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Abstract. In this paper, we prove that the general quasi variational inequalities are equiv-
alent to the fixed point problem using the projection technique. We use this equivalent
formulation to study the sensitivity analysis of the general quasi variational inequality. Our
approach is very simple. Several special cases are also discussed.
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1. Introduction

The ideas and techniques of variational inequalities are being applied in a variety
of diverse areas of pure and applied sciences, and proved to be innovative and pro-
ductive. It has been shown that variational inequalities provide a novel, natural,
simple, unified and efficient framework for a general treatment of a wide class of
unrelated linear and nonlinear problems. This theory combines theoretical and al-
gorithmic advances with a new and novel domain of applications. Analysis of these
problems requires a blend of techniques from convex analysis, functional analysis
and numerical analysis, see [1-35] and the references therein.

In recent years, variational inequalities have been generalized and extended in
several directions using new and novel techniques. Noor [25] has introduced and
considered a new class of variational inequalities which is called the general quasi
variational inequality. In this paper, we study sensitivity analysis of general quasi
variational inequalities, that is, examining how the solutions of such problems change
when the data of the problems are changed. This is an important problem for several
reasons. We would like to mention that sensitivity analysis provides useful informa-
tion for designing or planning various equilibrium systems. Sensitivity analysis can
provide a new insight and can stimulate new ideas and techniques for problem solv-
ing. Dafermos [4] studied sensitivity analysis of variational inequalities using the
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fixed point technique. This technique has been modified and extended by many au-
thors, see Noor-Noor and Rassias [27]. This approach has strong geometrical flavour.
We extend this for general quasi variational inequalities. We show that general quasi
variational inequalities are equivalent to the fixed point problem. This alternative
equivalent form is used to consider sensitivity analysis of general quasi variational
inequalities without assuming the differentiability of the given data. Our analysis
is in the spirit of Dafermos [5] and Noor [18,19]. Since general quasi variational in-
equalities include general variational inequalities, quasi variational inequalities and
complementarity problems as special cases, our result continues to hold for these
problems.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖.‖, respectively. Let K : H −→ H be a point to set mapping, which is closed
and convex valued. In other words, for every u ∈ H, the set K(u) is closed and
convex.

For given nonlinear operators T, g : H → H, consider the problem of finding
u ∈ H : g(u) ∈ K(u) such that

〈ρTu + u− g(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K(u), (1)

where ρ > 0 is a constant. Inequality of type (1) is called a general quasi variational
inequality involving two operators, which was introduced and studied by Noor [25].
This class of quasi variational inequalities is a quite general and unified one.

If K(u) ≡ K, that is, the convex set K(u) is independent of the solution u, then
general quasi variational inequalities (1) are equivalent to finding u ∈ H : g(u) ∈
K(u) such that

〈Tu + u− g(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2)

which is called a general variational inequality involving two operators and was
introduced and studied by Noor [22]. It has been shown [22] that the minimum of a
nonconvex differentiable function on a nonconvex set K in H can be characterized
by a general variational inequality (2).

Noor [14] considered and studied the following quasi variational inequality of
finding u ∈ H : g(u) ∈ K(u) such that

〈ρTu + g(u)− g(u), v − g(u)〉 ≥ 0, ∀v ∈ K(u). (3)

Obviously problems (1) and (3) are quite different and have applications in pure and
applied sciences.

For g = I, the identity operator, the general quasi variational inequality (1) is
equivalent to finding u ∈ K(u) such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K(u), (4)

which is known as a classical quasi variational inequality, introduced and studied by
Bensoussan and Lions [3] in the study of impulse control theory. See also [1-32].
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If K(u) ≡ K, and g = I, the identity operator, then problem (1) is equivalent to
finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (5)

which is known as a classical variational inequality which was introduced in 1964 by
Stampacchia [32]. For recent applications, numerical methods, sensitivity analysis,
dynamical systems and formulation of variational inequalities, see [1-35] and the
references therein. In brief, we conclude that the general quasi variational inequality
(1) is quite general and includes several classes of variational inequalities and related
optimization problems as special cases.

We also need the following standard and classical result.

Lemma 1 (see [13]). Let K(u) be a closed and convex set in H. Then, for a given
z ∈ H, u ∈ K(u) satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K(u),

if and only if

u = PK(u)z,

where PK(u) is the projection of H onto the closed convex set K(u) in H.

We would like to point out that the implicit projection operator PK(u) is not
nonexpansive. We shall assume that the implicit projection operator PK(u) satisfies
the Lipschitz type continuity, which plays an important and fundamental role in the
existence theory and in developing numerical methods for solving quasi variational
inequalities.

Assumption 1. The implicit projection operator PK(u) satisfies the condition

‖PK(u)w − PK(v)w|‖ ≤ ν‖u− v||, ∀u, v, w ∈ H,

where ν > 0 is a positive constant.

Assumption 1 has been used to prove the existence of a solution of quasi varia-
tional inequalities as well as in analyzing convergence of the iterative methods, see
[18, 19, 20].

In many important applications [2, 3, 19] the convex-valued set K(u) can be
written as

K(u) = m(u) + K, (6)

where m(u) is a point-point mapping and K is a convex set. In this case, we have

PK(u)w = Pm(u)+K(w) = m(u) + PK [w −m(u)], ∀u, v ∈ H.

We note that if K(u) is defined by (6) and m(u) is a Lipschitz continuous mapping
with constant γ > 0, then

‖PK(u)w − PK(v)w‖ = ‖m(u)−m(v) + PK [w −m(u)]− PK [w −m(v)‖
≤ 2‖m(u)−m(v)‖ ≤ 2γ‖u− v‖, ∀u, v, w ∈ H,
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which shows that Assumption 1 holds with ν = 2γ.
We now consider parametric versions of problem (1). To formulate the problem,

let M be an open subset of H in which the parameter λ takes values. Let T (u, λ)
be the given operator defined on H ×H ×M and take value in H ×H. From now
onward, we denote Tλ(.) ≡ T (., λ) unless otherwise specified.

The parametric general variational inequality problem is to find (u, λ) ∈ H ×M
such that

〈ρTλu + u− g(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (7)

We also assume that for some λ ∈ M , problem (7) has a unique solution u.
From Lemma 1, we see that parametric general quasi variational inequalities are

equivalent to the fixed point problem:

Fλ(u) ≡ u = PK [g(u)− ρTλu], ∀(u, λ) ∈ X ×M. (8)

We use this equivalence to study sensitivity analysis of general quasi variational
inequalities. We assume that for some λ ∈ M , problem (7) has a solution u and X
is a closure of a ball in H centered at u. We want to investigate those conditions
under which, for each λ in a neighborhood of λ, problem (7) has a unique solution
z(λ) near u and the function u(λ) is (Lipschitz) continuous and differentiable.

Definition 1. Let Tλ(.) be an operator on X ×M . Then, the operator Tλ(.) is said
to be:

(a) Locally strongly monotone, if there exists a constant α > 0 such that

〈Tλ(u)− Tλ(v), u− v〉 ≥ α‖u− v‖2, ∀λ ∈ M, u, v ∈ X.

(b) Locally Lipschitz continuous, if there exists a constant β > 0 such that

‖Tλ(u)− Tλ(v)‖ ≤ β‖u− v‖, ∀λ ∈ M, u, v ∈ X.

3. Main results

We consider the case when the solutions of the parametric general quasi variational
inequality (8) lie in the interior of X. Following the ideas of Dafermos [5] and Noor
[18,19], we consider the map Fλ(u) as defined by (8). We have to show that the
map Fλ(u) has a fixed point, which is a solution of the parametric general quasi
variational inequality (7). First of all, we prove that the map Fλ(u), defined by (8),
is a contraction map with respect to z uniformly in λ ∈ M .

Lemma 2. Let Tλ(.) be a locally strongly monotone with constant α > 0 and locally
Lipschitz continuous with constant β > 0. Let the operator g be strongly monotone
with constants σ > 0 and Lipschitz continuous with constants δ > 0, respectively. If
Assumption 1 holds and for all u1, u2 ∈ X and λ ∈ M , we have

‖Fλ(u1)− Fλ(u2)‖ ≤ θ‖u1 − u2‖,
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where

θ =
{√

1− 2σ + δ2 + ν +
√

1− 2αρ + β2ρ2
}

(9)

for

|ρ− α

β2
| <

√
α2 − β2k(2− k)

β2
, α > β

√
k(2− k), k < 1, (10)

where

k =
√

1− 2σ + δ2 + ν. (11)

Proof. In order to prove the existence of a solution of (7), it is enough to show that
the mapping Fλ(u), defined by (8), is a contraction mapping.

For u1 6= u2 ∈ H, and using Assumption 1, we have

‖Fλ(u1)− Fλ(u2)‖ = ‖PK(u1)[g(u1)− ρTλu1]− PK(u2)[g(u2)− ρTλu2]‖
≤ ‖PK(u1)[g(u1)− ρTλu1]− PK(u2)[g(u1)− ρTλu1]‖

+‖PK(u2)[g(u1)− ρTλu1]− PK(u2)[g(u2)− ρTλu2]‖
≤ ν‖u1 − u2‖+ ‖g(u1)− g(u2)− ρ(Tλu1 − Tλu2)‖
= ν‖u1 − u2‖

+‖ − (u1− u2− (g(u1)− g(u2)))+ u1 − u2 − ρ(Tλu1 − Tλu2)‖
≤ ν‖u1 − u2‖+ ‖u1 − u2 − (g(u1)− g(u2))‖

+‖u1 − u2 − ρ(Tλu1 − Tλu2)‖. (12)

Since the operator Tλ is a locally strongly monotone with constant α > 0 and locally
Lipschitz continuous with constant β > 0, it follows that

||u1 − u2 − ρ(Tλu1 − Tλu2)||2 ≤ ||u1 − u2||2 − 2ρ〈Tλu1 − Tλu2, u1 − u2〉
+ρ2||Tλu1 − Tλu2||2

≤ (1− 2ρα + ρ2β2)||u1 − u2||2. (13)

In a similar way, we have

||u1 − u2 − (g(u1)− g(u2))||2 ≤ (1− 2σ + δ2)||u1 − u2||2, (14)

where we have used the fact that g is strongly monotone with constant σ > 0 and
Lipschitz continuous with constant δ > 0.

From (9), (11), (13) and (14), we have

‖Fλ(u1)− Fλ(u2)‖ ≤
{

ν +
√

(1− 2σ + δ2) +
√

(1− 2ρα + ρ2β2)
}
‖u1 − u2‖

=
{

k +
√

(1− 2ρα + ρ2β2)
}
‖u1 − u2‖

= θ‖u1 − u2‖,
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where

θ = k +
√

(1− 2ρα + ρ2β2). (15)

From (10), it follows that θ < 1. Thus it follows that the mapping Fλ(u), defined by
(8), is a contraction mapping and consequently it has a fixed point, which belongs to
K(u) satisfying the general quasi variational inequality (7), the required result.

Remark 1. From Lemma 2, we see that the map Fλ(z) defined by (8) has a unique
fixed point u(λ), that is, u(λ) = Fλ(u). Also, by assumption, the function u, for
λ = λ is a solution of the parametric general quasi variational inequality (7). Again
using Lemma 2, we see that u, for λ = λ, is a fixed point of Fλ(u) and it is also a
fixed point of Fλ(u). Consequently, we conclude that

u(λ) = u = Fλ(u(λ)).

Using Lemma 2, we can prove the continuity of the solution u(λ) of the parametric
general quasi variational inequality (7) using the technique of Noor [13,14]. However,
for the sake of completeness and to convey an idea of the techniques involved, we
give its proof.

Lemma 3. Assume that the operator Tλ(.) is locally Lipschitz continuous with re-
spect to the parameter λ. If the operator Tλ(.) is locally Lipschitz continuous and
the map λ → PKλ

u is continuous (or Lipschitz continuous), then the function u(λ)
satisfying (8) is (Lipschitz) continuous at λ = λ.

Proof. For all λ ∈ M, invoking Lemma 2 and the triangle inequality, we have

‖u(λ)− u(λ̄)‖ ≤ ‖Fλ(u(λ))− Fλ̄(u(λ̄)‖+ ‖Fλ(u(λ̄))− Fλ̄(u(λ̄))‖
≤ θ‖u(λ)− u(λ̄)‖+ ‖Fλ(u(λ̄))− Fλ̄(u(λ̄))‖. (16)

From (8) and the fact that the operator Tλ is Lipschitz continuous with respect to
the parameter λ, we have

‖Fλ(u(λ̄))− Fλ̄(u(λ̄))‖ = ‖u(λ̄)− u(λ̄) + ρ(Tλ(u(λ̄), u(λ̄))− Tλ̄(u(λ̄), u(λ̄)))‖
≤ ρµ‖λ− λ̄‖. (17)

Combining (16) and (17), we obtain

‖u(λ)− u(λ̄)‖ ≤ ρµ

1− θ
‖λ− λ̄‖, for all λ, λ̄ ∈ M,

from which the required result follows.

We now state and prove the main result of this paper which is the motivation of
our next result.

Theorem 1. Let u be the solution of the parametric general quasi variational in-
equality (7) for λ = λ. Let Tλ(u) be a locally strongly monotone Lipschitz continuous
operator for all u, v ∈ X. If the map λ → PK is (Lipschitz) continuous at λ = λ,
then there exists a neighborhood N ⊂ M of λ such that for λ ∈ N , the parametric
general quasi variational inequality (7) has a unique solution u(λ) in the interior of
X,u(λ) = u and u(λ) is (Lipschitz) continuous at λ = λ.
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Proof. Its proof follows from Lemmas 2, 3 and Remark 1.
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