Convergence of Ishikawa iterative sequence for strongly pseudocontractive operators in arbitrary Banach spaces

Shuyi Zhang^{1,*}

¹ Department of Mathematics, University of BoHai, Jinzhou, Liaoning 121000, P. R. China

Received November 16, 2009; accepted January 15, 2010

Abstract. Under the condition of removing the restriction any bounded, we give the convergence of the Ishikawa iteration process to a unique fixed point of a strongly pseudocontractive operator in arbitrary real Banach space. Furthermore, general convergence rate estimate is given in our results, which extend the recent results of Ciric [3] and Soltuz [12].

AMS subject classifications: Primary 47H10; Secondary 47H06, 54H25

Key words: strongly pseudocontractive operator, convergence rate estimate, Ishikawa iterative sequences

1. Introduction

Let X be an arbitrary real Banach space with norm $\|\cdot\|$ and dual X^* , and J denote by the normalized duality mapping from X into 2^{X^*} given by

$$J(x) = \left\{ f \in X^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \right\}, \forall x \in X,$$

where $\langle \cdot, \cdot \rangle$ is a generalized duality pairing. In the sequel, D(T) and R(T) denote the domain and the range of T, respectively. The Hahn-Banach theorem assures that $J(x) \neq \emptyset$ for each $x \in X$. It is easy to see (c.f. [12]) that

$$\langle x, j(y) \rangle \le \|x\| \cdot \|y\| \tag{1}$$

for all $x, y \in X$ and each $j(y) \in J(y)$.

An operator $T: D(T) \subset X \to X$ is called a strongly pseudocontractive operator, if for all $x, y \in D(T)$, there exist $j(x-y) \in J(x-y)$ and a constant $k \in (0,1)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le k ||x - y||^2.$$

Let $T: X \to X$ be a mapping on X, if for all $x, y \in X$, there exist $j(x-y) \in J(x-y)$ and a constant $k \in (0,1)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \ge k \|x - y\|^2$$
,

http://www.mathos.hr/mc

©2010 Department of Mathematics, University of Osijek

^{*}Corresponding author. Email address: jzzhangshuyi@126.com (S. Zhang)

S. Zhang

then T is called a strongly accretive operator.

For arbitrary $x_0 \in X$ define the sequence $\{x_n\}$ by

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n) \, x_n + \alpha_n T y_n, \\ y_n &= (1 - \beta_n) \, x_n + \beta_n T x_n, \quad n \ge 0, \end{aligned}$$

where $\alpha_n, \beta_n \in [0, 1]$ satisfy suitable conditions (see e.g. [1–10, 12–16]). If $\beta_n = 0$ for each $n \ge 0$, then Ishikawa iterations reduce to the Mann iterations [7].

Zhou [16] considered the Ishikawa iteration process with parameters $\alpha_n \geq a > 0$. Osilike in [9] have proved that two assumptions of the main theorem in [16] are contradictory. Soltuz [12] presented a correction for the result of Zhou [16] for strongly pseudocontractive operators with bounded range R(T) and $k < \frac{1}{2}$. Recently Ciric [3] extended the result of Soltuz [12] to all strongly pseudocontractive operators which satisfy $\{Tx_n\}$ and $\{Ty_n\}$ are bounded and k < 1.

The purpose of this paper is to study convergence of Ishikawa iterative sequences for strongly pseudocontractive operators with k < 1 in arbitrary real Banach spaces under the condition of removing the restriction $\{Tx_n\}$ and $\{Ty_n\}$ being bounded, and to give that general convergence rate estimate in our results, which largely unify and extend the corresponding results obtained by Ciric [3] and Soltuz[12].

The following results will be needed in the sequel.

Lemma 1 (see [12, 3]). Let X be a real Banach space and let $J : X \to 2^{X^*}$ be a normalized duality mapping. Then

$$||x + y||^{2} \le ||x||^{2} + 2\langle y, j(x + y)\rangle$$

for all $x, y \in X$ and each $j(x+y) \in J(x+y)$.

Lemma 2 (see [10, 11]). Let $\{\rho_n\}$ be a sequence of non-negative real numbers which satisfy

$$\rho_{n+1} \le (1-\omega)\rho_n + \delta_n, \quad n \ge 0$$

where $\omega \in (0,1)$ is a fixed number and $\delta_n \ge 0$ is such that $\delta_n \to 0$ as $n \to \infty$. Then $\rho_n \to 0$ as $n \to \infty$.

Lemma 3 (see [1]). If $T : X \to X$ is a strongly accretive operator, then for any $f \in X$, mapping $S : X \to X$, defined by Sx = f - Tx + x is a strongly pseudocontractive operator, i.e. for any $x, y \in X$:

$$\langle Sx - Sy, j(x - y) \rangle \le (1 - k) ||x - y||^2,$$

where $k \in (0, 1)$ is the strongly accretive constant of T.

2. Main results

We now state the main results of this section.

Theorem 1. Let X be a real Banach space, D a non-empty, convex subset of X and let $T: D \to D$ be a continuous and strongly pseudocontractive mapping with a

224

pseudocontractive parameter $k \in (0, 1)$. For arbitrary $x_0 \in D$, let Ishikawa iteration sequence $\{x_n\}$ be defined by

$$\begin{cases} x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n \\ y_n = (1 - \beta_n) x_n + \beta_n T x_n, \quad n \ge 0. \end{cases}$$
(2)

where $\alpha_n, \beta_n \in [0, 1]$, and constants $a, \tau \in (0, 1 - k)$ are such that

$$0 < a \le \alpha_n < 1 - k - \tau, \quad n \ge 0.$$
(3)

If

$$\parallel Tx_{n+1} - Ty_n \parallel \to 0, \tag{4}$$

as $n \to \infty$, then the sequence $\{x_n\}$ converges strongly to a unique fixed point of T in D; moreover,

$$\|x_n - x^*\| \le \sqrt{(1 - a\tau)^n \|x_0 - x^*\|^2 + \frac{(1 - (1 - a\tau)^n)M}{a\tau}} , \quad n \ge 0,$$

where $M = \sup\left\{\frac{1}{k^2}\|Ty_n - Tx_{n+1}\|^2, n \ge 0\right\}.$

Proof. The existence of a fixed point follows from the result of Deimling [4], and the uniqueness from the strongly pseudocontractivity of T. Let x^* be such that $Tx^* = x^*$. From Lemma 1, we have

$$\|x_{n+1} - x^*\|^2 = \|(1 - \alpha_n) (x_n - x^*) + \alpha_n (Ty_n - Tx^*)\|^2$$

$$\leq (1 - \alpha_n)^2 \|x_n - x^*\|^2 + 2\alpha_n \langle Ty_n - Tx_{n+1}, j (x_{n+1} - x^*) \rangle$$

$$+ 2\alpha_n \langle Tx_{n+1} - x^*, j (x_{n+1} - x^*) \rangle.$$
(5)

Now we consider the first and second term on the right-hand side of (5). By strongly pseudocontractivity of T, we get

$$2\alpha_n \langle Tx_{n+1} - Tx^*, j(x_{n+1} - x^*) \rangle \le 2\alpha_n k \|x_{n+1} - x^*\|^2, \tag{6}$$

for each $j(x_{n+1} - x^*) \in J(x_{n+1} - x^*)$, and a constant $k \in (0, 1)$. From (1) and inequality $ab \leq \frac{a^2 + b^2}{2}$, we obtain that

$$2\alpha_n \langle Ty_n - Tx_{n+1}, j (x_{n+1} - x^*) \rangle \leq 2\alpha_n \|Ty_n - Tx_{n+1}\| \|x_{n+1} - x^*\| \\ \leq \|Ty_n - Tx_{n+1}\|^2 + \alpha_n^2 \|x_{n+1} - x^*\|^2, \quad (7)$$

Substituting (6) and (7) into (5), we infer that

$$||x_{n+1} - x^*||^2 \le (1 - \alpha_n)^2 ||x_n - x^*||^2 + ||Ty_n - Tx_{n+1}||^2 + \alpha_n^2 ||x_{n+1} - x^*||^2 + 2\alpha_n k ||x_{n+1} - x^*||^2,$$

which means that

$$\|x_{n+1} - x^*\|^2 \le \frac{(1 - \alpha_n)^2}{1 - 2k\alpha_n - \alpha_n^2} \|x_n - x^*\|^2 + \frac{\|Ty_n - Tx_{n+1}\|^2}{1 - 2k\alpha_n - \alpha_n^2}$$
(8)

225

S. Zhang

for all $n \ge 0$.

From (3) it follows that

$$1 - 2k\alpha_n - \alpha_n^2 \ge 1 - 2k(1 - k - \tau) - (1 - k - \tau)^2$$

= $k^2 + \tau(2 - \tau)$
> $k^2 > 0.$ (9)

By (8), (9) and (3) and note that $0 < 1 - 2k\alpha_n - \alpha_n^2 < 1$, we have

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \frac{(1-\alpha_n)^2}{1-2k\alpha_n - \alpha_n^2} \|x_n - x^*\|^2 + \frac{\|Ty_n - Tx_{n+1}\|^2}{1-2k\alpha_n - \alpha_n^2} \\ &= \left(1 - \frac{2\alpha_n(1-k-\alpha_n)}{1-2k\alpha_n - \alpha_n^2}\right) \|x_n - x^*\|^2 + \frac{\|Ty_n - Tx_{n+1}\|^2}{1-2k\alpha_n - \alpha_n^2} \\ &\leq \left(1 - \frac{2\alpha_n(1-k-(1-k-\tau))}{1-2k\alpha_n - \alpha_n^2}\right) \|x_n - x^*\|^2 + \frac{1}{k^2} \|Ty_n - Tx_{n+1}\|^2 \\ &= \left(1 - \frac{2\alpha_n\tau}{1-2k\alpha_n - \alpha_n^2}\right) \|x_n - x^*\|^2 + \frac{1}{k^2} \|Ty_n - Tx_{n+1}\|^2 \\ &\leq (1-2\alpha_n\tau) \|x_n - x^*\|^2 + \frac{1}{k^2} \|Ty_n - Tx_{n+1}\|^2 \\ &\leq (1-a\tau) \|x_n - x^*\|^2 + \frac{1}{k^2} \|Ty_n - Tx_{n+1}\|^2 \end{aligned}$$
(10)

for all $n \ge 0$. Set $\omega = a\tau$, $\rho_n = ||x_n - x^*||^2$, $\delta_n = \frac{1}{k^2} ||Ty_n - Tx_{n+1}||^2$, $n \ge 0$. By Lemma 2 ensures that $x_n \to x^*$ as $n \to \infty$, that is, $\{x_n\}$ converges strongly to the unique fixed point x^* of the *T*. Furthermore, using (10) we get

$$||x_n - x^*||^2 \le (1 - a\tau) ||x_{n-1} - x^*||^2 + M$$

$$\le (1 - a\tau)^n ||x_0 - x^*||^2 + \frac{(1 - (1 - a\tau)^n) M}{a\tau}$$

for all $n \ge 0$, which implies that

$$||x_n - x^*|| \le \sqrt{(1 - a\tau)^n ||x_0 - x^*||^2 + \frac{(1 - (1 - a\tau)^n)M}{a\tau}}, n \ge 0.$$

This completes the proof.

Remark 1. Theorem 1 improves and extends Theorem 1 of Soltuz [12] in its three aspects:

- (i) It abolishes the condition that the range of T is bounded.
- (*ii*) It extends $0 < k < \frac{1}{2}$ to $k \in (0, 1)$.
- (iii) General convergence rate estimate is given in our result.

Remark 2. Theorem 1 improves and extends Theorem 1 of Ciric [3] in the following ways:

226

- (i) It abolishes the condition that $\{Tx_n\}$ and $\{Ty_n\}$ are bounded.
- (ii) General convergence rate estimate is given in our result.

Theorem 2. Let X be a real Banach space and let $S : X \to X$ be a continuous strongly accretive operator with a strongly accretive constant $k \in (0,1)$. For any given $f \in X$, define a mapping $T : X \to X$ by

$$Tx = f - Sx + x$$

for all $x \in X$, where $\alpha_n, \beta_n \in [0, 1]$, and constants $a, \tau \in (0, 1-k)$ are such that

$$0 < a \le \alpha_n < 1 - k - \tau, n \ge 0,$$

then for arbitrary $x_0 \in X$ the sequence $\{x_n\}$, defined by (2) and satisfying (4) in Theorem 1, converges strongly to a unique solution of the equation Sx = f. Moreover,

$$\|x_n - x^*\| \le \sqrt{(1 - a\tau)^n \|x_0 - x^*\|^2 + \frac{(1 - (1 - a\tau)^n)M}{a\tau}} , \quad n \ge 0,$$

re $M = \sup\left\{\frac{1}{k^2}\|Ty_n - Tx_{n+1}\|^2, n \ge 0\right\}.$

Proof. Obviously, if $x^* \in X$ is a solution of the equation Sx = f, then x^* is a fixed point of T. Also it is easy to prove that T is continuous and strongly pseudocontractive with the strongly pseudocontractivity constant (1 - k). Thus, Theorem 2 follows from Theorem 1.

Remark 3. Theorem 2 improves and extends Theorem 2 of Ciric [3] in the following ways:

- (i) It abolishes the condition that the range of (I S) is bounded.
- (ii) General convergence rate estimate is given in Theorem 2.

References

whe

- S. S. CHANG, Y. J. CHO, B. S. LEE, J. S. JUNG, S. M. KANG, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl. 224(1998), 149–165.
- [2] LJ. B. CIRIĆ, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi-contractive mappings, Indian J. Pure Appl. Math. **30**(1999), 425–433.
- [3] LJ. B. ČIRIĆ, Ishikawa iterative process for strongly pseudocontractive operators in arbitrary Banach spaces, Math. Commun. 8(2003), 43–48.
- [4] K. DEIMLING, Zeroes of accretive operators, Manuscripta Math. 13(1974), 365–374.
- [5] GUFENG, Iteration processes for approximating fixed points of operators of monotone type, Proc. Amer. Math. Soc. **129**(2001), 2293–2300.
- [6] S. ISHIKAWA, Fixed points by a new iteration method, Proc. Amer. Soc. 44(1974), 147–150.
- [7] W. R. MANN, Mean value in iteration, Proc. Amer. Math. Soc. 4(1953), 506-510.

S. Zhang

- [8] C. MORALES, J. S. JUNG, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128(2000), 3411–3419.
- [9] M. O. OSILIKE, A note on the stability of iteration procedures for strongly pseudocontractions and strongly accretive type equations, J. Math . Anal. Appl. 250(2000), 726-730.
- [10] S. M. SOLTUZ, Some sequences supplied by inequalities and their applications, Rev. Anal. Numér. Théor. Approx. 29(2000), 207–212.
- [11] S. M. SOLTUZ, Three proofs for the convergence of a sequence, Octogon Math. Mag. 9(2001), 503–505.
- [12] S. M. SOLTUZ, A correction for a result on convergence of Ishikawa iteration for strongly pseudocontractive maps, Math. Commun. 7(2002), 61–64.
- [13] Y. G. XU, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1998), 91–101.
- [14] S. Y. ZHANG, Strongly stability of iterative sequences with mixed errors for φ-pseudocontractive mappings, Math. Practice Theory 3(2005)185–188.
- [15] H. Y. ZHOU, Y. JIA, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125(1997), 1705–1709.
- [16] H. Y. ZHOU, Stable iteration procedures for strongly pseudocontractions and nonlinear equations involving accretive operators without Lipschitz assumption, J. Math. Anal. Appl. 230(1999), 1–30.