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Abstract. Under the condition of removing the restriction any bounded, we give the
convergence of the Ishikawa iteration process to a unique fixed point of a strongly pseu-
docontractive operator in arbitrary real Banach space. Furthermore, general convergence
rate estimate is given in our results, which extend the recent results of Ciric [3] and Soltuz
[12].
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1. Introduction

Let X be an arbitrary real Banach space with norm ‖ · ‖ and dual X∗ , and J
denote by the normalized duality mapping from X into 2X∗

given by

J(x) =
{

f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
}

, ∀x ∈ X,

where 〈·, ·〉 is a generalized duality pairing. In the sequel, D(T ) and R(T ) denote
the domain and the range of T , respectively. The Hahn-Banach theorem assures
that J(x) 6= Ø for each x ∈ X. It is easy to see (c.f. [12]) that

〈x, j(y)〉 ≤ ‖x‖ · ‖y‖ (1)

for all x, y ∈ X and each j(y) ∈ J(y).
An operator T : D(T ) ⊂ X → X is called a strongly pseudocontractive operator,

if for all x, y ∈ D(T ), there exist j(x− y) ∈ J(x− y) and a constant k ∈ (0, 1) such
that

〈Tx− Ty, j(x− y)〉 ≤ k ‖x− y‖2 .

Let T : X → X be a mapping on X, if for all x, y ∈ X, there exist j(x − y) ∈
J(x− y) and a constant k ∈ (0, 1) such that

〈Tx− Ty, j(x− y)〉 ≥ k ‖x− y‖2 ,
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then T is called a strongly accretive operator.
For arbitrary x0 ∈ X define the sequence {xn} by

xn+1 = (1− αn) xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 0,

where αn, βn ∈ [0, 1] satisfy suitable conditions (see e.g. [1–10, 12–16]). If βn = 0
for each n ≥ 0, then Ishikawa iterations reduce to the Mann iterations [7].

Zhou [16] considered the Ishikawa iteration process with parameters αn ≥ a > 0.
Osilike in [9] have proved that two assumptions of the main theorem in [16] are
contradictory. Soltuz [12] presented a correction for the result of Zhou [16] for
strongly pseudocontractive operators with bounded range R(T ) and k < 1

2 . Recently
Ciric [3] extended the result of Soltuz [12] to all strongly pseudocontractive operators
which satisfy {Txn} and {Tyn} are bounded and k < 1.

The purpose of this paper is to study convergence of Ishikawa iterative sequences
for strongly pseudocontractive operators with k < 1 in arbitrary real Banach spaces
under the condition of removing the restriction {Txn} and {Tyn} being bounded,
and to give that general convergence rate estimate in our results, which largely unify
and extend the corresponding results obtained by Ciric [3] and Soltuz[12].

The following results will be needed in the sequel.

Lemma 1 (see [12, 3]). Let X be a real Banach space and let J : X → 2X∗
be a

normalized duality mapping. Then

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, j (x + y)〉

for all x, y ∈ X and each j (x + y) ∈ J (x + y) .

Lemma 2 (see [10, 11]). Let {ρn} be a sequence of non-negative real numbers which
satisfy

ρn+1 ≤ (1− ω)ρn + δn, n ≥ 0,

where ω ∈ (0, 1) is a fixed number and δn ≥ 0 is such that δn → 0 as n →∞. Then
ρn → 0 as n →∞.

Lemma 3 (see [1]). If T : X → X is a strongly accretive operator, then for any f ∈
X, mapping S : X → X, defined by Sx = f −Tx+x is a strongly pseudocontractive
operator, i.e. for any x, y ∈ X:

〈Sx− Sy, j(x− y)〉 ≤ (1− k) ‖x− y‖2 ,

where k ∈ (0, 1) is the strongly accretive constant of T .

2. Main results

We now state the main results of this section.

Theorem 1. Let X be a real Banach space, D a non-empty, convex subset of X
and let T : D → D be a continuous and strongly pseudocontractive mapping with a
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pseudocontractive parameter k ∈ (0, 1). For arbitrary x0 ∈ D, let Ishikawa iteration
sequence {xn} be defined by

{
xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn, n ≥ 0.
(2)

where αn, βn ∈ [0, 1], and constants a, τ ∈ (0, 1− k) are such that

0 < a ≤ αn < 1− k − τ, n ≥ 0. (3)

If

‖ Txn+1 − Tyn ‖→ 0, (4)

as n → ∞, then the sequence {xn} converges strongly to a unique fixed point of T
in D; moreover,

‖xn − x∗‖ ≤
√

(1− aτ)n ‖x0 − x∗‖2 +
(1− (1− aτ)n)M

aτ
, n ≥ 0,

where M = sup
{

1
k2
‖Tyn − Txn+1‖2, n ≥ 0

}
.

Proof. The existence of a fixed point follows from the result of Deimling [4], and
the uniqueness from the strongly pseudocontractivity of T . Let x∗ be such that
Tx∗ = x∗. From Lemma 1, we have

‖xn+1 − x∗‖2 = ‖(1− αn) (xn − x∗) + αn (Tyn − Tx∗)‖2
≤ (1− αn)2 ‖xn − x∗‖2 + 2αn 〈Tyn − Txn+1, j (xn+1 − x∗)〉

+2αn 〈Txn+1 − x∗, j (xn+1 − x∗)〉 . (5)

Now we consider the first and second term on the right–hand side of (5). By strongly
pseudocontractivity of T , we get

2αn 〈Txn+1 − Tx∗, j(xn+1 − x∗)〉 ≤ 2αnk ‖xn+1 − x∗‖2 , (6)

for each j(xn+1 − x∗) ∈ J(xn+1 − x∗), and a constant k ∈ (0, 1).

From (1) and inequality ab ≤ a2 + b2

2
, we obtain that

2αn 〈Tyn − Txn+1, j (xn+1 − x∗)〉 ≤ 2αn‖Tyn − Txn+1‖‖xn+1 − x∗‖
≤ ‖Tyn − Txn+1‖2 + α2

n‖xn+1 − x∗‖2, (7)

Substituting (6) and (7) into (5), we infer that

‖xn+1 − x∗‖2 ≤ (1− αn)2 ‖xn − x∗‖2 + ‖Tyn − Txn+1‖2 + α2
n‖xn+1 − x∗‖2

+2αnk ‖xn+1 − x∗‖2 ,

which means that

‖xn+1 − x∗‖2 ≤ (1− αn)2

1− 2kαn − α2
n

‖xn − x∗‖2 +
‖Tyn − Txn+1‖2
1− 2kαn − α2

n

(8)
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for all n ≥ 0.
From (3) it follows that

1− 2kαn − α2
n ≥ 1− 2k(1− k − τ)− (1− k − τ)2

= k2 + τ(2− τ)
> k2 > 0. (9)

By (8), (9) and (3) and note that 0 < 1− 2kαn − α2
n < 1, we have

‖xn+1 − x∗‖2 ≤ (1− αn)2

1− 2kαn − α2
n

‖xn − x∗‖2 +
‖Tyn − Txn+1‖2
1− 2kαn − α2

n

=
(

1− 2αn(1− k − αn)
1− 2kαn − α2

n

)
‖xn − x∗‖2 +

‖Tyn − Txn+1‖2
1− 2kαn − α2

n

≤
(
1− 2αn(1− k − (1− k − τ))

1− 2kαn − α2
n

)
‖xn − x∗‖2 +

1
k2
‖Tyn − Txn+1‖2

=
(

1− 2αnτ

1− 2kαn − α2
n

)
‖xn − x∗‖2 +

1
k2
‖Tyn − Txn+1‖2

≤ (1− 2αnτ) ‖xn − x∗‖2 +
1
k2
‖Tyn − Txn+1‖2

≤ (1− aτ) ‖xn − x∗‖2 +
1
k2
‖Tyn − Txn+1‖2 (10)

for all n ≥ 0. Set ω = aτ, ρn = ‖xn − x∗‖2, δn =
1
k2
‖Tyn − Txn+1‖2, n ≥ 0. By

Lemma 2 ensures that xn → x∗ as n → ∞, that is, {xn} converges strongly to the
unique fixed point x∗ of the T . Furthermore, using (10) we get

‖xn − x∗‖2 ≤ (1− aτ) ‖xn−1 − x∗‖2 + M

≤ (1− aτ)n ‖x0 − x∗‖2 +
(1− (1− aτ)n) M

aτ

for all n ≥ 0, which implies that

‖xn − x∗‖ ≤
√

(1− aτ)n ‖x0 − x∗‖2 +
(1− (1− aτ)n) M

aτ
, n ≥ 0.

This completes the proof.

Remark 1. Theorem 1 improves and extends Theorem 1 of Soltuz [12] in its three
aspects:

(i) It abolishes the condition that the range of T is bounded.

(ii) It extends 0 < k < 1
2 to k ∈ (0, 1).

(iii) General convergence rate estimate is given in our result.

Remark 2. Theorem 1 improves and extends Theorem 1 of Ciric [3] in the following
ways:
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(i) It abolishes the condition that {Txn} and {Tyn} are bounded.

(ii) General convergence rate estimate is given in our result.

Theorem 2. Let X be a real Banach space and let S : X → X be a continuous
strongly accretive operator with a strongly accretive constant k ∈ (0, 1). For any
given f ∈ X, define a mapping T : X → X by

Tx = f − Sx + x

for all x ∈ X, where αn, βn ∈ [0, 1], and constants a, τ ∈ (0, 1− k) are such that

0 < a ≤ αn < 1− k − τ, n ≥ 0,

then for arbitrary x0 ∈ X the sequence {xn}, defined by (2) and satisfying (4)
in Theorem 1, converges strongly to a unique solution of the equation Sx = f .
Moreover,

‖xn − x∗‖ ≤
√

(1− aτ)n ‖x0 − x∗‖2 +
(1− (1− aτ)n)M

aτ
, n ≥ 0,

where M = sup
{

1
k2
‖Tyn − Txn+1‖2, n ≥ 0

}
.

Proof. Obviously, if x∗ ∈ X is a solution of the equation Sx = f , then x∗ is
a fixed point of T . Also it is easy to prove that T is continuous and strongly
pseudocontractive with the strongly pseudocontractivity constant (1 − k). Thus,
Theorem 2 follows from Theorem 1.

Remark 3. Theorem 2 improves and extends Theorem 2 of Ciric [3] in the following
ways:

(i) It abolishes the condition that the range of (I − S) is bounded.

(ii) General convergence rate estimate is given in Theorem 2.
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