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Tricyclic biregular graphs whose energy exceeds the number
of vertices
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Abstract. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The
energy E(G) of the graph G is the sum of the absolute values of the eigenvalues of G. A
graph is said to be (a, b)-biregular if its vertex degrees assume exactly two different values:
a and b. A connected graph with n vertices and m edges is tricyclic if m = n + 2. The
inequality E(G) ≥ n is studied for connected tricyclic biregular graphs, and conditions for
its validity are established.
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1. Introduction

In this paper we are concerned with simple graphs, i.e. graphs without multiple
and directed edges and without loops. Let G be such a graph, and let n and m
be, the number of its vertices and edges, respectively. Eigenvalues λ1, λ2, . . . , λn of
the adjacency matrix of G are called the eigenvalues of G and form the spectrum of
G [2]. A spectrum–based graph invariant that recently attracted much attention of
mathematicians is the energy defined as

E = E(G) =
n∑

i=1

|λi|.

Details of the theory of graph energy can be found in the reviews [3, 8], recent papers
[1, 4, 6, 7, 9, 11, 12, 13, 17], and references cited therein.

One of the problems in the theory of graph energy is the characterization of
graphs whose energy exceeds the number of vertices, i.e. of graphs satisfying the
inequality

E(G) ≥ n . (1)

The first results along these lines were communicated in [10] and a systematic study
was initiated in [4]. In particular, it was shown that (1) is satisfied by (i) regular
graphs [10], (ii) graphs whose all eigenvalues are non-zero [4], and (iii) graphs having
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a large number of edges, m ≥ n2/4 [4]. In view of these results, it was purposeful
to examine the validity of (1) for biregular graphs (whose definition is given in the
subsequent section), especially those possessing a small number of edges. Acyclic,
unicyclic, and bicyclic biregular graphs satisfying (1) were studied in [1, 6, 11, 12].
In the present paper we extend these researches to the (much more complicated)
case of tricyclic biregular graphs.

Graphs violating condition (1), i.e. graphs whose energy is less than the number
of vertices, are referred to as hypoenergetic graphs [9]. Some results on hypoener-
getic graphs were recently obtained for trees [7, 13] as well as unicyclic and bicyclic
graphs [17].

2. Preliminaries

All graphs considered in this paper are assumed to be connected.
Let a and b be integers, 1 ≤ a < b. A graph G is said to be (a, b)-biregular if its

vertex degrees assume exactly two different values: a and b.
Let n be the number of vertices in the graph G and m the number of its edges.

The (connected) graph G is said to be tricyclic if m = n + 2.
In this paper we are interested in (connected) biregular tricyclic graphs whose

energy exceeds the number of vertices, i. e. which obey inequality (1).
It is known [14, 16] that the energy of any graph satisfies the inequality

E(G) ≥

√
(M2)3

M4
, (2)

where M2 and M4 are the second and fourth spectral moments, respectively [2].
These moments can be easily calculated from simple structural details of the under-
lying graph:

M2 = 2m,

M4 = 2
n∑

i=1

(di)2 − 2m + 8q,

where q is the number of quadrangles and di the degree of the i-th vertex, i = 1,
. . . , n.

From (2) it is evident that whenever condition (3)
√

(M2)3

M4
≥ n (3)

is satisfied, then inequality (1) will also be satisfied. In what follows we estab-
lish necessary and sufficient conditions under which (3) holds for tricyclic biregular
graphs. By this we establish sufficient (but not necessary) conditions for the validity
of inequality (1).

We begin with the equalities

na + nb = n (4)
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and
a · na + b · nb = 2m (5)

where na and nb are the numbers of vertices of G of degree a and b, respectively.
Bearing in mind that for any tricyclic graph m = n + 2, we obtain

na =
n(b − 2) − 4

b − a
, nb =

n(2 − a) + 4
b − a

.

(I)   a=1,b>2  or  a=2,b=3;  q=0,1,2 or 3 (II)  a=1,  b>3; q=0,1,2 or 3

(III)  a=1,b>3; q=0,1,2 or 3 (IV)  a=1,b>4; q=0,1,2 or 3

(V)   a=1,b>2  or  a=2,b=3; q=0,1,2,3 or 4 (VI)  a=1,  b>3; q=0,1,2 or 3

(VII)   a=1,b>3  or  a=2,b=4; q=0,1,2 or 3 (VIII)   a=1,b>3; q=0,1,2 or 3 (IX)   a=1,b>4; q=0,1,2 or 3

(XII)   a=1,b>3; q=0,1,2 or 3

(XI)   a=1,b=3  or a=2,b=3; q=0,1,2,3 or 5

(X)   a=1,b>2  or  a=2,b=3; q=0,1,2 or 3

(XIV)   a=1,b>5 or a=2,b=6; q=0,1,2 or 3
(XIII)   a=2,b=4;  q=0,1,2,3 or 6 (XV)   a=1,b>2  or a=2,b=3; q=0,1,2 or 3

Figure 1. Classes of tricyclic graphs. If these graphs are (a, b)-biregular, then their
vertex degrees a and b and the number of quadrangles q may assume the indicated

values
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Next, we have

n∑

i=1

(di)2 = a2 · na + b2 · nb = (4 + 2n)(b + a) − abn.

By this, we arrive at expressions for the second and fourth spectral moments:

M2 = 2(n + 2),
M4 = 2(2a + 2b − 1)(n + 2) − 2abn + 8q

by means of which inequality (3) becomes

√
4(n + 2)3

(2a + 2b − 1)(n + 2) − abn + 4q
≥ n. (6)

a=1, b=5a=1, b=5

a=2, b=3

A
B

C

Figure 2. Explaining the diagrams depicted in Figure 1 by examples of tricyclic
biregular graphs of class V. In graphs A and B vertex degrees are a = 1 and b = 5.
Graph B differs from graph A in two (1,5)-biregular trees attached. Evidently, if

the smaller vertex degree (a) is equal to one, then the greater vertex degree (b) may
assume any value greater than two. In graph C vertex degrees are a = 2 and b = 3.
If a = 2, then it must be b = 3. Further, it cannot be a > 2. In all three graphs A,

B, and C, the number of quadrangles q is equal to one

There are 15 different classes of biregular tricyclic graphs [5, 15]. Each of these
is illustrated in Figure 1 and under each diagram all possible values for a, b, and
q are given. Dotted lines indicate that an arbitrary number of vertices can be put
on them. If a = 2, these are vertices of degree 2. If a = 1, we can attach entire
(1, b)-biregular trees. Additional explanations are given in Figure 2.



Energy of tricyclic biregular graphs 217

3. Main results

From Figures 1 and 2 it should be evident that a ∈ {1, 2}, i.e. that the smallest
vertex degree of a biregular tricyclic graph cannot be greater than 2. Bearing this
in mind, we divide all classes of tricyclic (a, b)-biregular graphs into two groups and
examine each group separately.

Theorem 1. Let G be a connected tricyclic (1, b)-biregular graph with n vertices.
Then, inequality (3) holds if and only if either b = 3 and q = 0, 1, 2, or b = 3, q = 3,
and n ≤ 24.

Theorem 2. For every connected tricyclic (1, b)-biregular graph with b ≥ 4, inequal-
ity (3) is not satisfied.

Theorem 3. For every connected tricyclic (2, 3)-biregular graph inequality (3) holds.

Theorem 4. Let G be a connected tricyclic (2, 4)-biregular graph. Then inequality
(3) holds if and only if q 6= 6.

Theorem 5. Let G be a connected tricyclic (2, 6)-biregular graph. Then inequality
(3) holds if and only if q 6= 3.

Evidently, the immediate consequence of Theorem 1 is that relation (1) holds if
either b = 3 and q = 0, 1, 2, or b = 3, q = 3, and n ≤ 24. Analogous consequences
are also deduced from Theorems 2–5.

4. Proofs

Proof. (of Theorem 1)
We need to consider each class except XIII and q ∈ {0, 1, 2, 3}.

Let a = 1. Then inequality (6) becomes
√

4(n + 2)3

n(b + 1) + 2(1 + 2b + 2q)
≥ n, (7)

and from this we obtain

b ≤ 3n3 + n2(22 − 4q) + 48n + 32
n2(n + 4)

. (8)

For q = 0, 1, 2, and 3 we have

b ≤
3n3 + 22n2 + 48n + 32

n2(n + 4)
(9)

b ≤ 3n3 + 18n2 + 48n + 32
n2(n + 4)

(10)

b ≤ 3n3 + 14n2 + 48n + 32
n2(n + 4)

(11)

b ≤ 3n3 + 10n2 + 48n + 32
n2(n + 4)

, (12)



218 S.Majstorović, I. Gutman and A.Klobučar

respectively.
We may substitute n on the right–hand sides of the inequalities (9)–(12) by

x ∈ R and then examine the respective functions of the variable x. Calculating the
first derivatives of the first three functions, we conclude that for every x ≥ 1 these
monotonically decrease and their lower bound is 3. On the other hand, the function
corresponding to (12), namely

f(x) =
3x3 + 10x2 + 48x + 32

x2(x + 4)
, x ≥ 1, x ∈ R,

has a stationary point x = 50.8797 at which it reaches its minimal value 2.98097.
Thus, for x ∈ (1, 50.8797), the function f monotonically decreases, for x ∈ (50.8797,
+∞) it monotonically increases, and its upper bound is 3. Since b is never less
than 3, we are interested only in the first interval. There, the function f has values
greater than or equal to 3 if x ∈ [1, 24].

We start with graphs for which b > 2. These pertain to the classes I, V, X,
XI, and XV. With the condition b > 2, the expressions on the right–hand sides of
(9)–(12) must be at least 3. For Eqs. (9)–(11) this is true for every n ∈ N, whereas
for (12) we have the condition n ≤ 24. With these conditions for n, we conclude
that one possible value for b is 3. Now, we will see that b cannot have any other
value.

For example, if we take into consideration class I, then the smallest such graph
with q = 0 has 14 vertices. With n = 14 the value of the expression on the right–
hand side of (9) is equal to 3.75 and it decreases with increasing n. Therefore it
must be b = 3.

If q = 1 the smallest graph has 16 vertices and from (10) we get b ≤ 3.45 and
again b = 3.

For q = 2 we have n = 18 and from (11) we obtain b ≤ 3.21, implying b = 3.
If q = 3 we have n = 20 and from (12) we get b ≤ 3.02. Here n ≤ 24, and

therefore (12) holds for n = 20, 22, 24.
In a similar way, classes V, X, and XV are analyzed: For class V and q = 0, 1, 2

we have n ≥ 14, 10, 12, respectively, and the inequalities (9), (10), and (11) are
satisfied only for b = 3. For q = 3 we have n ≥ 16 and we conclude that inequality
(12) holds only for b = 3 and n = 16, 18, 20, 22, 24.

In the same way we conclude that for class X the corresponding inequalities hold
only for b = 3. Specially, for q = 3 there is a limited number of graphs for which
(12) holds. These are the ones with 12, 14, 16, 18, 20, 22, and 24 vertices.

For class XV we get b = 3 as well, and for q = 3 it must be n ∈ {22, 44}.
For class XI we know that b = 3, so the inequalities (9)–(11) are true for every

n. For q = 3 the smallest graph has 6 vertices, and thus (12) is true for n = 6, 8,
10, 12, 14, 16, 18, 20, 22, and 24.

By taking into account the smallest possible number of vertices, we conclude that
for graphs with b > 3 inequalities (9)–(12) are not satisfied.

Proof. (of Theorem 2)
The proof follows from Theorem 1 and from the information on the smallest number
of vertices in such graphs.
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In agreement with Theorem 2, for b ≥ 4, 5, 6 (classes II, III, IV, VI, VII, VIII,
IX, XII, and XIV), the inequalities (9)–(12) are not satisfied. Some of the smallest
such graphs with different values for q are depicted in Figure 3. By an easy graph–
theoretical reasoning, it can be seen that the graphs (2), (3), and (4) are unique.
Namely, if we want to construct such (connected, tricyclic, biregular) graphs belong-
ing to the prescribed class, with the required values for the parameters a, b, and q,
then we realize that this can be done in just a single way. (The same holds for the
“unique” graphs mentioned later in this paper.)

(1)  n=17, q=0 (2)  n=14, q=1

(3)  n=11, q=2 (4)  n=20, q=3

Figure 3. Tricyclic (1, 4)-biregular graphs with the minimum number of vertices.
The graphs (1) belong to classes XII and VII, respectively. Graph (2) belongs to

class VIII. Graphs (3) and (4) belong to class XII

(1)

(4)(3)

(2)

(5)

Figure 4. Tricyclic (1, 3)-biregular graphs with q = 3 and the minimum number of
vertices. Graphs (1), (2), (3), (4), and (5) belong to classes I, V, X, XI, and XV,

respectively
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Figure 4 shows examples of tricyclic (1, 3)-biregular graphs with q = 3 and the
minimum number of vertices. Graphs (1), (2), (3), (4), and (5) belong to classes I,
V, X, XI, and XV, respectively. Inequality (3) holds for these graphs because they
have n ≤ 24 vertices.

Proof. (of Theorem 3)
For a = 2 and b = 3 the respective graphs belong to classes I, V, X, XI, and XV.

Then inequality (6) becomes
√

4(n + 2)3

3n + 18 + 4q
≥ n,

and we obtain the inequality

n3 + (6 − 4q)n2 + 48n + 32 ≥ 0.

Possible values for q are 0, 1, 2, 3, 4, and 5. With each of these values the upper
inequality holds for arbitrary n ∈ N.

Proof. (of Theorem 4)
Graphs with a = 2 and b = 4 pertain to classes VII and XIII, and the number of

quadrangles q can be 0, 1, 2, 3, and 6. From (6) we obtain
√

4(n + 2)3

3n + 22 + 4q
≥ n

and thus
n3 + (2 − 4q)n2 + 48n + 32 ≥ 0.

For q = 0, 1, 2, 3, and 6, the latter inequality becomes:

n3 + 2n2 + 48n + 32 ≥ 0 (13)
n3 − 2n2 + 48n + 32 ≥ 0 (14)
n3 − 6n2 + 48n + 32 ≥ 0 (15)

n3 − 10n2 + 48n + 32 ≥ 0 (16)
n3 − 22n2 + 48n + 32 ≥ 0, (17)

respectively.

Figure 5. The unique tricyclic (2, 4)-biregular graph possessing six quadrangles

Inequalities (13)–(16) hold for arbitrary n ∈ N, while (17) holds only for n ≤ 3
and n ≥ 20. Bearing in mind that the tricyclic (2, 4)-biregular graph with q = 6
is unique and has 6 vertices, see Figure 5, it is the only example of such graph for
which inequality (3) is not fulfilled.
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Proof. (of Theorem 5)
If a = 2 and b = 6, then the graph belongs to class XIV. From (6) we obtain

√
4(n + 2)3

3n + 30 + 4q
≥ n

and
n3 − (6 + 4q)n2 + 48n + 32 ≥ 0.

For q = 0, 1, 2, 3 the latter inequality becomes

n3 − 6n2 + 48n + 32 ≥ 0 (18)
n3 − 10n2 + 48n + 32 ≥ 0 (19)
n3 − 14n2 + 48n + 32 ≥ 0 (20)
n3 − 18n2 + 48n + 32 ≥ 0, (21)

respectively.
Again, we have the exception (21) which holds only for n ≤ 4 and n ≥ 15.

Since there exists a unique tricyclic (2, 6)-biregular graph with q = 3 and it has 10
vertices, see Figure 6, it is the only example of such graph for which inequality (3)
is not fulfilled.

Figure 6. The unique tricyclic (2, 6)-biregular graph with three quadrangles
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