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1. Introduction

Recently, existence and multiplicity of solutions for boundary value problems of
dynamic equations have been of great interest in mathematics and its applications
to engineering sciences. To our knowledge, most existing results on this topic are
concerned with single equation and simple boundary conditions.

It should be pointed out that Erbe and Wang [4] discussed the boundary value
problem

−u′′ = f(t, u), αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0.

By using Krasnosel’skii’s fixed point theorem, the existence of solutions is obtained in
the case when either f is superlinear or f is sublinear. Yang and Sun [13] considered
the boundary value problem of the system of differential equations

−u′′ = f(t, u), −v′′ = g(t, u), u(0) = u(1) = 0, v(0) = v(1) = 0.

By appealing to the degree theory, the existence of solutions is established. Note
that there is only one differential equation in [4] and the BVP in [13] contains simple
boundary conditions.

Motivated by the works of [4] and [13], this paper is concerned with the existence
and multiplicity of positive solutions for a dynamic equation on time scales

u∆∆(t) + f(t, v) = 0, t ∈ [a, b]T,

v∆∆(t) + g(t, u) = 0, t ∈ [a, b]T,
(1)
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satisfying the boundary conditions

αu(a)− βu∆(a) = 0 = γu(σ2(b)) + δu∆(σ(b)),

αv(a)− βv∆(a) = 0 = γv(σ2(b)) + δv∆(σ(b)),
(2)

where f, g ∈ C([a, σ2(b)]T×R+,R+), f(t, 0) ≡ 0, g(t, 0) ≡ 0, α, β, δ, γ ≥ 0, d = γβ+
αδ + αγ(σ2(b)− a).

Let T be a time scale with a, σ2(b) ∈ T. Given an interval J of R, we will use
the interval notation

JT = J ∩ T.

The arguments for establishing the existence of solutions of (1)-(2) involve prop-
erties of Green’s function that play a key role in defining some cones. A fixed point
theorem due to Krasnosel’skii [8] is applied to yield the existence of positive solu-
tions of (1)-(2). Another fixed point theorem about multiplicity is applied to obtain
the multiplicity of positive solutions of (1)-(2).

The rest of this paper is organized as follows. In Section 2, we shall provide some
properties of certain Green’s functions and preliminaries which are needed later. For
the sake of convenience, we also state Krasnosel’skii’s fixed point theorem in a cone.
In Section 3, we establish the existence and multiplicity of positive solutions of
(1)-(2).

2. Preliminaries

In this section, we will give some lemmas which are useful in proving our main
results.

To obtain solutions of (1)-(2), we let G(t, s) be the Green’s function for the
boundary value problem

−y∆∆ = 0, (3)
αy(a)− βy∆(a) = 0, γy(σ2(b)) + δy∆(σ(b)) = 0, (4)

which is given by

G(t, s) =
1
d

{
[α(t− a) + β]

[
γ(σ2(b)− σ(s)) + δ

]
: t ≤ s

[α(σ(s)− a) + β]
[
γ(σ2(b)− t) + δ

]
: σ(s) ≤ t, (5)

where α, β, γ, δ ≥ 0 and

d := γβ + αδ + αγ(σ2(b)− a) > 0.

One can easily check that

G(t, s) > 0, (t, s) ∈ (a, σ2(b))T × (a, σ(b))T.

Define

I =
[
3a + σ2(b)

4
,
a + 3σ2(b)

4

]

T
.
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Lemma 1. The Green’s function G(t, s) satisfies

(i) G(t, s) ≤ G(σ(s), s), for t ∈ [a, σ2(b)]T, s ∈ [a, σ(b)]T,

(ii) G(t, s) ≥ kG(σ(s), s), for t ∈ I, s ∈ [a, σ(b)]T,

where

k = min
{

γ(σ2(b)− a) + 4δ

4(γ(σ2(b)− a) + δ)
,

α(σ2(b)− a) + 4β

4(α(σ2(b)− a) + β)

}
≤ 1.

The proof of this lemma is standard and therefore omitted.
We note that a pair (u(t), v(t)) is a solution of (1)-(2) if and only if

u(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s, a ≤ t ≤ σ2(b),

v(t) =
∫ σ(b)

a

G(t, s))g(s, u(s))∆s, a ≤ t ≤ σ2(b).

Assume throughout that [a, σ2(b)]T is such that

ξ = min
{

t ∈ T | t ≥ 3a + σ2(b)
4

}
,

and

ω = max
{

t ∈ T | t ≤ a + 3σ2(b)
4

}

both exist and satisfy

3a + σ2(b)
4

≤ ξ < ω ≤ a + 3σ2(b)
4

.

Next, let τ ∈ [ξ, ω]T be defied by
∫ ω

ξ

G(τ, s)∆s = max
t∈[a,σ2(b)]T

∫ ω

ξ

G(t, s)∆s.

Finally, we define

l = min
s∈[a,σ(b)]T

G(σ(ω), s)
G(σ(s), s)

,

and let
m = min{k, l}.

Let E = {u : [a, σ2(b)]T → R} with supremum norm

‖ u ‖= sup
t∈[a,σ2(b)]T

| u(t) | .

Then (E, ‖ . ‖) is a Banach space. Denote

P = {u ∈ E | u(t) ≥ 0, min
t∈[ξ,ω]T

u(t) ≥ m ‖ u ‖}.
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It is obvious that P is a positive cone in E. Define

Tu(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s, u ∈ P. (6)

Lemma 2. If the operator T is defined as (6), then T : P → P is completely
continuous.

Proof. From the continuity of f and g, we know Tu ∈ E for each u ∈ P . It follows
from Lemma 1 that for u ∈ P ,

Tu(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≤
∫ σ(b)

a

G(σ(s), s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s.

Note that by the nonnegativity of f and g, one has

‖ Tu ‖≤
∫ σ(b)

a

G(σ(s), s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s,

from which we have

min
t∈[ξ,ω]T

Tu(t) = min
t∈[ξ,ω]T

∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≥ m

∫ σ(b)

a

G(σ(s), s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≥ m ‖ Tu ‖, u ∈ P.

Therefore T : P → P . Since G(t, s), f(t, u) and g(t, u) are continuous, it is easily
known that T : P → P is completely continuous. The proof is complete.

From the above arguments, we know that the existence of positive solutions of
(1)-(2) can be transferred to the existence of positive fixed points of the operator T .

Lemma 3 (see [3, 4, 8]). Let (E, ‖ . ‖) be a Banach space, and let P ⊂ E be
a cone in E. Assume that Ω1 and Ω2 are bounded open subsets of E such that
0 ∈ Ω1, Ω1 ⊂ Ω2. If

T : P ∩ (Ω2\Ω1) → P

is a completely continuous operator such that either

(i) ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω1, and ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω1, and ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω2,

then T has a fixed point in P ∩ (Ω2\Ω1).



Multiple Positive Solutions 133

Lemma 4 (see [3, 4, 8]). Let (E, ‖ . ‖) be a Banach space, and let P ⊂ E be a
cone in E. Assume that Ω1, Ω2 and Ω3 are bounded open subsets of E such that
0 ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3. If

T : P ∩ (Ω3\Ω1) → P

is a completely continuous operator such that:

‖ Tu ‖≥‖ u ‖, ∀u ∈ P ∩ ∂Ω1;
‖ Tu ‖≤‖ u ‖, Tu 6= u, ∀u ∈ P ∩ ∂Ω2;
‖ Tu ‖≥‖ u ‖, ∀u ∈ P ∩ ∂Ω3,

then T has at least two fixed points x∗, x∗∗ in P ∩ (Ω3\Ω1), and furthermore x∗ ∈
P ∩ (Ω2\Ω1), x∗∗ ∈ P ∩ (Ω3\Ω2).

3. Main Results

First we give the following assumptions:

(A1) limu→0+ supt∈[a,σ2(b)]
f(t,u)

u = 0, limu→0+ supt∈[a,σ2(b)]
g(t,u)

u = 0;

(A2) limu→∞ inft∈[a,σ2(b)]
f(t,u)

u = ∞, limu→∞ inft∈[a,σ2(b)]
g(t,u)

u = ∞;

(A3) limu→0+ inft∈[a,σ2(b)]
f(t,u)

u = ∞, limu→0+ inft∈[a,σ2(b)]
g(t,u)

u = ∞;

(A4) limu→∞ supt∈[a,σ2(b)]
f(t,u)

u = 0, limu→∞ supt∈[a,σ2(b)]
g(t,u)

u = 0;

(A5) f(t, u), g(t, u) are increasing functions with respect to u and, there is a number
N > 0, such that

f

(
t,

∫ σ(b)

a

N ′g(s, N)∆s

)
<

N

N ′(σ2(b)− a)
, ∀t ∈ [a, σ2(b)]T, s ∈ [a, σ(b)]T,

where N ′ = [α(σ2(b)−a)+β][γ(σ2(b)−a)+δ]
d .

Theorem 1. If (A1) and (A2) are satisfied, then (1)-(2) have at least one positive
solution (u, v) ∈ C2([a, σ2(b)]T,R+)×C2([a, σ2(b)]T,R+) satisfying u(t) > 0, v(t) >
0.

Proof. From (A1) there is a number H1 ∈ (0, 1), such that for each (t, u) ∈
[a, σ2(b)]T × (0,H1), one has

f(t, u) ≤ ηu, g(t, u) ≤ ηu,

where η > 0 satisfies

η

∫ σ(b)

a

G(σ(t), t)∆t ≤ 1.



134 A.K.Rao and S.N.Rao

For every u ∈ P and ‖ u ‖= H1/2, note that
∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r ≤ η

∫ σ(b)

a

G(σ(r), r)u(r)∆r ≤‖ u ‖= H1

2
< H1,

thus

Tu(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≤ η

∫ σ(b)

a

G(σ(s), s)
∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r∆s

≤ η2

∫ σ(b)

a

G(σ(s), s)
∫ σ(b)

a

G(σ(r), r)u(r)∆r∆s

≤ η2 ‖ u ‖
∫ σ(b)

a

G(σ(s), s)
∫ σ(b)

a

G(σ(r), r)∆r∆s

≤‖ u ‖ .

So, ‖ Tu ‖≤‖ u ‖. If we set

Ω1 = {u ∈ E :‖ u ‖< H1/2},
then

‖ Tu ‖≤‖ u ‖, for u ∈ P ∩ ∂Ω1. (7)

On the other hand, from (A2) there exist four positive numbers µ, µ′, C1 and
C2 such that

f(t, u) ≥ µu− C1, ∀(t, u) ∈ [a, σ2(b)]T × R+,

g(t, u) ≥ µ′u− C2, ∀(t, u) ∈ [a, σ2(b)]T × R+,

where µ and µ′ satisfy

µm

∫ ω

ξ

G(τ, s)∆s ≥ 2, µ′m
∫ ω

ξ

G(σ(s), s)∆s ≥ 1.

For u ∈ P , we have

Tu(τ) =
∫ σ(b)

a

G(τ, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≥
∫ σ(b)

a

G(τ, s)

[
µ

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r − C1

]
∆s

≥ µ

∫ σ(b)

a

G(τ, s)
∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r∆s− C1

∫ σ(b)

a

G(τ, s)∆s

≥ µ

∫ σ(b)

a

G(τ, s)
∫ σ(b)

a

G(σ(s), r)[µ′u(r)− C2]∆r∆s− C1

∫ σ(b)

a

G(τ, s)∆s

≥ µµ′
∫ σ(b)

a

G(τ, s)
∫ σ(b)

a

G(σ(s), r)u(r)∆r∆s− C3(τ),
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where

C3(τ) = µC2

∫ σ(b)

a

G(τ, s)
∫ σ(b)

a

G(σ(s), r)∆r∆s + C1

∫ σ(b)

a

G(τ, s)∆s

≤ µC2

∫ σ(b)

a

G(τ, s)
∫ σ(b)

a

G(σ(r), r)∆r∆s + C1

∫ σ(b)

a

G(τ, s)∆s

= C3.

Therefore

Tu(τ) ≥ µ

∫ ω

ξ

G(τ, s)∆s. mµ′
∫ ω

ξ

G(σ(r), r)u(r)∆r − C3 ≥ 2 ‖ u ‖ −C3,

from which it follows that ‖ Tu ‖≥ Tu(τ) ≥‖ u ‖ as ‖ u ‖→ ∞.
Let Ω2 = {u ∈ E :‖ u ‖< H2}. Then for u ∈ P and ‖ u ‖= H2 > 0 sufficient by

large, we have

‖ Tu ‖≥‖ u ‖, for u ∈ P ∩ ∂Ω2. (8)

Thus, from (7), (8) and Lemma 3, we know that the operator T has a fixed point in
P ∩ (Ω2\Ω1). The proof is complete.

Theorem 2. If (A3) and (A4) are satisfied, then (1)-(2) have at least one positive
solution (u, v) ∈ C2([a, σ2(b)]T,R+)×C2([a, σ2(b)]T,R+) satisfying u(t) > 0, v(t) >
0.

Proof. From (A3) there is a number Ĥ3 ∈ (0, 1) such that for each (t, u) ∈ [a, σ2(b)]T
×(0, Ĥ3), one has

f(t, u) ≥ λu, g(t, u) ≥ λ′u,

where λ > and λ′ satisfy

λm

∫ ω

ξ

G(τ, t)∆t ≥ 1, λ′m
∫ ω

ξ

G(σ(s), s)∆s ≥ 1.

From g(t, 0) ≡ 0 and the continuity of g(t, u), we know that there exists a number
H3 ∈ (0, Ĥ3) small enough such that

g(t, u) ≤ Ĥ3∫ σ(b)

a
G(σ(t), t)∆t

, ∀(t, u) ∈ [a, σ2(b)]T × (0,H3).

For every u ∈ P and ‖ u ‖= H3, note that

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r ≤
∫ σ(b)

a

G(σ(s), r)
Ĥ3∫ σ(b)

a
G(σ(r), r)∆r

∆r ≤ Ĥ3,
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thus

Tu(τ) =
∫ σ(b)

a

G(τ, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≥
∫ ω

ξ

G(τ, s)λ
∫ ω

ξ

G(σ(s), r)λ′u(r)∆r∆s

≥ γ2 ‖ u ‖ λ

∫ ω

ξ

G(τ, s)λ′
∫ ω

ξ

G(σ(r), r)∆r∆s

≥‖ u ‖ .

So, ‖ Tu ‖≥‖ u ‖. If we set

Ω3 = {u ∈ E :‖ u ‖< H3},
then

‖ Tu ‖≥‖ u ‖, for u ∈ P ∩ ∂Ω3. (9)

On the other hand, we know from (A4) that there exist three positive numbers
η′, C4, and C5 such that for every (t, u) ∈ [a, σ2(b)]T × R+,

f(t, u) ≤ η′u + C4, g(t, u) ≤ η′u + C5,

where

η′
∫ σ(b)

a

G(σ(t), t)∆t ≤ 1
2
.

Thus we have

Tu(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≤
∫ σ(b)

a

G(σ(s), s)

[
η′

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r + C4

]
∆s

≤ η′
∫ σ(b)

a

G(σ(s), s)∆s

∫ σ(b)

a

G(σ(r), r)[η′u(r) + C5]∆r∆s

+ C4

∫ σ(b)

a

G(σ(s), s)∆s

≤ 1
4
‖ u ‖ +C6,

where

C6 = C5η
′
∫ σ(b)

a

G(σ(s), s)∆s

∫ σ(b)

a

G(σ(r), r)∆r + C4

∫ σ(b)

a

G(σ(s), s)∆s,

from which it follows that Tu(t) ≤‖ u ‖ as ‖ u ‖→ ∞. Let Ω4 = {u ∈ E :‖ u ‖< H4}.
For each u ∈ P and ‖ u ‖= H4 > 0 large enough, we have

‖ Tu ‖≤‖ u ‖, for u ∈ P ∩ ∂Ω4. (10)

From (9), (10) and Lemma 3, we know that the operator T has a fixed point in
P ∩ (Ω4\Ω3). The proof is complete.
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Theorem 3. If (A2), (A3) and (A5) are satisfied, then (1)-(2) have at least two
distinct positive solutions (u1, v1), (u2, v2) ∈ C2([a, σ2(b)]T,R+)×C2([a, σ2(b)]T,R+)
satisfying ui(t) > 0, vi(t) > 0 (i = 1, 2).

Proof. Note that G(t, s) ≤ [α(σ2(b)−a)+β][γ(σ2(b)−a)+δ]
d = N ′. Let BN = {u ∈ E :‖

u ‖< N}. Then from (A5), for every u ∈ ∂BN ∩ P , t ∈ [a, σ2(b)]T, we have

Tu(t) =
∫ σ(b)

a

G(t, s)f

(
s,

∫ σ(b)

a

G(σ(s), r)g(r, u(r))∆r

)
∆s

≤ N ′
∫ σ(b)

a

f

(
s,

∫ σ(b)

a

N ′g(r,N)∆r

)
∆s

< N ′
∫ σ(b)

a

N

N ′(σ2(b)− a)
≤ N.

Thus
‖ Tu ‖≤‖ u ‖, for u ∈ P ∩ ∂BN . (11)

And from (A2) and (A3) we have

‖ Tu ‖≥‖ u ‖, for u ∈ P ∩ ∂Ω2, (12)

‖ Tu ‖≥‖ u ‖, for u ∈ P ∩ ∂Ω3. (13)

We can choose H2, H3 and N such that H3 ≤ N ≤ H2 and (11)-(13) are satisfied.
From Lemma 4, T has at least two fixed points in P ∩(Ω2 \ BN ) and P ∩ (BN \ Ω2),
respectively. The proof is complete.

4. Examples

Some examples are given to illustrate our main results.

(i) Let f(x, v) = v2 and g(x, u) = u3, then conditions of Theorem 1 are satisfied.
From Theorem 1 BVP (1)-(2) have at least one positive solution.

(ii) Let f(x, v) = v1/2 and g(x, u) = u1/2, then conditions of Theorem 2 are
satisfied. From Theorem 2 BVP (1)-(2) have at least one positive solution.

(iii) Let f(x, v) = v1/2+v2

12 , g(x, u) = u1/2 + u2, α = β = γ = δ = 1 and a = 0,
b = 1. Then N ′ = 4

3 . We can choose N = 1, then conditions of Theorem 3 are
satisfied. From Theorem 3 BVP (1)-(2) have at least two positive solutions.
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