A note on generalized absolute Cesàro summability

HÜSEYIN BOR ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Erciyes University, Kayseri-38 039, Turkey

Received December 13, 2008; accepted February 17, 2010

Abstract

In this paper, a known theorem dealing with $|C, 1|_{k}$ summability methods has been generalized under weaker conditions for $|C, \alpha, \beta ; \delta|_{k}$ summability methods. Some new results have also been obtained. AMS subject classifications: 40D15, 40F05, 40G99

Key words: Cesàro summability, almost increasing sequences, summability factors

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence c_{n} and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=n e^{(-1)^{n}}$. A sequence $\left(d_{n}\right)$ of positive numbers is said to be δ-quasi monotone, if $d_{n}>0$ ultimately and $\Delta d_{n} \geq-\delta_{n}$, where (δ_{n}) is a sequence of positive numbers (see [2]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by $u_{n}^{\alpha, \beta}$ and $t_{n}^{\alpha, \beta}$ the n-th Cesàro means of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e., (see [6])

$$
\begin{align*}
u_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} s_{v} \tag{1}\\
t_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \alpha+\beta>-1, A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \text { for } n>0 \tag{3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$ and $\alpha+\beta>-1$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

*Corresponding author. Email address: bor@erciyes.edu.tr (H. Bor)
http://www.mathos.hr/mc
© 2010 Department of Mathematics, University of Osijek

Since $t_{n}^{\alpha, \beta}=n\left(u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right)($ see [7]), condition (4) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

The series $\sum a_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k}, k \geq 1, \alpha+\beta>-1$ and $\delta \geq 0$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right|^{k}=\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

If we take $\delta=0$, then $|C, \alpha, \beta ; \delta|_{k}$ summability reduces to $|C, \alpha, \beta|_{k}$ summability. Also, if we take $\beta=0$, then we get $|C, \alpha ; \delta|_{k}$ (see [9]) summability. Furthermore, if we take $\beta=0$ and $\delta=0$, then $|C, \alpha, \beta ; \delta|_{k}$ summability reduces to $|C, \alpha|_{k}$ (see [8]) summability. It should be noted that obviously $(C, \alpha, 0)$ mean is the same as (C, α) mean.

Mazhar [10] has obtained the following theorem for $|C, 1|_{k}$ summability factors of infinite series.
Theorem A. Let $\left(X_{n}\right)$ be a positive non-decreasing increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq A_{n}$ for all n. If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{7}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

2. The main result

The aim of this paper is to generalize Theorem A under weaker conditions for $|C, \alpha, \beta ; \delta|_{k}$ summability, by taking an almost increasing sequence instead of a positive non-decrasing sequence. We shall prove the following theorem.
Theorem 1. Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the sequence $\left(\theta_{n}^{\alpha, \beta}\right)$ is defined by

$$
\begin{align*}
& \theta_{n}^{\alpha, \beta}=\left|t_{n}^{\alpha, \beta}\right|, \quad \alpha=1, \beta>-1 \tag{8}\\
& \theta_{n}^{\alpha, \beta}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, \quad 0<\alpha<1, \beta>-1 \tag{9}
\end{align*}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\delta k-1}\left(\theta_{n}^{\alpha, \beta}\right)^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k}$ for $0<\alpha \leq 1, \beta>-1, k \geq 1$, $\delta \geq 0$ and $\alpha+\beta-\delta>0$.

It should be noted that if we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, $\alpha=1, \delta=0$ and $\beta=0$, then we get Theorem A. In this case condition (10) reduces to condition (7). We need the following lemmas for the proof of our theorem.
Lemma 1 (see [3]). Let $\left(X_{n}\right)$ be an almost increasing sequence such that $n\left|\Delta X_{n}\right|$ $=O\left(X_{n}\right)$. If $\left(A_{n}\right)$ is a δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty$ and $\sum A_{n} X_{n}$ is convergent, then

$$
\begin{align*}
& n A_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{11}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty \tag{12}
\end{align*}
$$

Lemma 2 (see [4]). If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{13}
\end{equation*}
$$

3. Proof of Theorem 1

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the n-th (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by means of (2) we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

First applying Abel's transformation and then using Lemma 2, we have that

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}, \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha, \beta}\right|^{k}+\left|T_{n, 2}^{\alpha, \beta}\right|^{k}\right)
$$

in order to complete the proof of Theorem 1, by using (6) it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \text { for } r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} \leq & \sum_{n=2}^{m+1} n^{\delta k-1}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k} A_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \times\left\{\sum_{v=1}^{n-1} A_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} A_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} A_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta-\delta) k}} \\
= & O(1) \sum_{v=1}^{m} A_{v} v^{\delta k}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
= & O(1) \sum_{v=1}^{m} v A_{v} v^{\delta k-1}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v A_{v}\right) \sum_{p=1}^{v} p^{\delta k-1}\left(\theta_{p}^{\alpha, \beta}\right)^{k} \\
& +O(1) m A_{v} \sum_{v=1}^{m} v^{\delta k-1}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v A_{v}\right)\right| X_{v}+O(1) m A_{m} X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} A_{v} X_{v}+O(1) m A_{m} X_{m} \\
= & O(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of hypotheses of Theorem 1 and Lemma 1.
Similarly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|T_{n, 2}^{\alpha, \beta}\right|^{k} & =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{\delta k-1}\left(\theta_{n}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k-1}\left(\theta_{n}^{\alpha, \beta}\right)^{k} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} n^{\delta k-1}\left(\theta_{n}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{v=1}^{\infty} A_{v} X_{v}<\infty
\end{aligned}
$$

by virtue of hypotheses of Theorem 1 and Lemma 1. Therefore, by (6) we get that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \text { for } r=1,2 \tag{14}
\end{equation*}
$$

This completes the proof of Theorem 1.
If we take $X_{n}=\operatorname{logn}, \beta=0, \delta=0$ and $\alpha=1$, then we get a result of Mazhar [10] dealing with $|C, 1|_{k}$ summability factors. Also, if we take $\beta=0, \delta=0$, then we have a new result for $|C, \alpha|_{k}$ summability factors. Finally, if we take $\delta=0$, then we get another new result for $|C, \alpha, \beta|_{k}$ summability factors.

References

[1] S. Aljančić, D. Arandelović, O-regularly varying functions, Publ. Inst. Math. 22(1977), 5-22.
[2] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc. 14A(1965), 38-46.
[3] H. Bor, An application of almost increasing and δ-quasi-monotone sequences, J. Inequal. Pure Appl. Math. 3(2002), Art. 16, (electronic).
[4] H. Bor, On a new application of quasi power increasing sequences, Proc. Estonian Acad. Sci. Phys. Math. 57(2008), 205-209.
[5] H. Bor, On the generalized absolute Cesàro summability, Pac. J. Appl. Math. 2(2009), 35-40.
[6] D. Borwein, Theorems on some methods of summability, Quart. J. Math. 9(1958), 310-316.
[7] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67(1970), 321-326.
[8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7(1957), 113-141.
[9] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc. 7(1958), 357-387.
[10] S. M. Mazhar, On generalized quasi-convex sequence and its applications, Indian J. Pure Appl. Math. 8(1977), 784-790.

