
MATHEMATICAL COMMUNICATIONS 261
Math. Commun., Vol. 15, No. 1, pp. 261-272 (2010)

On the stability of solutions of nonlinear differential
equations of fifth order with delay

Cemil Tunç1,∗

1 Department of Mathematics, Faculty of Arts and Sciences, Yüzüncü Yıl University,
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Abstract. Criteria for global asymptotic stability of a null solution of a nonlinear differ-
ential equation of fifth order with delay

x(5)(t) + ψ(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r))x(4)(t)

+f(x′′(t− r), x′′′(t− r)) + α3x
′′(t) + α4x

′(t) + α5x(t) = 0

are obtained by using Lyapunov’s second method. By defining a Lyapunov functional,
sufficient conditions are established, which guarantee the null solution of this equation is
globally asymptotically stable. Our result consists of a new theorem on the subject.
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1. Introduction

This paper is concerned with the problem of the stability of the null solution of the
nonlinear differential equation of fifth order with constant delay

x(5)(t) + ψ(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r))x(4)(t)
+f(x′′(t− r), x′′′(t− r)) + α3x

′′(t) + α4x
′(t) + α5x(t) = 0

(1)

or its equivalent system

x′(t) = y(t)
y′(t) = z(t)
z′(t) = w(t)
w′(t) = u(t)
u′(t) = −ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))u(t) (2)

−f(z(t), w(t))− α3z(t)− α4y(t)− α5x(t)

+

t∫

t−r

fz(z(s), w(s))w(s)ds +

t∫

t−r

fw(z(s), w(s))u(s)ds,
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where ψ and f are continuous functions for the arguments displayed explicitly in
Eq. (1); r is a positive constant, that is, r is fixed constant delay; α3, α4 and
α5 are some positive constants. It is assumed that f(z, 0) = 0 and the derivatives
fz(z, w) ≡ ∂

∂z f(z, w) and fw(z, w) ≡ ∂
∂wf(z, w) exist and are continuous for all z,

w. All solutions considered are also assumed to be real valued.
To the best of our knowledge from literature, in the last three decades, much at-

tention has been paid to investigation of stability of solutions of nonlinear differential
equations of fifth order without delay:

x(5)(t) + A1x
(4)(t) + A2x

′′′(t) + A3x
′′(t) + A4x

′(t) + A5x(t) = 0,

in which x ∈ <, t ∈ [0,∞), A1, A2, A3, A4 and A5 are not necessarily constants.
For a comprehensive treatment of the subject we refer the reader to the papers
of Abou-El Ela and Sadek [1], Burganskaja [5], Chukwu [7], Sinha [17], Tejumola
and Afuwape [18], Tunç [19], Yu [21] and the references thereof for some works
performed on the topic, which include some nonlinear differential equations of fifth
order without delay. Throughout all aforementioned papers, Lyapunov’s second (or
direct) method [14] has been used as a basic tool to prove the problems established in
these papers. Meanwhile, for some recent works, it is worth mentioning that in 2007
Adesina and Ukpera [2] investigated the convergence of solutions for the following
nonlinear differential equation of fifth order without delay

x(5) + ax(4) + bx′′′ + f(x′′) + g(x′) + h(x) = p(t, x, x′, x′′, x′′′, x(4)),

by using Lyapunov’s second method, where a, b are positive constants, the functions
f, g, h and p are real valued and continuous in their respective arguments. The
authors presented some sufficient conditions for all solutions of the above equation
to be convergence. Namely, two solutions convergent to each other if their difference
and those of their derivatives up to order four approach zero as time approaches
infinity. In this work, the authors showed that the nonlinear functions involved in
the above equation are not necessarily differentiable, but satisfy certain increment
ratios that lie in the closed sub-interval of the Routh-Hurwitz interval. Later, in
2008, Adesina and Ukpera [3] discussed boundedness, global exponential stability
and periodicity of solutions of a class of nonlinear differential equations of fifth
order with constant delay. Finally, in 2009, Adesina and Ukpera [4] also established
some sufficient conditions in order for all solutions of a certain nonlinear differential
equation of fifth order without delay to converge to a limiting regime under some
boundedness restrictions and proved that this limiting regime is periodic or almost
periodic. It should be noted that our equation, Eq. (1) and the assumptions that
will be established here are different from those in the papers of Adesian and Ukpera
[2-4].

To the best of our knowledge, so far, nonlinear delay differential Eq. (1) has not
been the subject of investigation for stability of solutions. Our motivation comes
from the papers mentioned above, which were carried out on the nonlinear differential
equations of fifth order without delay and with delay. Throughout this paper, we
also use Lyapunov’s second (or direct) method [14] to investigate the stability of the
null solution of delay differential Eq. (1) by defining a Lyapunov functional.
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2. Preliminaries

In order to reach the main result of this paper, we will give some important basic
information for the general autonomous delay differential system (see also Èl’sgol’ts
[8], Èl’sgol’ts and Norkin [9], Hale [11], Kolmanovskii and Myshkis [12], Krasovskii
[13], Razumikhin ([15, 16]) and Yoshizawa [20]).

We consider a general autonomous delay differential system

x′ = f(xt), xt(θ) = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0, (3)

where f : CH → <n is a continuous mapping, f(0) = 0, and we suppose that f
takes closed bounded sets into bounded sets of <n. Here (C, ‖. ‖) is the Banach
space of continuous function φ : [−r, 0] → <n with supremum norm, r > 0; CH is
the open H-ball in C; CH := {φ ∈ (C [−r, 0] , <n) : ‖φ‖ < H}. Standard existence
theory, see Burton [6], shows that if φ ∈ CH and t ≥ 0, then there is at least one
continuous solution x(t, t0, φ) such that on [t0, t0 + α) satisfying Eq. (3) for t > t0,
xt(t, φ) = φ and α is a positive constant. If there is a closed subset B ⊂ CH such
that the solution remains in B, then α = ∞. Further, the symbol |. | will denote the
norm in <n with |x| = max1≤i≤n |xi|.
Definition 1 (see [6]). Let f(0) = 0. The zero solution of Eq. (3) is:

(i) stable if for each t1 ≥ t0 and ε > 0 there exists δ > 0 such that [ ‖φ‖ ≤ δ, t ≥ t1]
imply that |x(t, t1, φ)| < ε.

(ii) asymptotically stable if it is stable and if for each t1 ≥ t0 there is an η such
that ‖φ‖ ≤ η implies that x(t, t0, φ) → 0 as t →∞.

Definition 2 (see [6]). A continuous positive definite function W : <n → [0, ∞) is
called a wedge.

Definition 3 (see [6]). A continuous function W : [0, ∞) → [0, ∞) with W (0) = 0,
W (s) > 0 if s > 0, and W strictly increasing is a wedge. (We denote wedges by W
or Wi, where i is an integer).

Definition 4 (see [6]). Let D be an open set in <n with 0 ∈ D. A function V :
D → [0,∞) is called

(i) positive definite if V (0) = 0 and if there is a wedge W1 with V (x) ≥ W1(|x|),
(ii) decresent if there is a wedge W2 with V (x) ≤ W2(|x|).

Definition 5 (see [17]). If V is a continuous scalar function in CH , we define the
derivative of V along the solutions of Eq. (3) by the following relation

V̇ (φ) = lim sup
h→0+

V (xh(φ))− V (φ))
h

. (4)

Proposition 1 (see [10]). Suppose f(0) = 0. Let V be a continuous functional
defined on CH = C with V (0) = 0, and let u(s) be a function, non-negative and
continuous for 0 ≤ s < ∞, u(s) →∞ as u →∞ such that for all φ ∈ C
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(i) u(|φ(0)|) ≤ V (φ), V (φ) ≥ 0,

(ii) V̇ (φ) < 0 for φ 6= 0.

Then all solutions of Eq. (3) approach zero as t → ∞ and the origin is globally
asymptotically stable.

Note that CH = C when H = ∞; and that the set R of φ in C for which
V̇(3)(φ) = 0 has the largest invariant set M = {0} by the condition V̇ (φ) < 0 for
φ 6= 0.

3. Main result

Our main result is the following theorem.

Theorem 1. In addition to basic assumptions imposed on the functions ψ and f
appeared in Eq. (1), we assume that there are positive constants α1, α2, α3, α4, α5,
ε, ε0, δ, λ, ρ, M and L such that the following conditions hold for every x, y, z, w
and u :

(i)

α1 > 0, α1α2 − α3 > 0, (α1α2 − α3)α3 − (α1α4 − α5)α1 > 0,

δ0 := (α3α4 − α2α5)(α1α2 − α3)− (α1α4 − α5)2 > 0, α5 > 0,

∆1 :=
(α3α4 − α2α5)(α1α2 − α3)

α1α4 − α5
− (α1α4 − α5) > 2εα2,

∆2 :=
α3α4 − α2α5

α1α4 − α5
− α1α4 − α5

α1α2 − α3
− ε

α1
> 0.

(ii)

2ε0 ≤ ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))− α1

≤ min
{

εα2(α1α4 − α5)2

4α2
4(α1α2 − α3)2

,
ε

4α2
1

,
εα4

4δ2

}
.

(iii)
f(z, w)

w
≥ α2, w 6= 0

and
(

f(z, w)
w

− α2

)2

≤ min
[
ε2α2(α1α4 − α5)2

4α2
4(α1α2 − α3)2

,
ε2α2

4δ2

]
,

|fz(z, w)| ≤ M and |fw(z, w)| ≤ L.

Then, the trivial null solution of Eq. (1) is globally asymptotically stable provided
that

r < min
{

εα4

δ(L + M)
,

εα2(α1α4 − α5)
α4(L + M)(α1α2 − α3)

,
ε

2α1(L + M) + 4ρ
,

ε0

L + M + 2λ

}
.
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Proof. We define the Lyapunov functional V = V (xt, yt, zt, wt, ut) as:

2V = u2+2α1uw+
2α4(α1α2 − α3)

α1α4 − α5
uz+2δuy+2

∫ w

0

f(z, ξ)dξ

+
[
α2

1 −
α4(α1α2 − α3)

α1α4 − α5

]
w2 + 2

[
α3 +

α1α4(α1α2 − α3)
α1α4 − α5

− δ

]
wz

+2α1δwy+2α4wy+2α5wx+α1α3z
2 +

[
α2α4(α1α2 − α3)

α1α4 − α5
− α4 − α1δ

]
z2

+2δα2yz+2α1α4zy−2α5zy+2α1α5zx +
α2

4(α1α2 − α3)
α1α4 − α5

y2 (5)

+(δα3 − α1α5)y2+
2α4α5(α1α2 − α3)

α1α4 − α5
yx+δα5x

2

+2ρ

0∫

−r

t∫

t+s

w2(θ)dθds+2λ

0∫

−r

t∫

t+s

u2(θ)dθds,

where s is a real variable such that the integrals

0∫

−r

t∫

t+s

w2(θ)dθds

and
0∫

−r

t∫

t+s

u2(θ)dθds

are non-negative, ρ and λ are some positive constants which will be determined later
in the proof and δ is a positive constant defined by

δ :=
α5(α1α2 − α3)

α1α4 − α5
+ ε. (6)

It is clear that V (0, 0, 0, 0, 0) = 0. Since f(z, 0) = 0 and f(z,w)
w ≥ α2, (w 6= 0), we

have 2
∫ w

0
f(z, ξ)dξ = 2

∫ w

0
f(z,ξ)

ξ ξdξ ≥ 2
∫ w

0
α2ξdξ = α2w

2. Hence, the Lyapunov
functional V = V (xt, yt, zt, wt, ut) defined by (5) can be recast as:

2V ≥
[
u + α1w +

α4(α1α2 − α3)
α1α4 − α5

z + δy

]2

+
α4δ0

(α1α4 − α5)2

(
z +

α5

α4
y

)2

+
(α1α4 − α5)
(α1α2 − α3)

[
α5(α1α2 − α3)

α1α4 − α5
x +

α4(α1α2 − α3)
(α1α4 − α5)

y + α1z + w

]2

+∆2 (w + α1z)2 +
ε

α1
w2+2ε

(
α3α4 − α2α5

α1α4 − α5

)
yz

+2ρ

0∫

−r

t∫

t+s

w2(θ)dθds+2λ

0∫

−r

t∫

t+s

u2(θ)dθds+
2∑

i=1

Vi,

(7)
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where

V1 := δα5x
2 − α2

5(α1α2 − α3)
(α1α4 − α5)

x2

and

V2 :=
[
δα3 − α1α5 − α2

5δ0

α4(α1α4 − α5)2
− δ2

]
y2.

By noting (6), it is clear that

V1 = εα5x
2

and

V2 ≥ α5δ0

4α4(α1α4 − α5)
y2

provided that

α5δ0

4α4(α1α4 − α5)
≥ ε

[
ε +

2α5(α1α2 − α3)
α1α4 − α5

− α3

]
,

which we now assume.
Summing up the equality and inequality obtained for V1 and V2 into (7), we have

2V ≥
[
u + α1w +

α4(α1α2 − α3)
α1α4 − α5

z + δy

]2

+
α4δ0

(α1α4 − α5)2

(
z +

α5

α4
y

)2

+∆2 (w + α1z)2 + εα5x
2 +

α5δ0

4α4(α1α4 − α5)
y2 +

ε

α1
w2

+2ε

(
α3α4 − α2α5

α1α4 − α5

)
yz+2ρ

0∫

−r

t∫

t+s

w2(θ)dθds+2λ

0∫

−r

t∫

t+s

u2(θ)dθds.

(8)

Clearly, it follows from the first six terms included in (8) that there exist sufficiently
small positive constants Di, (i = 1, 2, 3, 4, 5), such that

2V ≥ D1x
2 + D2y

2 + D3z
2 + D4w

2 + D5u
2 + 2ε

(
α3α4 − α2α5

α1α4 − α5

)
yz

+2ρ

0∫

−r

t∫

t+s

w2(θ)dθds+2λ

0∫

−r

t∫

t+s

u2(θ)dθds.
(9)

Now, we consider the terms

V3 =:
D2

2
y2 + 2ε

(
α3α4 − α2α5

α1α4 − α5

)
yz+

D3

2
z2,

which are contained in (9).
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Clearly, V3 represents a quadratic expression. So, it can be easily seen that V3 is
positive semi-definite if the symmetric matrix




D2
2 ε

(
α3α4−α2α5
α1α4−α5

)

ε
(

α3α4−α2α5
α1α4−α5

)
D3
2




is positive semi-definite. That is, V3 ≥ 0, provided that

ε2 ≤
(

α1α4 − α5

α3α4 − α2α5

)2
D2D3

4
= D6, D6 > 0.

By using this fact, we get from (9) that

2V ≥ D1x
2 + D2

2 y2 + D3
2 z2 + D4w

2 + D5u
2

+2ρ
0∫
−r

t∫
t+s

w2(θ)dθds + 2λ
0∫
−r

t∫
t+s

u2(θ)dθds.

As a result, since the integrals

2ρ

0∫

−r

t∫

t+s

w2(θ)dθds

and

λ

0∫

−r

t∫

t+s

u2(θ)dθds

are non-negative, it is obvious that there exists a positive constant D7 which satisfies
the inequality

D7(x2(t) + y2(t) + z2(t) + w2(t) + u2(t)) ≤ V (xt, yt, zt, wt, ut), (10)

where D7 = 1
2 min

{
D1,

D2
2 , D3

2 , D4, D5

}
.

Now, by a direct calculation from (5) and (2) one finds

d

dt
V (xt, yt, zt, wt, ut) = − [ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))− α1] u2

−
[
α1

f(z, w)
w

−
{

α3 +
α1α4(α1α2 − α3)

α1α4 − α5
− δ

}]
w2

−
[
α3α4(α1α2 − α3)

α1α4 − α5
− {δα2 + (α1α4 − α5)}

]
z2

−
[
δα4 − α4α5(α1α2 − α3)

α1α4 − α5

]
y2

−α1[ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))

−α1] wu
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−α4(α1α2 − α3)
α1α4 − α5

[ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))− α1] zu

−δ [ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))− α1] yu

−α4(α1α2 − α3)
α1α4 − α5

[
f(z, w)

w
− α2

]
wz − δ

[
f(z, w)

w
− α2

]
wy

+u

t∫

t−r

fz(z(s), w(s))w(s)ds + α1w

t∫

t−r

fz(z(s), w(s))w(s)ds (11)

+δy

t∫

t−r

fz(z(s), w(s))w(s)ds +
α4(α1α2 − α3)

α1α4 − α5
z

t∫

t−r

fz(z(s), w(s))w(s)ds

+u

t∫

t−r

fw(z(s), w(s))u(s)ds + α1w

t∫

t−r

fw(z(s), w(s))u(s)ds

+δy

t∫

t−r

fw(z(s), w(s))u(s)ds +
α4(α1α2 − α3)

α1α4 − α5
z

t∫

t−r

fw(z(s), w(s))u(s)ds

+ρw2r − ρ

t∫

t−r

w2(s)ds + λu2r − λ

t∫

t−r

u2(s)ds.

Making use of the assumptions (i)-(iii) and (6), we get

[ψ(x(t− r), y(t− r), z(t− r), w(t− r), u(t− r))− α1] ≥ 2ε0,
[
α1

f(z, w)
w

−
{

α3 +
α1α4(α1α2 − α3)

α1α4 − α5
− δ

}]
≥ ε,

[
α3α4(α1α2 − α3)

α1α4 − α5
− {δα2 + (α1α4 − α5)}

]
> εα2

and
[
δα4 − α4α5(α1α2 − α3)

α1α4 − α5

]
= εα4.

By using the assumptions |fz(z, w)| ≤ M and |fw(z, w)| ≤ L of the theorem and the
inequality 2 |ab| ≤ a2 + b2, we obtain the following inequalities:

u

t∫

t−r

fz(z(s), w(s))w(s)ds ≤ M

2
ru2(t) +

M

2

t∫

t−r

w2(s)ds,
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α1w

t∫

t−r

fz(z(s), w(s))w(s)ds ≤ α1M

2
rw2(t) +

α1M

2

t∫

t−r

w2(s)ds,

δy

t∫

t−r

fz(z(s), w(s))w(s)ds ≤ δM

2
ry2(t) +

δM

2

t∫

t−r

w2(s)ds,

α4(α1α2 − α3)
α1α4 − α5

z

t∫

t−r

fz(z(s), w(s))w(s)ds ≤ α4M(α1α2 − α3)
2(α1α4 − α5)

rz2(t)

+
α4(α1α2 − α3)M

2(α1α4 − α5)

t∫

t−r

w2(s)ds,

u

t∫

t−r

fw(z(s), w(s))u(s)ds ≤ L

2
ru2(t) +

L

2

t∫

t−r

u2(s)ds,

α1w

t∫

t−r

fw(z(s), w(s))u(s)ds ≤ α1L

2
rw2(t) +

α1L

2

t∫

t−r

u2(s)ds,

δy

t∫

t−r

fw(z(s), w(s))u(s)ds ≤ δL

2
ry2(t) +

δL

2

t∫

t−r

u2(s)ds

and

α4(α1α2 − α3)
α1α4 − α5

z

t∫

t−r

fw(z(s), w(s))u(s)ds ≤ α4L(α1α2 − α3)
2(α1α4 − α5)

rz2(t)

+
α4(α1α2 − α3)L
2(α1α4 − α5)

t∫

t−r

u2(s)ds.

Replacing the last equality and the preceding inequalities into (11), we obtain

dV
dt ≤ −

[
εα4

2
−

(
δ(L + M)

2

)
r

]
y2 −

{
εα2

2
−

(
α4(L + M)(α1α2 − α3)

2(α1α4 − α5)

)
r

}
z2

−
[
ε

4
−

(
α1(L + M)

2
+ ρ

)
r

]
w2 −

[
ε0

2
−

(
L + M

2
+ λ

)
r

]
u2

−
[
ρ−

(
M
2 + α1M

2 + δM
2 +

α4(α1α2 − α3)M
2(α1α4 − α5)

)] t∫

t−r

w2(s)ds

−
[
λ−

(
L

2
+

α1L

2
+

δL

2
+

α4(α1α2 − α3)L
2(α1α4 − α5)

)] t∫

t−r

u2(s)ds−
8∑

k=4

Vk,

(12)
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where

V4 =
1
4

[ψ − α1] u2 +
α4(α1α2 − α3)

α1α4 − α5
[ψ − α1] zu +

εα2

4
z2,

V5 =
1
4

[ψ − α1] u2 + α1 [ψ − α1] wu +
ε

4
w2,

V6 =
1
4

[ψ − α1] u2 + δ [ψ − α1] yu +
εα4

4
y2,

V7 =
ε

4
w2 +

α4(α1α2 − α3)
α1α4 − α5

[
f

w
− α2

]
wz +

εα2

4
z2,

V8 =
ε

4
w2 + δ

[
f

w
− α2

]
wy +

εα4

4
y2.

It is clear that the expressions given by V4, V5, V6, V7 and V8 represent certain
specific quadratic forms, respectively. Making use of the basic information on the
positive semi-definite of a quadratic form, one can easily conclude that V4 ≥ 0,
V5 ≥ 0, V6 ≥ 0, V7 ≥ 0 and V8 ≥ 0 provided that

(ψ − α1) ≤ εα2(α1α4 − α5)2

4α2
4(α1α2 − α3)2

, (ψ − α1) ≤ ε

4α2
1

, (ψ − α1) ≤ εα4

4δ2
,

(
f

w
− α2

)2

≤ ε2α2(α1α4 − α5)2

4α2
4(α1α2 − α3)2

and
(

f

w
− α2

)2

≤ ε2α4

4δ2
,

respectively.
Thus, in view of the above discussion and inequality (12), it follows that

dV

dt
≤ −

[
εα4

2
−

(
δ(L + M)

2

)
r

]
y2 −

{
εα2

2
−

(
α4(L + M)(α1α2 − α3)

2(α1α4 − α5)

)
r

}
z2

−
[
ε

4
−

(
α1(L + M)

2
+ ρ

)
r

]
w2 −

[
ε0

2
−

(
L + M

2
+ λ

)
r

]
u2

−
[
ρ−

(
M

2
+

α1M

2
+

δM

2
+

α4(α1α2 − α3)M
2(α1α4 − α5)

)] t∫

t−r

w2(s)ds

−
[
λ−

(
L

2
+

α1L

2
+

δL

2
+

α4(α1α2 − α3)L
2(α1α4 − α5)

)] t∫

t−r

u2(s)ds.

(13)

If we now choose the constants ρ and λ as

ρ =
(

M

2
+

α1M

2
+

δM

2
+

α4(α1α2 − α3)M
2(α1α4 − α5)

)
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and

λ =
(

L

2
+

α1L

2
+

δL

2
+

α4(α1α2 − α3)L
2(α1α4 − α5)

)
,

then the inequality in (13) implies that

dV

dt
≤ −

[
εα4

2
−

(
δ(L + M)

2

)
r

]
y2 −

{
εα2
2 −

(
α4(L + M)(α1α2 − α3)

2(α1α4 − α5)

)
r

}
z2

−
[
ε

4
−

(
α1(L + M)

2
+ ρ

)
r

]
w2 −

[
ε0

2
−

(
L + M

2
+ λ

)
r

]
u2.

(14)

Hence, one can easily get from (14) that

d

dt
V (xt, yt, zt, wt, ut) ≤ −D8y

2 −D9z
2 −D10w

2 −D11u
2 ≤ 0

for some positive constants Di, (i = 8, 9, 10, 11, ) provided that

r < min
{

εα4

δ(L + M)
,

εα2(α1α4 − α5)
α4(L + M)(α1α2 − α3)

,
ε

2α1(L + M) + 4ρ
,

ε0

L + M + 2λ

}
.

Finally, it follows that d
dtV (xt, yt, zt, wt, ut) ≡ 0 if and only if yt = zt = wt = ut

=0, d
dtV (φ) < 0 for φ 6= 0 and V (φ) ≥ u(|φ(0)|) ≥ 0. Thus all the conditions of

the above Proposition are satisfied. This shows that the null solution of Eq. (1) is
globally asymptotically stable.
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