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Abstract. Warped product CR-submanifolds of Kaehler manifolds were introduced by
Chen in [9]. In this paper, we introduce a warped product skew-CR-submanifold, which is
a generalization of warped product CR-submanifolds. We give a characterization supported
by an example and obtain an inequality in terms of the length of the second fundamental
form of such submanifolds. The equality case is also investigated.
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1. Introduction

CR-submanifolds were defined by Bejancu [1] as a generalization complex and totally
real submanifolds. A CR-submanifold is called proper if it is neither complex nor
totally real submanifold. The geometry of CR-submanifolds has been studied in
several papers since then.

Another generalization of complex (holomorphic) and totally real submanifolds
is a slant submanifold. Slant submanifolds were defined by Chen [8]. Since then,
such submanifolds have been investigated by many authors (see, [8] and references
therein). A slant submanifold is called proper if it is neither holomorphic nor totally
real submanifold and notice that a proper CR-submanifold is never a slant subman-
ifold. In [21], Papaghiuc gave a generalization of this notion defining semi-slant
submanifolds, obtaining slant and CR-submanifolds as particular cases. We note
that slant and semi-slant submanifolds of Sasakian manifolds were studied in [4] and
[5] by Cabrerizo, Carriazo, Fernandez and Fernandez. On the other hand, in [25]
we studied hemi-slant submanifolds which were defined by Carriazo under the name
of anti-slant submanifolds [6] and showed that such submanifolds also contain CR-
submanifolds and slant submanifolds as particular subspaces. Moreover, we observe
that there is no inclusion relation between semi-slant submanifolds and hemi-slant
submanifolds.

In [22], Ronsse introduced skew CR-submanifolds of Kaehler manifolds. It is easy
to observe that a skew CR-submanifold is a generalization of slant submanifolds
as well as CR-submanifolds. In fact, semi-slant submanifolds [21] and hemi-slant
submanifolds [25] are also particular classes of skew CR-submanifolds.
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Let (B, g1) and (F, g2) be two Riemannian manifolds, f : B → (0,∞) and
π : B × F → B, η : B × F → F the projection maps given by π(p, q) = p and
η(p, q) = q for every (p, q) ∈ B×F. The warped product M = B×F is the manifold
B × F equipped with the Riemannian structure such that

g(X, Y ) = g1(π∗X, π∗Y ) + (foπ)2g2(η∗X, η∗Y )

for every X and Y of M and ∗ is a symbol for the tangent map. The function f
is called the warping function of the warped product manifold. In particular, if the
warping function is constant, then the manifold M is said to be trivial. Let X, Y be
vector fields on B and V,W vector fields on F , then from Lemma 7.3 of [2], we have

∇XV = ∇V X = (
Xf

f
)V (1)

where ∇ is the Levi-Civita connection on M . We note that the concept of warped
products was first introduced by Bishop and O’Neill [2] to construct examples of
Riemannian manifolds with negative curvature. We also note that warped product
manifolds have their applications in general relativity. Indeed, many spacetime mod-
els are examples of warped product manifolds. More precisely, Robertson-Walker
spacetimes, asymptotically flat spacetimes, Schwarzschild spacetimes and Reissner-
Nordström spacetimes are examples of warped product manifolds, for details [17].

It is known that there are two distributions on a CR-submanifold such that one of
them is invariant and the other one is anti-invariant under the action of the complex
structure of the ambient space. It is also known that a warped product manifold
has fibres and leaves. Using this similarity, Chen considered warped product CR-
submanifolds of Kaehler manifolds [9], [10] and showed that there do not exist warped
product CR-submanifolds in the from M⊥ ×f MT such that MT is a holomorphic
(complex) submanifold and M⊥ is a totally real submanifold of a Kaehler manifold
M̄. Then he introduced the notion of CR-warped products of Kaehler manifolds as
follows: A submanifold of a Kaehler manifold is called a CR-warped product if it
is the warped product MT ×f M⊥ of a holomorphic submanifold MT and a totally
real submanifold M⊥. He also established a sharp relationship between the warping
function f of a warped product CR-submanifold MT ×f M⊥ of a Kaehler manifold
M̄ and the squared norm of the second fundamental form ‖ h ‖2 . After Chen’s
papers, CR-warped product submanifolds have been studied in various manifolds
[3, 19] and [24].

In [23], we proved that there are no warped product semi-slant (in the sense of
Papaghiuc) submanifolds. In [25], we studied hemi-slant submanifolds and showed
that there exists a class of warped product hemi-slant submanifolds.

In this paper, we introduce and study warped product skew CR-submanifolds
of Kaehler manifolds. One can observe that such skew CR-submanifolds are gen-
eralization of CR-warped products and warped product hemi-slant submanifolds of
Kaehler manifolds. Our construction of skew CR-warped submanifolds can be con-
sidered as a special multiply warped product manifolds. We note that multiply
warped product manifolds were studied in [12] and they were applied to spacetime
geometry. For example, in [12] and [13], the authors showed a representation of
the interior Schwarzschild space-time as a multiply warped product space-time with
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certain warping functions. Also, Dobarro and Ünal obtained in [15] that Reissner-
Nordström space-time and Kasner spacetime can be expressed as a multiply warped
product space-time. In sections 3-4 of this paper, we give an example of warped
product skew CR-submanifolds, obtain a characterization and establish an inequal-
ity which is a generalization of a sharp inequality obtained by Chen in [9].

2. Preliminaries

Let (M̄, g) be a Kaehler manifold . This means [26] that M̄ admits a tensor field J
of type (1,1) on M̄ such that, ∀X,Y ∈ Γ(TM̄), we have

J2 = −I, g(X, Y ) = g(JX, JY ), (∇̄XJ)Y = 0, (2)

where g is the Riemannian metric and ∇̄ is the Levi-Civita connection on M̄. Let
M be a Riemannian manifold isometrically immersed in M̄ and denote by the same
symbol g for the induced Riemannian metric on M. Let Γ(TM) be the Lie algebra
of vector fields in M and Γ(TM⊥) the set of all vector fields normal to M. Denote
by ∇ the Levi-Civita connection of M. Then the Gauss and Weingarten formulas
are given by

∇̄XY = ∇XY + h(X, Y ) (3)

and
∇̄XN = −ANX +∇⊥XN (4)

for any X, Y ∈ Γ(TM) and any N ∈ Γ(TM⊥), where ∇⊥ is the connection in
the normal bundle TM⊥, h is the second fundamental form of M and AN is the
Weingarten endomorphism associated with N. The second fundamental form h and
the shape operator A are related by

g(ANX,Y ) = g(h(X, Y ), N). (5)

For any X ∈ Γ(TM) we write

JX = TX + FX, (6)

where TX is the tangential component of JX and FX is the normal component of
JX. Similarly, for any vector field normal to M , we put

JN = BN + CN, (7)

where BN and CN are the tangential and the normal components of JN , respec-
tively.

Let M̄ be a Kaehler manifold with complex structure J and M is a Riemannian
manifold isometrically immersed in M̄. Then M is called holomorphic (complex) if
J(TpM) ⊂ TpM for every p ∈ M where TpM denotes the tangent space to M at the
point p. M is called totally real if J(TpM) ⊂ TpM

⊥ for every p ∈ M, where TpM
⊥

denotes the normal space to M at the point p. Besides holomorphic and totally real
submanifolds, there are several other classes of submanifolds of a Kaehler manifold
determined by the behavior of the tangent bundle of the submanifold under the
action of the complex structure of the ambient manifold.
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(1) The submanifold M is called a CR-submanifold [1] if there exists a differen-
tiable distribution D : p → Dp ⊂ TpM such that D is invariant with respect
to J and the complementary distribution D⊥ is anti-invariant with respect to
J.

(2) The submanifold M is called slant [8] if for all non-zero vector X tangent to
M the angle θ(X) between JX and TpM is a constant, i.e. it does not depend
on the choice of p ∈ M and X ∈ TpM.

(3) The submanifold M is called semi-slant [21] if it is endowed with two orthogonal
distributions DT and Dθ, where DT is invariant with respect to J and Dθ is
slant, i.e. θ(X) between JX and Dθ

p is constant for X ∈ Dθ
p.

(4) The submanifold M is called a hemi-slant submanifold ([6] and[25]) if it is
endowed with two orthogonal distributions Dθ and D⊥, where Dθ is slant and
D⊥ is anti-invariant with respect to J̄ .

Finally, we recall the definition of skew CR-submanifolds from [22]. Let M
be a submanifold of a Kaehler manifold M̄. For any Xp and Yp in TpM we have
g(TXp, Yp) = −g(Xp, TYp). Hence, it follows that T 2 is a symmetric operator on the
tangent space TpM, for all p. Therefore, its eigenvalues are real and diagonalizable.
Moreover, its eigenvalues are bounded by −1 and 0. For each p ∈ M, we may set

Dλ
p = Ker{T 2 + λ2(p)I}p,

where I is the identity transformation and λ(p) belongs to closed real interval [0, 1]
such that−λ2(p) is an eigenvalue of T 2(p). Notice that D1

p = KerF andD0
p = KerT.

D1
p is the maximal J− invariant subspace of TpM and D0

p is the maximal anti J− in-
variant subspace of TpM. From now on, we denote the distributionsD1 andD0 byDT

andD⊥, respectively. Since T 2
p is symmetric and diagonalizable, if−λ2

1(p), ...,−λ2
k(p)

are the eigenvalues of T 2 at p ∈ M, then TpM can be decomposed as a direct sum
of mutually orthogonal eigenspaces, i.e.

TpM = Dλ1
p ⊕ ...⊕Dλk

p .

Each Dλi
p , 1 ≤ i ≤ k, is a T− invariant subspace of TpM. Moreover, if λi 6= 0, then

Dλi
p is even dimensional. Let M be a submanifold of a Kaehler manifold M̄. M is

called a generic submanifold if there exists an integer k and functions λi, 1 ≤ i ≤ k
defined on M with values in (0, 1) such that

1. Each −λ2
i (p), 1 <≤ i ≤ k is a distinct eigenvalue of T 2 with

TpM = DT
p ⊕D⊥p ⊕Dλ1

p ⊕ ...⊕Dλk
p

for p ∈ M.

2. The dimensions of DT
p , D⊥p and Dλi , 1 ≤ i ≤ k are independent of p ∈ M.
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Moreover, if each λi is constant on M , then M is called a skew CR-submanifold.
Thus, we observe that CR-submanifolds are a particular class of skew CR-submani-
folds with k = 0, DT 6= {0} and D⊥ 6= {0}. And slant submanifolds are also a
particular class of skew CR-submanifolds with k = 1, DT = {0}, D⊥ = {0} and
λ1 is constant. Moreover, if D⊥ = {0}, DT 6= {0} and k = 1, then M is a semi-
slant submanifold. Furthermore, if DT = {0}, D⊥ 6= {0} and k = 1, then M is a
hemi-slant submanifold.

Definition 1. We say that a submanifold M is a skew CR-submanifold of order 1
if M is a skew CR-submanifold with k = 1 and λ1 is constant.

Thus a slant submanifold is a skew CR-submanifold of order 1 with DT = {0}
and D⊥ = {0}. Moreover, a semi-slant submanifold is a skew CR-submanifold of
order 1 with D⊥ = {0} and a hemi-slant submanifold is a skew CR-submanifold of
order 1 with DT = {0}. We say that a skew CR-submanifold of order 1 is proper if
DT 6= {0} and D⊥ 6= {0}.

Recall that slant submanifolds are characterized by

T 2X = λX (8)

such that λ ∈ [−1, 0], for details see [8]). If M is slant, then λ = −cos2 θ, where θ
is the slant angle of M. Using (8), we also have another characterization for slant
submanifolds. Namely, M is a slant submanifold if and only if there exists a constant
κ ∈ [−1, 0] such that

BFX = κX (9)

for X ∈ Γ(TM). If M is a slant submanifold, then BFX = −sin2 θ X [25]. In this
case, we also have

CFX = −FTX. (10)

3. Warped product skew CR-submanifolds in Kaehler mani-
folds

Let M1 be a semi-slant submanifold in the sense of Papaghiuc and M⊥ a totally real
submanifold of a Kaehler manifold. In this section we consider a warped product
M = M1 ×f M⊥ in a Kaehler manifold M̄. Then, it is obvious that M is a proper
skew CR-submanifold of order 1 of M̄. So, we are entitled to call M a skew CR-
warped product of M̄. Then, from definition of a semi-slant submanifold and a skew
CR-submanifold, we have

TM = Dθ ⊕DT ⊕D⊥, (11)

where Dθ
p = Dλ1

p . Thus, if Dθ = {0}, then M is a CR-warped product [9]. If
DT = {0}, then M becomes a warped product hemi-slant submanifold [25].

Remark 1. From [9, Theorem 3.1], we know that there are no proper warped prod-
uct CR-submanifolds in the form M⊥ ×f MT of a Kaehler manifold M̄ such that
M⊥ is totally real and MT is a holomorphic submanifold in M̄. Also, from [25,
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Theorem 4.2], we know that there are no proper warped product submanifolds in the
form M⊥ ×f Mθ of a Kaehler manifold M̄ such that M⊥ is totally real and Mθ is
a proper slant submanifold in M̄. Thus, it follows that there are no warped product
skew CR-submanifolds of order 1 in the form form M⊥×f M1 of a Kaehler manifold
M̄ such that M⊥ is totally real and M1 is a semi-slant submanifold (in the sense of
Papaghiuc) in M̄.

We first give an example of a warped product skew CR-submanifold.

Example 1. Consider a submanifold in R12 given by the following equations:

x1 = u1 cos θ, x2 = u2 , x3 = u1 sin θ, x4 = 0,

x5 = u3 cos u5, x6 = −u4 cos u5 , x7 = u3 sin u5, x8 = −u4 sin u5

x9 = u1 sin u5, x10 = 0 , x11 = u1 cos u5, x12 = 0.

Then, the tangent bundle of M is spanned by

Z1 = cos θ
∂

∂ x1
+ sin θ

∂

∂ x3
+ sin u5

∂

∂ x9
+ cos u5

∂

∂ x11
, Z2 =

∂

∂ x2

Z3 = cos u5
∂

∂ x5
+ sin u5

∂

∂ x7
, Z4 = −cos u5

∂

∂ x6
− sin u5

∂

∂ x8

Z5 = −u3 sin u5
∂

∂ x5
+ u4 sin u5

∂

∂ x6
+ u3 cos u5

∂

∂ x7
− u4 cos u5

∂

∂ x8

+u1 cos u5
∂

∂ x9
− u1 sin u5

∂

∂ x11
.

Then it is easy to see that Dθ = span{Z1, Z2} is a slant distribution with slant an-
gle ϕ such that cosϕ = cos θ√

2
and DT = span{Z3, Z4} is a holomorphic distribution.

Moreover, it can be easily seen that J̄Z5 is orthogonal to M. Thus D⊥ = span{Z5}
is an anti-invariant distribution. Hence, we conclude that M is a proper skew CR-
submanifold of order 1 of R12. Moreover, it is easy to see that DT ⊕Dθ and D⊥ are
integrable. Denoting the integral manifolds of DT , Dθ and D⊥ by MT , Mθ and M⊥,
respectively, then the induced metric tensor of M is

ds2 = 2du2
1 + du2

2 + du2
3 + du2

4 + (u2
3 + u2

4 + u2
1)du2

5

= gMθ
+ gMT

+ (u2
3 + u2

4 + u2
1)gM⊥ .

Thus, it follows that M is a warped product skew CR-submanifold of R12 with warp-
ing function f =

√
u2

3 + u2
4 + u2

1.

In the rest of this section, we are going to give a characterization of a skew
CR-warped product of a Kaehler manifold M̄.

Lemma 1. Let M be a proper skew CR-submanifold of order 1 of a Kaehler manifold
M̄. Then, we have

g(∇X1Y1, Z) = g(AJZX1, JY1) (12)
g(∇X1Y2, Z) = sec2 θ{−g(AFTY2X1, Z) + g(AJZTY2, X1)} (13)
g(∇Y2X1, Z) = g(AJZY2, JX1) (14)

for X1, Y1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).
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Proof. From (3) and (2), we obtain g(∇X1Y1, Z) = g(∇̄X1JY1, JZ) for X1, Y1 ∈
Γ(DT ) and Z ∈ Γ(D⊥). Then using again (3) and (5), we have (12). With regards
to statement (13), from (3) and (2), we get g(∇X1Y2, Z) = g(∇̄X1JY2, JZ). Using
(6) we derive

g(∇X1Y2, Z) = g(∇̄X1TY2, JZ) + g(∇̄X1FY2, JZ).

Thus, from (3) and (2) we have

g(∇X1Y2, Z) = g(h(X1, TY2), JZ) + g(JFY2, ∇̄X1Z).

Hence, using (7), we get

g(∇X1Y2, Z) = g(h(X1, TY2), JZ) + g(BFY2,∇X1Z) + g(CFY2, h(X1, Z)).

Then, from (9) and (10), we arrive at

g(∇X1Y2, Z) = g(h(X1, TY2), JZ)− sin2 θ g(Y2,∇X1Z)− g(FTY2, h(X1, Z)).

Hence, we have

g(∇X1Y2, Z) = g(h(X1, TY2), JZ) + sin2 θ g(∇X1Y2, Z)− g(FTY2, h(X1, Z)).

Thus, using (5) we obtain (13). In a similar way, one can obtain (14).

Lemma 2. Let M be a proper skew CR-submanifold of order 1 of a Kaehler manifold
M̄. Then, we have

g(∇X2Y2, Z) = g(AJZTY2 −AFTY2Z,X2)sec2 θ (15)
g(∇ZV,X2) = −sec2 θ {g(AJV Z, TX2)− g(AFTX2Z, V )} (16)

and
g(∇ZV,X1) = −g(AJV Z, JX1) (17)

for any X1 ∈ Γ(DT ), X2, Y2 ∈ Γ(Dθ) and Z, V ∈ Γ(D⊥).

Proof. The proof of (17) is exactly the same as in (12). For the proof of (15),
from (2), (3) and (6), we have g(∇X2Y2, Z) = g(∇̄X2TY2, JZ) + (∇̄X2FY2, JZ) for
X2, Y2 ∈ Γ(Dθ) and Z, V ∈ Γ(D⊥). Then using (4) and (2) we get

g(∇X2Y2, Z) = (h(X2, TY2), JZ)− g(∇̄X2JFY2, Z).

Thus, using (7) we derive

g(∇X2Y2, Z) = (h(X2, TY2), JZ)− g(∇̄X2BFY2, Z)− g(∇̄X2CFY2, Z).

Hence, we obtain

g(∇X2Y2, Z) = (h(X2, TY2), JZ) + sin2 θ g(∇X2Y2, Z) + g(∇̄X2FTY2, Z).

Then, from (4) we have

g(∇X2Y2, Z) = (h(X2, TY2), JZ) + sin2 θ g(∇X2Y2, Z)− g(AFTY2X2, Z).

Thus, using again (5) we obtain (15). In a similar way, one can obtain (16).
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Lemma 3. Let M be a proper skew CR-submanifold of order 1 of a Kaehler manifold
M̄. Then we have

sin2 θg(∇ZX1, Y2) = −g(AFTY2Z, X1) + g(AFY2Z, JX1)

for X1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. From (3), (2) and (6) we obtain

g(∇ZX1, Y2) = g(∇̄ZJX1, TY2) + g(∇̄ZJX1, FY2)

for X1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Then, using (2), (6) and (3) we get

g(∇ZX1, Y2) = −g(∇̄ZX1, T
2Y2)− g(∇̄ZX1, FTY2) + g(h(Z, JX1), FY2).

Thus, from (8) we have

g(∇ZX1, Y2) = cos2 θ g(∇ZX1, Y2)− g(h(Z, X1), FTY2) + g(h(Z, JX1), FY2).

Hence, using (5) we obtain the assertion of lemma.

We now recall the following definition from [22]. For the distributions Dθ and
D⊥ on M, we say that M is Dθ − D⊥ mixed totally geodesic if for all X ∈ Γ(Dθ)
and Y ∈ Γ(D⊥), we have h(X, Y ) = 0.

We also recall the result of S. Hiepko [18], (cf. [14], Remark 2.1): Let D1 be a
vector subbundle in the tangent bundle of a Riemannian manifold M and let D2 be
its normal bundle. Suppose that the two distributions are involutive. We denote
the integral manifolds of D1 and D2 by M1 and M2, respectively. Then M is locally
isometric to warped product M1×f M2 if the integral manifold M1 is totally geodesic
and the integral manifold M2 is an extrinsic sphere, i.e. M2 is a totally umbilical
submanifold with a parallel mean curvature vector.

Now, we are ready to state and prove a characterization for a skew CR-warped
product in a Kaehler manifold.

Theorem 1. Let M be a Dθ−D⊥ mixed totally geodesic proper skew CR-submanifold
of order 1 of a Kaehler manifold M̄. Then M is a locally skew CR-warped product
if and only if the following holds:

(a) AJZTY2 has no components in Dθ for Z ∈ Γ(D⊥) and Y2 ∈ Γ(Dθ).

(b) For X1 ∈ Γ(DT ), Z ∈ Γ(D⊥), X2 ∈ Γ(Dθ) and a function µ defined on M, we
have

AJZJX1 = X1(µ)Z (18)
AFTX2Z = −X2(µ)cos2 θZ (19)

such that V (µ) = 0 for every V ∈ Γ(D⊥).
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Proof. Let M be a Dθ −D⊥ mixed totally geodesic skew CR warped product of a
Kaehler manifold M̄. Then M1 is totally geodesic in M. Thus, ∇XY ∈ Γ(TM1) for
X,Y ∈ Γ(TM1). On the other hand, Dθ − D⊥ mixed totally geodesic M and (15)
imply that

g(∇X2Y2, Z) = sec2 θ g(AJZTY2, X2)

for X2, Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Then, since ∇X2Y2 ∈ Γ(TM1), we have

g(AJZTY2, X2) = 0

which implies (a). Moreover, from (12) and (14) we obtain

g(AJZX1, JY1) = 0 and g(AJZY2, JX1) = 0

for X1, Y1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Since A is self-adjoint, we conclude
that AJZX1 has no components in TM1. Then, AJZJX1 ∈ Γ(D⊥). Taking into
account that M is Dθ −D⊥ mixed totally geodesic, from (1) and (17) we obtain

X1(lnf)g(Z, V ) = g(AJV Z, JX1)

for V ∈ Γ(D⊥). Hence, we obtain (18). Since M is Dθ −D⊥ mixed totally geodesic,
we have g(AFTY2Z, Y2) = 0. Hence, AFTY2Z has no components in Dθ. On the other
hand, (18) implies that g(AJV X1, Y2) = −JX1(µ)g(V, Y2) = 0. Then, using (1) and
(13), g(AFTY2Z,X1) = 0 which implies that AFTY2Z has also no components in DT .
Then, from (11), we conclude that AFTY2Z ∈ Γ(D⊥). Thus, mixed totally geodesic
Dθ −D⊥ and (16) imply that

g(∇ZV, Y2) = g(AFTY2Z, V ) sec2 θ.

Then, using (1) we get

g(AFTY2Z, V ) = −cos2 θY2(lnf)g(Z, V )

which is (19). Moreover, since Z(lnf) = 0 for a skew CR-product, we obtain µ = lnf.
Let us to prove converse. Assume that M is Dθ − D⊥ mixed totally geodesic

proper skew CR-submanifold of order 1 of a Kaehler manifold M̄ such that (a) and
(b) hold. Then, from (a), (b) and (12)-(15), it is easy to see that M1 is totally
geodesic in M. On the other hand, from [7], D⊥ is always integrable. We denote
the integral manifold of D⊥ by M⊥. Also let h⊥ be the second fundamental form of
M⊥ in M . From (3) we have g(h⊥(Z, V ), X1) = g(∇ZV, X1) for X1,∈ Γ(DT ) and
Z, V ∈ Γ(D⊥). Then, (17) implies that g(h⊥(Z, V ), X1) = −g(AJV Z, JX1). Thus,
from (18) we obtain

g(h⊥(Z, V ), X1) = −X1(µ)g(V, Z). (20)

In a similar way, from (3) we get g(h⊥(Z, V ), X2) = g(∇ZV, X2) for X2 ∈ Γ(Dθ).
Then,since M is Dθ−D⊥ mixed totally geodesic, from (16) we obtain g(h⊥(Z, V ), X2)
= g(AFTX2Z, V )sec2 θ. Using (19) we have

g(h⊥(Z, V ), X2) = −X2(µ)g(Z, V ). (21)
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Thus, for X = X1 + X2 ∈ Γ(M1), from (20) and (21) we obtain

g(h⊥(Z, V ), X) = g(h⊥(Z, V ), X1) + g(h⊥(Z, V ), X2)
= −[X1(µ) + X2(µ)]g(Z, V ) (22)

which implies that M⊥ is totally umbilical in M. Denoting the gradient of µ on DT

and Dθ by gradT µ and gradθµ, respectively, from (22) we can write

h⊥(Z, V ) = −[gradT µ + gradθ µ]g(Z, V ). (23)

Thus, for X = X1 + X2 ∈ Γ(TM1), we have

g(∇ZgradT µ + gradθ µ,X) = g(∇ZgradT µ,X) + g(∇Zgradθ µ,X)
= [Zg(gradT µ,X2)− g(gradT µ,∇ZX)]

+Zg(gradθ µ, X1)− g(gradθ µ,∇ZX)
= [Z(X2(µ))− g(gradT µ,∇ZX)]

+Z(X1(µ))− g(gradθ µ,∇ZX).

Then, using (19) in Lemma 3.3, we get g(∇ZX1, X2) = −g(∇ZX2, X1) = 0. Hence,
we arrive at

g(∇ZgradT µ + gradθ µ,X) = [Z(X2(µ))− g(gradT µ,∇ZX2)]
+Z(X1(µ))− g(gradθ µ,∇ZX1).

Hence, by direct calculations, we get

g(∇ZgradT µ + gradθ µ, X) = [Z(X2(µ))− [Z, X2](µ)
+g(gradT µ,∇X2Z)] + Z(X1(µ))
−[Z,X1](µ) + g(gradθ µ,∇X1Z).

= [X2(Z(µ)) + g(gradT µ,∇X2Z)]
−X1(Z(µ)) + g(gradθµ,∇X1Z). (24)

Since Z(µ) = 0, we derive

g(∇ZgradT µ + gradθ µ,X) = −g(∇X2gradT µ,Z)− g(∇X1gradθµ,Z).

On the other hand, since M1 is totally geodesic, we have ∇X1gradθµ,∇X2gradT µ ∈
Γ(TM1). Hence, we obtain

g(∇ZgradT µ + gradθ µ,X) = 0.

Thus, we conclude that gradT µ+gradθ µ is parallel in M. This result and (23) imply
that M⊥ is an extrinsic sphere. Thus, the proof is complete.

4. An inequality for skew CR-warped products

In this section, we obtain an inequality for the squared norm of the second fun-
damental form in terms of the warping function for skew CR-warped products in
Kaehler manifolds. To do this, we need the following lemmas.
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Lemma 4. Let M be a skew CR-warped product of a Kaehler manifold M̄. Then,
we have

g(h(X1, Y2), JZ) = 0 (25)

and
g(h(X1, Y1), JZ) = 0 (26)

for X1, Y1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. From (2) and (3) we get

g(∇Y2JX1, Z) = −g(∇̄Y2X1, JZ)

for X1 ∈ Γ(DT ), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Hence, we have g(JX1,∇Y2Z)
= g(∇̄Y2X1, JZ). Then, using (1) and (3) we obtain

Y2(lnf)g(JX1, Z) = g(h(X1, Y2), JZ).

Hence, g(h(X1, Y2), JZ) = 0. In a similar way, from (3) and (2) we get g(∇X1Z, Y1)
= g(∇̄X1JZ, JY1) for X1, Y1 ∈ Γ(DT ) and Z ∈ Γ(D⊥). Then, using (1) and (4) we
obtain 0 = g(AJZX1, JY1). Thus (3) implies (26).

Lemma 5. Let M be a skew CR-warped product of a Kaehler manifold M̄. Then,
we have

X1(lnf)g(Z, V ) = g(h(Z, JX1), JV ) (27)

and
g(h(Z, X2), FY2) = g(h(X2, Y2), JZ) (28)

for X1 ∈ Γ(DT ), X2, Y2 ∈ Γ(Dθ) and Z, V ∈ Γ(D⊥).

Proof. Equation (27) was obtained in [9], Lemma 4.1(3). For (28), from (3), we
have g(h(X2, Z), FTY2) = g(∇̄X2Z,FTY2) for X2, Y2 ∈ Γ(Dθ) and Z, V ∈ Γ(D⊥).
Then, using (6) we get g(h(X2, Z), FTY2) = g(∇̄X2Z, JTY2 − T 2Y2). Here, (8) and
(2) imply that

g(h(X2, Z), FTY2) = cos2 θ g(∇X2Z, Y2)− g(∇̄X2JZ, TY2).

Thus, from (1) and (4), we have

g(h(X2, Z), FTY2) = g(AJZX2, TY2).

Then, using (5) we get

g(h(X2, Z), FTY2) = g(h(X2, TY2), JZ).

Thus, substituting TY2 by Y2 and using (8) we obtain (28).

Lemma 6. Let M be a skew CR-warped product of a Kaehler manifold M̄. Then,
we have

TX2(lnf)g(Z, V ) = −g(h(Z,X2), JV ) + g(h(Z, V ), FX2) (29)

for X2 ∈ Γ(Dθ), and Z, V ∈ Γ(D⊥).
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Proof. From (2), (3) and (6) we get

g(∇X2Z, V ) = g(∇̄ZTX2, JV ) + g(∇̄ZFX2, JV )

for X2 ∈ Γ(Dθ), and Z, V ∈ Γ(D⊥). Hence, using (1) and (3), we obtain

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV )− g(FX2, ∇̄ZJV ).

Using again (2) we arrive at

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV ) + g(JFX2, ∇̄ZV ).

Thus, from (7), we derive

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV ) + g(BFX2 + CFX2, ∇̄ZV ).

Then, (3), (4), (9) and (10) imply that

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV )− sin2 θg(X2,∇ZV )− g(FTX2, h(Z, V )).

Hence, we have

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV ) + sin2 θg(∇ZX2, V )− g(FTX2, h(Z, V )).

Thus, using(1) we obtain

X2(lnf)g(Z, V ) = g(h(Z, TX2), JV ) + sin2 θX2(lnf)g(Z, V )− g(FTX2, h(Z, V )).

Thus, we get

cos2 θ X2(lnf)g(Z, V ) = g(h(Z, TX2), JV )− g(FTX2, h(Z, V )).

Now, substituting X2 by TX2 and using (8), we obtain(29).

Let M be an (m1 + m2 + m3)− dimensional proper skew CR-warped product
of a Kaehler manifold M̄m2+m3 . Then, we choose a canonical orthonormal frame
{e1, ..., em1 , ē1, ..., ēm2 , ẽ1, ..., ẽm3 , Jẽ1, ..., Jẽm3 , e∗1, ..., e

∗
m2
} such that {e1, ..., em1}

is an orthonormal basis of DT , {ē1, ..., ēm2} is an orthonormal basis of Dθ and
{ẽ1, ..., ẽm3} is an orthonormal basis of D⊥. It is known that the ranks of DT and
Dθ are even. Hence, m1 = 2n1 and m2 = 2n2. Then, we can choose orthonormal
frames {ē1, ..., ēm2} and{e∗1, ..., e∗m2

} such that

ē2 = sec θ T ē1, . . .ē2n2 = sec θ T ē2n2−1,

e∗1 = csc θ F ē1, . . .e∗2n2
= csc θ F ē2n2 ,

where θ is the slant angle of Dθ. Notice that it is called such an orthonormal frame
an adapted frame [8].

We are now ready to state and prove the main theorem of this section.

Theorem 2. Let M be an (m1 + m2 + m3)− dimensional proper Dθ − D⊥ mixed
totally geodesic skew CR-warped product of a Kaehler manifold M̄m2+m3 . Then we
have
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(1) The squared norm of the second fundamental form of M satisfies

‖ h ‖2≥ m3[2 ‖ ∇T (lnf) ‖2 +cot2 θ ‖ ∇θ(lnf) ‖2], (30)

where m3 = dim(M⊥), ∇T (lnf) and ∇θ(lnf) are gradients of lnf on DT and
Dθ, respectively.

(2) If the equality sign of (30) holds identically, then M1 is a totally geodesic
submanifold and M⊥ is a totally umbilical submanifold of M̄.

Proof. Since

‖ h ‖2 = ‖ h(DT ,DT ) ‖2 + ‖ h(Dθ,Dθ) ‖2 + ‖ h(D⊥,D⊥) ‖2 +2 ‖ h(DT ,D⊥) ‖2
+2 ‖ h(DT ,Dθ) ‖2 +2 ‖ h(D⊥,Dθ) ‖2

and M is Dθ −D⊥ mixed totally geodesic, we get

‖ h ‖2 = ‖ h(DT ,DT ) ‖2 + ‖ h(Dθ,Dθ) ‖2 + ‖ h(D⊥,D⊥) ‖2 +2 ‖ h(DT ,D⊥) ‖2
+2 ‖ h(DT ,Dθ) ‖2 .

Hence, we have

‖ h ‖2 =
m1∑

i,j=1

m3∑
a=1

g(h(ei, ej), Jẽa)2 +
m1∑

i,j=1

m2∑
r=1

g(h(ei, ej), e∗r)
2

+
m3∑

a,b,c=1

g(h(ẽa, ẽb), Jẽc)2 +
m3∑

a,b=1

m2∑
r=1

g(h(ẽa, ẽb), e∗r)
2

+
m2∑

p,q,r=1

g(h(ēr, ēs), e∗p)
2 +

m3∑
a=1

m2∑
r,s=1

g(h(ēr, ēs), Jẽa)2

+2
m1∑

i=1

m3∑
a=1

m2∑
r=1

g(h(ei, ēr), Jẽa)2 + 2
m1∑

i=1

m2∑
r,s=1

g(h(ei, ēr), e∗s)
2

+2
m1∑

i=1

m3∑

a,b=1

g(h(ei, ẽa), Jẽb)2 + 2
m1∑

i=1

m3∑
a=1

m2∑
r=1

g(h(ei, ẽa), e∗r)
2.

Then, using (25), (26), (28), (27) and considering the adapted frame, we obtain

‖ h ‖2 =
m1∑

i,j=1

m2∑
r=1

g(h(ei, ej), F ēr)2csc2 θ +
m3∑

a,b,c=1

g(h(ẽa, ẽb), Jẽc)2

+
m3∑

a,b=1

m2∑
r=1

g(h(ẽa, ẽb), F ēr)2csc2 θ +
m2∑

p,q,r=1

g(h(ēr, ēs), F ēp)2csc2 θ

+2
m1∑

i=1

m2∑
r,s=1

g(h(ei, ēr), F ēs)2csc2 θ + 2
m1∑

i=1

m3∑

a,b=1

[Jei(lnf)g(ẽa, ẽb)]2

+2
m1∑

i=1

m3∑
a=1

m2∑
r=1

g(h(ei, ẽa), F ēr)2csc2 θ.
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Thus, Dθ −D⊥ mixed totally geodesic M and (29) imply that

‖ h ‖2 =
m1∑

i,j=1

m2∑
r=1

g(h(ei, ej), F ēr)2csc2 θ +
m3∑

a,b,c=1

g(h(ẽa, ẽb), Jẽc)2

+
m2∑

p,q,r=1

g(h(ēr, ēs), F ēp)2csc2 θ +
m3∑

a,b=1

m2∑
r=1

[T ēr(lnf)g(ẽa, ẽb)]2csc2θ

+2
m1∑

i=1

m2∑
r,s=1

g(h(ei, ēr), F ēs)2csc2 θ + 2
m1∑

i=1

m3∑

a,b=1

[Jei(lnf)g(ẽa, ẽb)]2

+2
m1∑

i=1

m3∑
a=1

m2∑
r=1

g(h(ei, ẽa), F ēr)2csc2 θ. (31)

On the other hand, by direct computations, we we have

m2∑
p=1

[T ēr(lnf)]2csc2 θ = [T ē1(lnf)]2csc2 θ + [sec θT 2ē1(lnf)]2csc2 θ

+[T ē2(lnf)]2csc2 θ + [sec θT 2ē2(lnf)]2csc2 θ + . . .

+[T ē2n2−1(lnf)]2csc2 θ + [sec θT 2ē2n2−1(lnf)]2csc2 θ

Then, using (8) we get

m2∑
p=1

[T ēr(lnf)]2csc2 θ = [T ē1(lnf)sec θ]2cos2 θcsc2 θ + [−cos θē1(lnf)]2csc2 θ

+[T ē2(lnf)sec θ]2cos2 θcsc2 θ + [−cos θē2(lnf)]2csc2 θ

+ · · ·+ [T ē2n2sec θ(lnf)]2cos2 θcsc2 θ

+[−cos θē2n2−1(lnf)]2csc2 θ.

Hence, we arrive at

m2∑
p=1

[T ēr(lnf)]2csc2 θ = cot2 θ(∇θlnf)2. (32)

Then, using (32) in (31) we obtain (30). If the equality sign of (30) holds, from (31)
we have

h(DT ,DT ) = 0, h(Dθ,DT ) = 0, h(DT ,D⊥) ⊂ J(D⊥), (33)
h(D⊥,D⊥) ⊂ F (Dθ), h(Dθ,Dθ) ⊂ J(D⊥). (34)

Since M is Dθ−D⊥ mixed totally geodesic, from (28) we have g(h(X2, Y2), JZ) = 0
for X2, Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Thus, using (34) we obtain h(Dθ,Dθ) = 0. Then
(33) implies that M1 being a totally geodesic in M̄ due to M1 is totally geodesic
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submanifold of M. Furthermore, the first equation of (34), (29) and Dθ −D⊥ mixed
totally geodesic M imply that

g(h(Z, V ), FX2) = TX2(lnf)g(Z, V )

for X2 ∈ Γ(Dθ) and Z, V ∈ Γ(D⊥). Hence, since M⊥ is totally umbilical in M,
it follows that M⊥ is a totally umbilical submanifold of M̄. Thus, the proof is
complete.

Remark 2. In case Dθ = {0}, Theorem 2 coincides with Theorem 5.1 of [9]. Thus,
Theorem 2 is a generalization of Theorem 5.1 of [9].
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