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A note on generalized absolute Cesaro summability
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Abstract. In this paper, a known theorem dealing with | C,1 |, summability methods has
been generalized under weaker conditions for | C,«, 8 ;6 |, summability methods. Some
new results have also been obtained.
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1. Introduction

A positive sequence (b,) is said to be almost increasing if there exist a positive
increasing sequence ¢, and two positive constants A and B such that Ac, < b, < Be,
(see [1]). Obviously every increasing sequence is almost increasing. However, the
converse need not be true as can be seen by taking the example, say b, = ne(~D".
A sequence (d,) of positive numbers is said to be §-quasi monotone, if d, > 0
ultimately and Ad,, > —d,,, where (J,) is a sequence of positive numbers (see [2]).
Let > a, be a given infinite series with partial sums (s, ). We denote by u%* and
%P the n-th Cesaro means of order (o, 3), with a + 3 > —1, of the sequence (s,,)
and (nay), respectively, i.e., (see [6])

@ 1 . a—
up? = WZATL—};A’ES«) (1)
n v=0
1 n
a,f _ a—1 48
tn - W ZAH—UA’UUO’U) (2)
n v=1

where
ASTE = OnotP), a+ B> -1, AP =1 and A*T°P =0forn>0. (3)

The series ) a,, is said to be summable | C,, 3 |, k > 1 and o+ 5 > —1, if (see

[7)
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Since t2F = n(u®? — u®P)) (see [7]), condition (4) can also be written as
1
Y It < oo ()
n=1 n

The series ) a,, is summable | C,a, 30 |, k> 1, a4+ 3 > —1 and 6§ > 0, if (see

[5])
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n=1

n=1

If we take 0 = 0, then | C,, 3 ;¢ |, summability reduces to | C, a, 3 |,, summability.
Also, if we take 3 = 0, then we get | C, ;0 |, (see [9]) summability. Furthermore,
if we take 3 =0 and 6 = 0, then | C,a, 3 ;¢ |, summability reduces to | C, a |, (see
[8]) summability. It should be noted that obviously (C,«,0) mean is the same as
(C, &) mean.

Mazhar [10] has obtained the following theorem for | C, 1 |, summability factors
of infinite series.
Theorem A. Let (X,) be a positive non-decreasing increasing sequence such that
| AX,, |= O(X,/n) and A, — 0 as n — oco. Suppose that there exists a sequence
of numbers (A,) such that it is §-quasi-monotone with > nd, X, < 0o, > Ap X, is
convergent and | A, |< Ay, for all n. If
Zg|tn\:O(Xm) as m — oo, (7)

n=1

then the series Y ap\y, is summable | C,1 |, k > 1.

2. The main result

The aim of this paper is to generalize Theorem A under weaker conditions for
| C,a, 3 ;6 |, summability, by taking an almost increasing sequence instead of a
positive non-decrasing sequence. We shall prove the following theorem.

Theorem 1. Let (X,,) be an almost increasing sequence such that | AX,, |= O(X,/n)
and A\, — 0 as n — oo. Suppose that there exists a sequence of numbers (Ay)
such that it is §-quasi-monotone with > nd, X, < oo, Y. A, X, is convergent and
| A\, |< AL for all n. If the sequence (0%°) is defined by

0P = t9F | a=1,8> -1 (8)
a,B a,B _
oy 1I§nq?§n|t” , 0<a<l,pg>-1 (9)

satisfies the condition
Z no*=L(g2Pk = O(X,,) as m — oo, (10)
n=1

then the series Y ap\yp is summable | C,a, 3 ;0 |, for 0 < a <1, 8> -1,k >1,
6>0anda+3—6>0.
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It should be noted that if we take (X,,) as a positive non-decreasing sequence,
a=1,06=0and 8 =0, then we get Theorem A. In this case condition (10) reduces
to condition (7). We need the following lemmas for the proof of our theorem.

Lemma 1 (see [3]). Let (X,,) be an almost increasing sequence such that n | AX,, |
= O(X,). If (4,) is a d-quasi-monotone with Y ndé, X, < oo and >, A X, is
convergent, then

nA, X, =0(1) as n— oo, (11)
> nX, | AA, |< oo (12)
n=1

Lemma 2 (see [4]). If0<a <1, 8> -1 and1<v <mn, then
| AN Afa, [< max | DAY Aay | (13)
p=0 - - p=0

3. Proof of Theorem 1

Let (T?) be the n-th (C, a, 3) mean of the sequence (na,\,). Then, by means of
(2) we have

1 n
TP = e ZA%:iAfvav)\v.

v=1

First applying Abel’s transformation and then using Lemma 2, we have that
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| Tl + T [F< 22\ T [P+ | T 1),

in order to complete the proof of Theorem 1, by using (6) it is sufficient to show
that

o
nok1 | T3P |F< oo, for r=1,2.

n=1
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Whenever k& > 1, we can apply Holder’s inequality with indices k and %', where
% + % =1, we get that
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v=1 v=1

= 0(1), as m — o0,

in view of hypotheses of Theorem 1 and Lemma 1.
Similarly, we have that

m
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by virtue of hypotheses of Theorem 1 and Lemma 1. Therefore, by (6) we get that

Znék_l \ T,‘;‘f |*< oo, for r=1,2. (14)
n=1

This completes the proof of Theorem 1.

If we take X,, = logn, # =0, § =0 and a = 1, then we get a result of Mazhar

[10] dealing with | C, 1 |, summability factors. Also, if we take § =0, § = 0, then
we have a new result for | C, a |, summability factors. Finally, if we take § = 0, then
we get another new result for | C,a, 3 |, summability factors.
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