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Abstract. A general common fixed point theorem for two pairs of weakly compatible self
mappings proved in compact metric spaces employing a slightly modified implicit relation
which generalizes almost all existing relevant common fixed point theorems. Some related
results are also derived besides furnishing illustrative examples.
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1. Introduction

While considering Lipschitzian mappings, a natural question arises whether it is
possible to weaken contraction assumption a little bit in Banach contraction principle
and still obtain the existence of a fixed point. In general, the answer to this question
is no. In this regard, the following interesting example is available in Khamsi and
Kirk [13].

Example 1 (see [13]). Let C[0, 1] denote the complete metric space of real valued
continuous functions defined on [0, 1] with respect to supremum metric and consider
the closed subspace Z of C[0, 1] consisting of those functions f ∈ C[0, 1] satisfying
f(1) = 1. Since Z is a closed subspace of C[0, 1], hence Z is also complete. Now,
define T : Z → Z by Tf(t) = tf(t) ∀ t ∈ [0, 1]. Then one can easily verify that
d(Tf, Tg) < d(f, g) whenever f 6= g but T has no fixed point as Tf = f ⇒ tf =
f ⇒ f(t) = 0 ∀ t ∈ [0, 1). On the other hand, f(1) = 1 which contradicts the
continuity of T and so T cannot have a fixed point in Z. Here one may note that
T is a contractive mapping on Z. Let us recall that a mapping T on a metric space
(X, d) is said to be contractive if d(Tx, Ty) < d(x, y) for all distinct x, y ∈ X.

The next natural question arises whether there is a meaningful fixed point the-
orem for contractive mappings. This time the answer is affirmative but the class
of spaces to which it applies is much more restrictive. In this direction, Edelstein
[2] proved the first ever fixed point theorem for contractive mappings defined on a
compact metric space which runs as follows:
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Theorem 1 (see [2]). Let T be a contractive self mapping of a compact metric
space (X, d), then T has a unique fixed point x0. Moreover, for each x ∈ X,
lim

n→∞
Tn(x) = x0.

In recent years, Theorem 1 has been generalized and improved in several ways.
To mention a few, we cite [3, 4, 7, 14, 16, 18-20].

As patterned in Jungck [8], a common fixed point theorem in metric spaces
generally involves conditions on contraction, commutativity and continuity of the
involved mappings besides suitable containment of the range of one mapping into
the range of other. Therefore, in order to prove a new metrical common fixed point
theorem one is always required to improve one or more of these conditions.

Sessa [24, 1982] initiated the tradition of improving commutativity condition
in common fixed point theorems. Inspired by the definition of weak commutativ-
ity of Sessa [24], researchers of this domain introduced several definitions of weak
commutativity such as: Compatible mappings, Compatible mappings of type (A),
Compatible mappings of type (B), Compatible mappings of type (P), Compatible
mappings of type (C), Biased maps, R-weakly commuting mappings and some oth-
ers whose lucid comparison and illustration can be found in Murthy [17]. In our
subsequent work, we use the most natural and minimal of these weak conditions
known as ‘weak compatibility’ (due to Jungck [11]) which runs as follows:

Definition 1 (see [11]). Let T and S be self mappings of a metric space (X, d).
Then the pair (T, S) is said to be weakly compatible if for any x ∈ X with Tx = Sx
implies TSx = STx.

2. Implicit relation

In an attempt to improve and unify a multitude of common fixed point theorems
in compact setting (see [5, 10, 25, 26]), Popa [22] defined an implicit relation with
several demonstrating examples. Here we emphasize that several other well known
contractive conditions (cf. [3, 4, 12, 14, 23]) also fall in the format of this implicit
relation and it is also good enough to deduce some natural unknown contractive
conditions as well. In order to substantiate earlier claims, we add some more exam-
ples to this effect. Before adding our examples, let us recall the implicit relation and
with examples (due to Popa [22]) which can be described as follows:

Let F be the family of real-valued functions F (t1, . . . , t6) : <6
+ → < satisfying

the following conditions:

F1: F is non increasing in variables t5 and t6,

F2: For every u ≥ 0 , v > 0

F2a: F (u, v, v, u, u + v, 0) < 0, or

F2b: F (u, v, u, v, 0, u + v) < 0

we have u < v.

F3: F (u, u, 0, 0, u, u) ≥ 0, ∀ u > 0.
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A careful examination of Theorem 5 due to Popa [22] reveals the fact that he used
the condition ‘u < v when v = 0’, which is not permissible in view of F2. Therefore,
one needs to add the following:

F ′2: F (u, 0, 0, u, u, 0) ≥ 0, ∀ u > 0.

Thus implicit relations in this paper are required to obey F1, F2, F
′
2 and F3 which

will be referred to as a modified implicit relation in the sequel.

Example 2. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = (1 + pt2)t1 − p max{t3t4, t5t6} −max
{

t2, t3, t4,
t5 + t6

2

}

with p > 0.

Example 3. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t1 −max
{

t2, t3, t4,
t5 + t6

2

}
.

Example 4. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t21 − amax{t22, t23, t24} − bmax{t3t5, t4t6} − ct5t6,

where a + 2b ≤ 1, a + c ≤ 1 and a, b, c ≥ 0.

Example 5. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t1 −max
{

t2, t3, t4,
t5 + t6

2
, b
√

t5t6

}
with b ∈ (0, 1).

Example 6. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t31 − at21t2 − bt1t3t4 − ct25t6 − dt5t
2
6,

where a, b, c, d ≥ 0 and a + b + c + d < 1.

Example 7. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t31 − a
t23t

2
4 + t25t

2
6

1 + t2 + t3 + t4
, where a ∈ (0, 1).

Here one may recall that all above examples enjoy the properties F1, F2 and F3

whose verifications are available in Popa [22]. Notice that all earlier examples also
enjoy F ′2.

In order to strengthen the view point of Popa [22], we furnish some more examples
as follows:

Example 8. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t1 − φ

(
max

{
t2, t3, t4,

t5 + t6
2

})
,

where φ : <+ → <+ is an increasing function such that φ(t) ≤ t for t ≥ 0.
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Example 9. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t1 −max
{

t2,
t3 + t4

2
,
t5 + t6

2

}
.

Example 10. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) = t1 −max
{

t2, t3, t4,
t5
2

,
t6
2

}
.

Example 11. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, . . . , t6) =





t1 −max
{

t3, t4, t2

( t5 + t6
t3 + t4

)}
, if t3 + t4 6= 0

t1 − t2, if t3 + t4 = 0.

The verifications of above examples are easy, hence details are omitted.
Recently, Aliouche [1] introduced yet another implicit relation by slightly modify-

ing the implicit relation given by Popa [22]. In order to describe the implicit relation
due to Aliouche [1], let Φ be a family of all continuous mappings F (t1, . . . , t6) : <6

+ →
< satisfying

(C1): For all u ≥ 0, v > 0 and w ≥ 0 with

(Ca): F (u, v, v, u, w, 0) < 0, or

(Cb): F (u, v, u, v, 0, w) < 0, we have u < v.

(C2): For all u > 0, F (u, 0, 0, u, u, 0) ≥ 0.

(C3): For all u > 0, F (u, u, 0, 0, u, u) ≥ 0.

Both of these implicit relations described by F and Φ are in fact independent. In
order to substantiate this view point notice that Example 3 satisfies all the require-
ments of the implicit relation F but not of the implicit relation Φ, whereas Example 2
(contained in [1]) satisfies all the conditions of the implicit relation Φ but not of im-
plicit relation F . In fact, most of the well known strict contractions are governed by
the class F but only rarely by the implicit relation Φ (due to Aliouche [1]). More-
over, Aliouche [1] assumed Φ to be a class of continuous mappings, whereas we never
need any such continuity requirement.

In this paper, we prove a general common fixed point theorem for two pairs of
self mappings employing a slightly modified implicit relation as described earlier and
also lessen the commutativity requirement to the points of coincidence of the pairs.
In process sharpened versions of results due to Fisher [3-5], Jungck [10], Kasahara
and Rhoades [12], Khan and Imdad [14], Popa [22] and others are deduced as special
cases.
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3. Results

Recently, Popa [22] proved an interesting fixed point theorem in compact metric
spaces with the minimal continuity requirement as most of the earlier common fixed
point theorems require the continuity of all involved mappings whereas on the other
hand this is the first ever result in compact setting employing implicit relations.
Now we state and prove our main result as follows:

Theorem 2. Let S, T, I and J be self mappings of a compact metric space (X, d)
with S(X) ⊂ J(X) and T (X) ⊂ I(X) such that

F (d(Sx, Ty), d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)) < 0, (1)

for all distinct x, y ∈ X for which one of d(Ix, Jy), d(Ix, Sx), d(Jy, Ty) is positive,
where F ∈ F and the mappings S and I are continuous, then

(a) the pairs (S, I) and (T, J) have a point of coincidence, and

(b) the mappings S, T, I and J have a unique common fixed point provided both
pairs (S, I) and (T, J) are weakly compatible.

Proof. Let m = inf{d(Sx, Ix) : x ∈ X}. Since X is compact, therefore there is
a convergent sequence {xn} with lim

n→∞
xn = x0 in X such that lim

n→∞
d(Ixn, Sxn)

= m. By the continuity of mappings S and I along with lim
n→∞

xn = x0, we get

d(Ix0, Sx0) = m.
Since S(X) ⊂ J(X), there exists a point y0 in X such that Jy0 = Sx0 which in

turn yields d(Ix0, Jy0) = m. Suppose that m > 0. Then using (1), we have

F (d(Sx0, T y0), d(Ix0, Jy0), d(Ix0, Sx0), d(Jy0, T y0), d(Ix0, T y0), d(Jy0, Sx0)) < 0

or
F (d(Jy0, T y0),m,m, d(Jy0, T y0),m + d(Jy0, Ty0), 0) < 0,

yielding thereby (due to F2a)

d(Jy0, T y0) < m. (2)

Since T (X) ⊂ I(X), then there exists a point z in X such that Iz = Ty0 and thus
d(Iz, Jy0) < m. Since d(Iz, Sz) ≥ m > 0, then by (1), we have

F (d(Sz, Ty0), d(Iz, Jy0), d(Iz, Sz), d(Jy0, T y0), d(Iz, Ty0), d(Jy0, Sz)) < 0,

F (d(Iz, Sz), d(Jy0, T y0), d(Iz, Sz), d(Jy0, T y0), 0, d(Jy0, T y0) + d(Iz, Sz)) < 0,

implying thereby (in view of F2b)

d(Iz, Sz) < d(Jy0, T y0). (3)

Now, making use of (2) and (3), one obtains

m ≤ d(Iz, Sz) < d(Jy0, T y0) < m,
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which is a contradiction. Therefore, m = 0, which implies Ix0 = Sx0 = Jy0.
If d(Jy0, T y0) > 0, then by (1), we have

F (d(Sx0, T y0), d(Ix0, Jy0), d(Ix0, Sx0), d(Jy0, T y0), d(Ix0, T y0), d(Jy0, Sx0)) < 0

or
F (d(Jy0, T y0), 0, 0, d(Jy0, T y0), d(Jy0, T y0), 0) < 0,

yielding thereby d(Jy0, T y0) = 0 (due to F ′2), which gives Jy0 = Ty0. Therefore,
Ix0 = Sx0 = Jy0 = Ty0, which shows that the pairs (S, I) and (T, J) have a point
of coincidence.
Since the pair (S, I) is weakly compatible, S2x0 = SIx0 = ISx0 = I2x0. If I2x0 6=
Ix0, then ISx0 6= Jy0 and by (1), one can have

F (d(S2x0, T y0), d(ISx0, Jy0), d(ISx0, S
2x0), d(Jy0, T y0),

d(ISx0, T y0), d(Jy0, S
2x0)) < 0

or
F (d(S2x0, Ix0), d(I2x0, Ix0), 0, 0, d(I2x0, Ix0), d(I2x0, Ix0)) < 0

a contradiction to F3. Therefore, Ix0 = I2x0. Hence SIx0 = Ix0 = I2x0, which
shows that Ix0 is a common fixed point of the pair (S, I). Similarly, we can show
TJy0 = Jy0 = J2y0. Since Ix0 = Jy0, therefore Ix0 is a common fixed point of
the mappings S, T, I and J . The unicity of the common fixed point is a direct
consequence of the condition (F3). This completes the proof.

Remark 1. Theorem 2 is a sharpened form of a result due to Popa [22, Theorem 5]
for four mappings as ‘compatibility’ of the pair (S, I) is weakened to ‘weak compat-
ibility’. Notice that up to coincidence points, we never need any condition of weak
commutativity.

Corollary 1. The conclusions of Theorem 2 remain true if we replace condition (1)
by any one of the following:

(a1)

[1 + p.d(Ix, Jy)]d(Sx, Ty) < pmax{d(Ix, Sx).d(Jy, Ty), d(Ix, Ty).d(Jy, Sx)}
+max

{
d(Ix, Jy), d(Ix, Sx), d(Jy, Ty),

d(Ix, Ty) + d(Jy, Sx)
2

}
,

where p > 0.

(a2) d(Sx, Ty) < max
{

d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix,Ty)+d(Jy,Sx)
2

}

(a3)

d2(Sx, Ty) < cmax{d2(Ix, Sx), d2(Jy, Ty), d2(Ix, Jy)}
+

1− c

2
max{d(Ix,Sx), d(Jy,Ty), d(Ix, Jy), d(Ix, Ty), d(Jy, Sx)}

+(1− c)d(Ix, Ty).d(Sx, Ty)}
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(a4)

d(Sx, Ty) < max
{

d(Ix, Jy), d(Ix, Sx), d(Jy, Ty),
d(Ix, Ty) + d(Jy, Sx)

2
,

b
√

d(Ix, Ty)d(Jy, Sx)
}

for all x, y ∈ X with b ∈ (0, 1).

(a5)

d3(Sx, Ty) < ad2(Sx, Ty)d(Ix, Jy) + bd(Sx, Ty)d(Ix, Sx)d(Jy, Ty)
+cd2(Ix, Jy)d(Jy, Sx) + d.d(Ix, Ty)d2(Jy, Sx)

where a, b, c, d ≥ 0 and a + b + c + d < 1.

(a6) d3(Sx, Ty) < ad2(Ix,Sx)d2(Jy,Ty)+d2(Ix,Ty)d2(Jy,Sx)
1+d(Ix,Jy)+d(Ix,Sx)+d(Jy,Ty) , where a ∈ (0, 1).

(a7) d(Sx, Ty) < φ
(
max

{
d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix,Ty)+d(Jy,Sx)

2

})

where φ : <+ → <+ is an increasing function such that φ(t) ≤ t for t ≥ 0.

(a8) d(Sx, Ty) < max
{

d(Ix, Jy), d(Ix,Sx)+d(Jy,Ty)
2 , d(Ix,Ty)+d(Jy,Sx)

2

}

(a9) d(Sx, Ty) < max
{

d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix,Ty)
2 , d(Jy,Sx)

2

}

(a10) d(Sx, Ty) <





max
{

d(Ix, Sx), d(Jy, Ty), d(Ix, Jy)
d(Ix, Ty) + d(Jy, Sx)
d(Ix, Sx) + d(Jy, Ty)

}
,

if d(Ix, Sx) + d(Jy, Ty) 6= 0,

d(Ix, Jy), if d(Ix, Sx) + d(Jy, Ty) = 0.

Proof. The proof of the above corollary follows from Theorem 2 and Examples 2-
11.

Remark 2. Corollary 1 corresponding to condition (a1) extends a theorem due to
Fisher et al. [5] to two pairs of weakly compatible mappings whereas the same (i.e.
Corollary 1) corresponding to condition (a4) further refines a theorem due to Telci
et al. [26] where ‘commutativity’ and ‘continuity’ requirements are weakened. Simi-
larly, Corollary 1 corresponding to condition (a2) enriches a well known fixed point
theorem due to Jungck [10] (also Khan and Imdad [14] and Fisher [3]) in ‘com-
mutativity’ and ‘continuity’ considerations. Corollary 1 corresponding to condition
(a3) extends a theorem of Tas et al. [25] to two pairs of weak compatible mappings
and Corollary 1 corresponding to condition (a8) is an improved form of a theorem
of Kasahara and Rhoades [12] for four self mappings.

Remark 3. Besides the above deductions and improvements, one can employ im-
plicit functions to derive new fixed point theorems. For example, Corollary 1 cor-
responding to the conditions (a5, a6, a7, a9 and a10) is possibly new to the existing
literature.
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In the sequel, F (T ) denotes a set of fixed points of the mapping T : X → X.

Theorem 3. Let S, T, I and J be self mappings of a compact metric space (X, d)
which satisfy implicit relation (1), then

(F (I) ∩ F (J)) ∩ F (S) = (F (I) ∩ F (J)) ∩ F (T ).

Proof. The proof is similar to the proof of Theorem 3 from [21].

Theorems 2 and 3 imply the following one.

Theorem 4. Let I, J and {Ti}i∈N∪{0} be self mappings of a compact metric space
(X, d) such that

(a) T0(X) ⊂ J(X) and Ti(X) ⊂ I(X), i ∈ N ,

(b) F (d(T0x, Tiy), d(Ix, Jy), d(Ix, T0x), d(Jy, Tiy), d(Ix, Tiy), d(Jy, T0x)) < 0,
holds for all distinct x, y ∈ X for which one of d(Ix, Jy), d(Ix, T0x), d(Jy, Tiy)
is positive, where F ∈ F and the mappings T0 and I are continuous.

Then mappings I, J and {Ti} have a unique common fixed point provided the pairs
(T0, I) and (Ti, J) are weakly compatible.

Remark 4. Theorem 4 generalizes the main result of Aliouche [1] for a sequence of
self mappings.

Remark 5. One may obtain a corollary similar to Corollary 1 for a sequence of self
mappings. The details are avoided due to repetition.

Now we furnish an example to demonstrate the validity of hypotheses and a
degree of generality of Theorem 4 over earlier results.

Example 12. Consider X = [2, 20] with a usual metric. Define self mappings I, J
and {Ti} on X as

J2 = 2,

Jx = 12, if 2 < x ≤ 5,

Jx = x− 3, if x > 5
Ix = x, for all x ∈ X,

T1x = 2, for all x ∈ X,

T2x =





2, if x = 2, or x > 5

6, if 2 < x ≤ 5,
, Ti(>2)x =





2, if x ≤ 2 + 1
i , or x > 5

6, if 2 + 1
i < x ≤ 5.

Clearly, T1(X) = {2} ⊂ [2, 17] = J(X) and Ti(X)(i > 1) = {2, 6} ⊂ X = I(X).
Also, mappings T1 and I are continuous. The pairs (T1, I) and (Ti, J) commute at 2
which is their common coincidence point. Also, all needed pairwise commutativities
at coincidence point 2 are immediate. Define F : <6

+ → < as follows

F (t1, . . . , t6) = t1 −max
{

t2, t3, t4,
t5 + t6

2

}
.
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By a routine calculation one can verify that the above contraction condition is sat-
isfied for all x, y ∈ X. Thus all the conditions of Theorem 4 are satisfied and 2 is a
unique common fixed point of I, J and {Ti}.

We now furnish an example which establishes the genuineness of our extension.
To accomplish this purpose, we construct four self mappings S, T, I and J which sat-
isfy the unknown contractive condition (a10) but do not satisfy the known condition
(a2) in Corollary 1.

Example 13. Consider X = {1, 2, 3, 4} endowed with the following metric d: d(x, y)
= 0 ⇔ x = y, d(x, y) = d(y, x), d(1, 2) = 6, d(1, 3) = 4, d(1, 4)=5, d(2, 3)= 5, d(2, 4)
= 8 and d(3, 4) = 7. Clearly, (X, d) is a compact metric space. Define self mappings
S, T, I and J on X as

Sx = 4, for all x ∈ X,

Ix = x for all x ∈ X,

T1 = T2 = T4 = 4, T3 = 3 and
J1 = J2 = 3, J3 = 2, J4 = 4.

Notice that
S(X) = {4} ⊂ {2, 3, 4} = J(X)

and
T (X) = {3, 4} ⊂ {1, 2, 3, 4} = I(X).

By a routine calculation, one can verify that all the conditions of Corollary 1 in
respect of (a10) are satisfied and 4 is a unique common fixed point of mappings
S, T, I and J . On the other hand, condition (a2) of Corollary 1 is not satisfied when
x = 4 and y = 3.
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