 (see [22]). Let (X,¹) be a partially ordered set such that for every pair
x, y ∈ X has an upper and lower bound. Let d be a metric on X such that (X, d)
is a complete metric space. Let f : X → X be a continuous monotone (either order
preserving or order reversing) mapping. Suppose that the following conditions hold:

1. there exists κ ∈ (0, 1) with

d(fx, fy) ≤ κd(x, y) for all x ¹ y,

2. there exists x0 ∈ X with x0 ¹ fx0 or fx0 ¹ x0.

Then f is a Picard Operator (PO), that is, f has a unique fixed point x∗ ∈ X and
for each x ∈ X,

lim
n→∞

fnx = x∗.

Theorem 1 was further extended and refined in [18, 19, 16, 20, 21]. These results
are hybrid of the two fundamental and classical theorems; Banach’s fixed point
theorem [13] and Tarski’s fixed point theorem [24, 9, 11]. Motivated and inspired
by [22], our aim in this paper is to give some new common fixed point results for set
valued mappings satisfying an implicit relation in partially ordered metric spaces.

2. Main results

Let (X,¹) be a partially ordered set and d a metric on X such that (X, d) is a
complete metric space.

We begin this section with the following theorem that gives the existence of a
fixed point (not necessarily unique) in a partially ordered metric space X for the set
valued mappings satisfying an implicit relation.

Theorem 2. Let F, G : X → B(X) be such that the following conditions are satis-
fied:

1. there exists x0 ∈ X such that {x0} ≺1 Fx0,

2. if x, y ∈ X is such that x ¹ y, then Gy ≺3 Fx,

3. if xn → x is any sequence in X whose consecutive terms are comparable then
xn ¹ x, for all n,

4. T (δ(Fx,Gy), d(x, y), dist(x, Fx), dist(y, Gy), dist(x, Gy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .
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Then there exists x ∈ X with {x} = Fx = Gx.

Proof. Let x0 ∈ X, then from assumption 1, there exists x1 ∈ Fx0 such that
x0 ¹ x1. Now by using assumptions 2, Gx1 ≺3 Fx0 which implies Gx1 ≺2 Fx0.
From this we get the existence of x2 ∈ Gx1 such that x2 ¹ x1. Since x0 ¹ x1,
therefore by using assumption 4, we have

T ( δ(Fx0, Gx1), d(x0, x1), dist(x0, Fx0), dist(x1, Gx1), dist(x0, Gx1)
+dist(x1, Fx0)) ≤ 0.

Using the facts

d(x1, x2) ≤ δ(Fx0, Gx1),
dist(x0, Fx0) ≤ d(x0, x1),
dist(x1, Gx1) ≤ d(x1, x2),
dist(x0, Gx1) + dist(x1, Fx0) ≤ d(x0, x2)

and by T1 we have

T (d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2)) ≤ 0,

that is
T (u, v, v, u, u + v) ≤ 0,

where u = d(x1, x2), v = d(x0, x1) .
Next, by T2 there exists h ∈ (0, 1) such that

d(x1, x2) ≤ hd(x0, x1). (1)

Again since x2 ¹ x1, therefore by assumption 2, Gx1 ≺3 Fx2 which implies Gx1 ≺1

Fx2. From this we get the existence of x3 ∈ Fx2 such that x2 ¹ x3. Now by
assumption 4,

T ( δ(Fx2, Gx1), d(x2, x1), dist(x2, Fx2), dist(x1, Gx1), dist(x2, Gx1)
+dist(x1, Fx2)) ≤ 0.

By T1 we have

T (d(x3, x2), d(x1, x2), d(x2, x3), d(x1, x2), d(x1, x2) + d(x2, x3)) ≤ 0,

that is,
T (u, v, u, v, u + v) ≤ 0,

where u = d(x2, x3), v = d(x1, x2) . Now by T2 there exists h ∈ (0, 1) such that

d(x2, x3) ≤ hd(x1, x2), (2)

and from (1) and (2), we get

d(x2, x3) ≤ h2d(x0, x1). (3)
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Continuing in this manner we can define a sequence {xn} whose consecutive terms
are comparable such that x2n+1 ∈ Fx2n and x2n+2 ∈ Gx2n+1, for n = 0, 1, 2....
Again by assumption 4,

T ( δ(Fx2n, Gx2n+1), d(x2n, x2n+1), dist(x2n, Fx2n), dist(x2n+1, Gx2n+1),
dist(x2n, Gx2n+1) + dist(x2n+1, Fx2n)) ≤ 0,

which implies that

T ( d(x2n+1, x2n+2), d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+1) + dt(x2n+1, x2n+2)) ≤ 0,

that is,
T (u, v, v, u, u + v) ≤ 0,

where u = d(x2n+1, x2n+2), v = d(x2n, x2n+1). Next, by T2 there exists h ∈ (0, 1)
such that

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1). (4)

Therefore, we have

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1) ≤ · · · ≤ hnd(x0, x1)

Next, we will show that {xn} is a Cauchy sequence in X. Let m > n. Then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm)
≤ [hn + hn+1 + hn+2 + · · ·+ hm−1]d(x0, x1)
= hn[1 + h + h2 · · ·+ hm−n−1]d(x0, x1)

= hn 1− hm−n

1− h
d(x0, x1)

<
hn

1− h
d(x0, x1),

because h ∈ (0, 1), 1 − hm−n < 1. Therefore d(xn, xm) → 0 as n → ∞ implies that
{xn} is a Cauchy sequence and thus there exists some point (say) x in the complete
metric space X such that

lim
n→∞

xn = lim
n→∞

x2n = lim
n→∞

x2n+1 = x ∈ lim
n→∞

Fx2n,

lim
n→∞

xn = lim
n→∞

x2n = lim
n→∞

x2n+2 = x ∈ lim
n→∞

Gx2n+1,

and by assumption 2, xn ¹ x for all n. Next, by assumption 4,

T ( δ(Fx2n, Gx), d(x2n, x), dist(x2n, Fx2n), dist(x,Gx),
dist(x2n, Gx) + dist(x, Fx2n)) ≤ 0,

which gives

T ( δ(x2n+1, Gx), d(x2n, x), d(x2n, x2n+1), dist(x, Gx),
dist(x,Gx) + d(x, x2n+1)) ≤ 0.
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Letting n →∞ and using T1 we get

T (δ(x,Gx), 0, 0, δ(x, Gx), δ(x,Gx)) ≤ 0,

that is
T (u, 0, 0, u, u) ≤ 0,

and from T3 we have u = δ(x,Gx) = 0, which gives Gx = {x}. Similarly,

T ( δ(Fx, Gx2n+1), d(x, x2n+1), dist(x, Fx), dist(x2n+1, Gx2n+1),
dist(x,Gx2n+1) + dist(x2n+1, Fx)) ≤ 0,

which implies

T ( δ(Fx, x2n+2), d(x, x2n+1), dist(x, Fx), d(x2n+1, x2n+2),
d(x, x2n+2) + dist(x2n+1, Fx)) ≤ 0.

Letting n →∞ and using T1 we get

T (δ(Fx, x), 0, δ(Fx, x), 0, δ(Fx, x)) ≤ 0,

that is,
T (u, 0, u, 0, u) ≤ 0,

and from T3 we have u = δ(Fx, x) = 0, which gives Fx = {x}. Hence x = F (x)
= G(x).

Theorem 3. Let F, G : X → B(X) be such that the following conditions are satis-
fied:

1. there exists x0 ∈ X such that Fx0 ≺2 {x0},
2. if x, y ∈ X is such that x ¹ y, then Fy ≺3 Gx,

3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx,Gy), d(x, y), dist(x, Fx), dist(y, Gy), dist(x,Gy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx = Gx.

Proof. The proof follows along the similar lines as in Theorem 2.

Next, we have the following analogue of Theorem 2 and Theorem 3.

Theorem 4. Let F, G : X → B(X) be such that the following conditions are satis-
fied:

1. there exists x0 ∈ X such that {x0} ≺1 Gx0,

2. if x, y ∈ X is such that x ¹ y, then Fy ≺3 Gx,
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3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx,Gy), d(x, y), dist(x, Fx), dist(y, Gy), dist(x,Gy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx = Gx.

Theorem 5. Let F, G : X → B(X) be such that the following conditions are satis-
fied:

1. there exists x0 ∈ X such that Gx0 ≺2 {x0},
2. if x, y ∈ X is such that x ¹ y, then Gy ≺3 Fx,

3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx,Gy), d(x, y), dist(x, Fx), dist(y, Gy), dist(x,Gy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx = Gx.

By taking F = G in Theorems 2 - 5 we obtain the following consequence:

Corollary 1. Let F : X → B(X) be such that the following conditions are satisfied:

1. there exists x0 ∈ X such that {x0} ≺1 Fx0 or Fx0 ≺2 {x0},
2. if x, y ∈ X is such, that x ¹ y then Fy ≺3 Fx,

3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx, Fy), d(x, y), dist(x, Fx), dist(y, Fy), dist(x, Fy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx.

Example 5. Let X = {(0, 0), (0,−1/2), (−1/8, 1/8)} be a subset of R2 with a usual
order defined as: for (u, v), (x, y) ∈ X, (u, v) ≤ (x, y) if and only if u ≤ x, y ≤ v.
Let d be a metric on X defined as:

d(x, y) = d((x1, y1), (x2, y2)) := max{| x1 − x2 |, | y1 − y2 |}, for all x, y ∈ X,

so that (X, d) is a complete metric space. Mapping F : X → B(X) is defined as:

F (x) =

{
{(− 1

8 , 1
8 )}, if x = (− 1

8 , 1
8 )

{(0, 0), (− 1
8 , 1

8 )}, if x ∈ {(0, 0), (0,− 1
2 )} .

For (0,− 1
2 ) ≤ (0, 0);

δ(F (0,−1
2
), F (0, 0)) =

1
8
≤ 1

3
.
1
2

=
1
3
d((0,−1/2), (0, 0).
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Thus for all x ≤ y we have

δ(Fx, Fy) ≤ 1
3

d(x, y) ≤ 1
3

max { d(x, y), dist(x, Fx), dist(y, Fy),

dist(x, Fy) + dist(y, Fx)
2

}.

Also note that (0, 0) ∈ X is such that {(0, 0)} ≺1 F (0, 0) and for all x ¹ y, then
Fy ≺ Fx. Consequently, all conditions of Corollary 1 are satisfied and {(− 1

8 , 1
8 )}

= F (− 1
8 , 1

8 ).

Remark 1. The conclusion of Corollary 1 still holds if we replace assumption 2 by:

• if x, y ∈ X is such that x ¹ y, then Fy ≺3 Fx or Fx ≺3 Fy.

Corollary 1 is further extended as:

Corollary 2. Let F : X → B(X) be such that the following conditions are satisfied:

1. there exists x0 ∈ X such that {x0} ≺1 Fx0,

2. if x, y ∈ X is such that x ¹ y, then Fx ≺1 Fy,

3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx, Fy), d(x, y), dist(x, Fx), dist(y, Fy), dist(x, Fy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx.

Proof. Let x0 ∈ X, then from assumption 1 there exists x1 ∈ Fx0 such that
x0 ¹ x1. Now by using assumptions 2, Fx0 ≺1 Fx1. From this we get the existence
of x2 ∈ Fx1 such that x1 ¹ x2. Since x0 ¹ x1, therefore by using assumption 4 we
have

T ( δ(Fx0, Fx1), d(x0, x1), dist(x0, Fx0), dist(x1, Fx1),
dist(x0, Fx1) + dist(x1, Fx0)) ≤ 0.

Using T1 we have

T (d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2)) ≤ 0,

that is,
T (u, v, v, u, u + v) ≤ 0,

where u = d(x1, x2), v = d(x0, x1) . Next, by using T2, there exists h ∈ (0, 1) such
that

d(x1, x2) ≤ hd(x0, x1). (5)
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Again since x1 ¹ x2, therefore by assumption 2, Fx1 ≺1 Fx2. From this we get the
existence of x3 ∈ Fx2 such that x2 ¹ x3. By assumption 4,

T ( δ(Fx1, Fx2), d(x1, x2), dist(x1, Fx1), dist(x2, Fx2),
dist(x1, Fx2)) + dist(x2, Fx1) ≤ 0.

By using T1 we have

T (d(x2, x3), d(x1, x2), d(x1, x2), d(x2, x3), d(x1, x2) + d(x2, x3)) ≤ 0,

that is,
T (u, v, u, v, u + v) ≤ 0,

where u = d(x2, x3), v = d(x1, x2). Next, by using T2 there exists h ∈ (0, 1) such
that

d(x2, x3) ≤ hd(x1, x2), (6)

and from (5) and (6) we get

d(x2, x3) ≤ h2d(x0, x1). (7)

Continuing in this manner we can define a non-decreasing sequence {xn} such that
xn+1 ∈ F (xn), for n = 0, 1, 2 . . . . By using induction, we have

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1) · · · ≤ hnd(x0, x1)

Next we will show that {xn} is a Cauchy sequence in X. Let m > n. Then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm)
≤ [hn + hn+1 + hn+2 + · · ·+ hm−1]d(x0, x1)
= hn[1 + h + h2 + · · ·+ hm−n−1]d(x0, x1)

= hn 1− hm−n

1− h
d(x0, x1)

<
hn

1− h
d(x0, x1),

because h ∈ (0, 1), 1 − hm−n < 1. Therefore d(xn, xm) → 0 as n → ∞ implies that
{xn} is a Cauchy sequence and thus there exists some point (say) x in the complete
metric space X such that

lim
n→∞

xn = x

and by assumption 3, xn ¹ x for all n. Next by assumption 4,

T (δ(Fxn, Fx), d(xn, x), dist(xn, Fxn), dist(x, Fx), dist(xn, Fx)+ dist(x, Fxn)) ≤ 0,

which gives

T (δ(xn+1, Fx), d(xn, x), d(xn, xn+1), dist(x, Fx), dist(xn, Fx) + d(x, xn+1)) ≤ 0.
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Letting n →∞ and using T1 we get

T (δ(x, Fx), 0, 0, δ(x, Fx), δ(x, Fx)) ≤ 0,

that is,
T (u, 0, 0, u, u) ≤ 0,

and from T3, we have u = δ(x, Fx) = 0, which gives Fx = {x}.
Remark 2. If we replace assumption 4; for all comparable elements x, y of Corol-
lary 2 by: for all x ¹ y of a partially ordered set X, then the conclusion still holds.

Corollary 3. Let F : X → B(X) be such that the following conditions are satisfied:

1. there exists x0 ∈ X such that Fx0 ≺2 {x0},
2. if x, y ∈ X is such that x ¹ y, then Fx ≺2 Fy,

3. if xn → x is any sequence in X whose consecutive terms are comparable, then
xn ¹ x, for all n,

4. T (δ(Fx, Fy), d(x, y), dist(x, Fx), dist(y, Fy), dist(x, Fy) + dist(y, Fx)) ≤ 0,
for all distinct comparable elements x, y of X and for some T ∈ T .

Then there exists x ∈ X with {x} = Fx.

Remark 3. If we replace assumption 3 and 4 of Corollary 1, respectively, by:

• if xn → x is any sequence in X whose consecutive terms are comparable, then
x ¹ xn, for all n.

• T (δ(Fx, Fy), d(x, y), dist(x, Fx), dist(y, Fy), dist(x, Fy) + dist(y, Fx)) ≤ 0,
for all y ¹ x and for some T ∈ T .

Then the conclusion still holds.
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[19] J. J. Nieto, R.Rodŕıguez-López, Existence and uniqueness of fixed point in partially

ordered sets and applications to ordinary differential equations, Acta. Math. Sinica
23(2007), 2205-2212.

[20] D.O’Regan, A. Petrusel, Fixed point theorems for generalized contractions in or-
dered metric spaces, J. Math. Anal. Appl. 341(2008), 1241-1252.

[21] A.Petrusel, I. A.Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math.
Soc. 134(2005), 411-418.

[22] A.C.M.Ran, M.C.B.Reurings, A fixed point theorm in partially ordered sets and
some applications to matrix equations, Proc. Amer. Math. Soc. 132(2003), 1435-1443.

[23] S. Sedghi, I. Altun, N. Shobe, A fixed point theorem for multi-maps satisfying an
implicit relation on metric spaces, Appl. Anal. Discrete Math. 2(2008), 189-196.

[24] A.Tarski, A lattice theoretical fixed point theorem and its application, Pacific J. Math.
5(1955), 285-309.


