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Croatia

Received October 22, 2009; accepted March 18, 2010

Abstract. Let G be a simple noncompact Lie group. Let K be a maximal compact
subgroup of G, and let g = k ⊕ p be the corresponding Cartan decomposition of the
complexified Lie algebra g of G. We give a criterion for a (g, K)-module M to be unitary
in terms of the action of the Dirac operator D on M ⊗S, where S is a spin module for the
Clifford algebra C(p). More precisely, we show that an arbitrary Hermitian inner product
on M will be invariant if and only if D is symmetric with respect to the corresponding
inner product on M ⊗ S.
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1. Introduction

The problem of classifying the unitary dual of a real reductive Lie group G is an
important unsolved problem of representation theory. Its algebraic version asks to
classify all irreducible (g,K)-modules M which admit an invariant Hermitian inner
product.

There are two, in some sense opposite, possible approaches to the algebraic ver-
sion of the problem. They both rely on decomposing the module M into its K-
isotypic components:

M = ⊕δ∈K̂M(δ).

Here M(δ) = Mδ ⊗ Vδ, where Vδ is an irreducible K-module of type δ, and Mδ

= HomK(Vδ,M) is the multiplicity space, whose dimension measures the number
of occurrences of Vδ in M .

The first approach to searching for an invariant inner product on M is to take
any inner product and integrate it over K to make it K-invariant. On each Vδ

the inner product is determined up to a constant, and we can modify it freely on
each Mδ, trying to make it invariant. This approach works for some examples like
G = SL(2,R), but in general the prospects are not good.
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The other approach, which has been more successful, is to first look for invariant,
but possibly indefinite nondegenerate Hermitian forms on M . There is at most one
such form up to scalar, and it is known exactly for what M such a form exists. It
remains to check when the form is positive definite. One can assume it is positive
definite on each Vδ, and try to calculate the signature on each Mδ. There are many
general results and many classes of examples of M for which the problem has been
settled, but the solution to the classification problem is still out of reach.

In this note we will try to revisit the first approach, but in a slightly modified
setting in which M is first tensored by the spin module S for the Clifford algebra
C(p). Here p is the (−1)-eigenspace of the Cartan involution on the complexified
Lie algebra g of G (see the next section). There is a standard inner product on S
and we can combine it with any inner product on M to get an inner product on
M ⊗ S. The advantage of M ⊗ S over M is the fact that it admits an action of the
Dirac operator D ∈ U(g)⊗C(p). We show that under appropriate assumptions, the
g-action can be reconstructed from the action of C(p), which is well understood and
independent of M , and the action of D. It follows that a given inner product on M
is g-invariant (so M is unitary) if and only if D is symmetric with respect to the
corresponding inner product on M ⊗ S.

2. Some structural results

Let us first quickly review the setting. More details can be found for example in [3].
Other good sources for Clifford algebras and spinors are for example [1, 4] and [9].

Let G be a connected real reductive Lie group with a Cartan involution Θ such
that the group K = GΘ of fixed points of Θ is a maximal compact subgroup of G. We
denote the Lie algebras of G and K by g0 respectively k0, and their complexifications
by g respectively k. The Cartan decompositions of g0 and g with respect to θ = dΘ
are

g0 = k0 ⊕ p0, g = k⊕ p.

These decompositions are orthogonal with respect to any non-degenerate invariant
symmetric bilinear form B on g0 and g. We fix such a form in the following.

Let U(g) be the universal enveloping algebra of g and let C(p) be the Clifford
algebra of p with respect to B. Recall that U(g) is an associative algebra with a
unit generated by g, with relations

XY − Y X = [X, Y ], X, Y ∈ g,

while C(p) is an associative algebra with a unit generated by p, with relations

XY + Y X = −2B(X, Y ), X, Y ∈ p.

Let b1, . . . , bp be any basis of p and let d1, . . . , dp be the dual basis with respect to
B. In other words,

B(bi, dj) = δij , i, j = 1, . . . , p.

The Dirac operator is

D =
p∑

i=1

bi ⊗ di ∈ U(g)⊗ C(p).
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It is an easy exercise to see that D is independent of the basis bi, and K-invariant
for the adjoint K-action on U(g) ⊗ C(p) in both factors. This Dirac operator was
first introduced in [6]; see also [8, 2, 5].

It is clear that U(g)⊗C(p) is generated by g⊗1 and 1⊗p. The following lemma
was implicit in [2]; it shows that U(g) ⊗ C(p) is in fact generated by D, k ⊗ 1 and
1⊗ p.

Lemma 1. For any Z ∈ p, D(1⊗ Z) + (1⊗ Z)D = −2Z ⊗ 1.

Proof. We can assume Z = bj is one of the basic elements of p. Then

D(1⊗ Z) + (1⊗ Z)D =
p∑

i=1

bi ⊗ dibj +
p∑

i=1

bi ⊗ bjdi

=
p∑

i=1

bi ⊗ (dibj + bjdi) =
p∑

i=1

bi ⊗ (−2δij)

= −2bj ⊗ 1 = −2Z ⊗ 1.

To eliminate also k ⊗ 1 from the list of generators of U(g) ⊗ C(p), we use the
following well known lemma.

Lemma 2. Assume that G is simple noncompact. Then [p, p] = k.

Proof. It is easy to check that [p, p] ⊕ p is an ideal of g = k ⊕ p. Since G is
noncompact, this ideal is nonzero, and since g is simple, it must be all of g.

Note that the lemma is also true if G is semisimple with no compact factors. As
noted earlier, we can now conclude the following.

Corollary 1. If G is simple noncompact, then U(g)⊗ C(p) is generated by D and
1⊗ p.

3. Unitarizability of Harish-Chandra modules

Let M be a (g,K)-module, and let S be a spin module for C(p). Then M ⊗ S is a
U(g)⊗C(p) module in the obvious way. M ⊗S is also a module for the spin double
cover K̃ of K, obtained by pulling back the double cover Spin(p0) → SO(p0) by the
action map K → SO(p0). The Lie algebra of K̃ embeds into U(g)⊗C(p) diagonally,
by

∆ : k0 → U(g)⊗ C(p), ∆(X) = X ⊗ 1 + 1⊗ α(X),

where
α : k0 → so(p0) ∼=

∧2
p0 → C(p)

is the action map followed by the usual skew-symmetrization map given by X∧Y 7→
1
2 (XY − Y X).
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Recall that M is called unitarizable (or unitary) if it admits a positive definite
Hermitian form (inner product) 〈 , 〉 = 〈 , 〉M such that all elements of g0 are skew
symmetric with respect to this form, i.e.,

〈Xm1,m2〉 = −〈m1, Xm2〉, X ∈ g0, m1, m2 ∈ M.

For X ∈ g, this means that the adjoint of X with respect to 〈 , 〉 is −X̄, where the
bar denotes the complex conjugation of g with respect to g0.§

There is a well known Hermitian inner product 〈 , 〉S on S so that the elements
of p0 ⊂ C(p) are skew symmetric with respect to 〈 , 〉S . See [9], or [3], 2.3.9. We
equip M ⊗ S with the tensor product of these two forms, denoted by 〈 , 〉M⊗S . It
is now clear that D is symmetric with respect to 〈 , 〉M⊗S . In particular, D2 ≥ 0.
This is the famous Parthasarathy’s Dirac inequality, which is a very useful necessary
condition for unitarity of M . It can be written out more explicitly using the following
important formula for D2, also due to Parthasarathy [6]:

D2 = −(Casg⊗1 + ‖ρg‖2) + (∆(Cask) + ‖ρk‖2). (1)

Here Casg and Cask denote the Casimir elements of U(g) and U(k), respectively. See
[9] or [3].

Theorem 1. Assume that G is simple and noncompact. Let 〈 , 〉M be any positive
definite Hermitian form on a (g,K)-module M . Tensor this form with 〈 , 〉S described
above to get a positive definite form 〈 , 〉M⊗S on M ⊗ S. Then M is unitary with
respect to 〈 , 〉M if and only if D is symmetric with respect to 〈 , 〉M⊗S.

Proof. We already saw that if M is unitary, then D is symmetric. Conversely,
assume that D is symmetric. Since any element of 1 ⊗ p0 ⊂ U(g) ⊗ C(p) is skew
symmetric on M ⊗ S, Lemma 1 implies that all elements of p0 ⊗ 1 are also skew
symmetric on M ⊗S. Namely, if we denote by a star the adjoint of an operator with
respect to 〈 , 〉M⊗S , then

(D(1⊗ Z) + (1⊗ Z)D)∗ = (1⊗ Z)∗D∗ + D∗(1⊗ Z)∗ = −(D(1⊗ Z) + (1⊗ Z)D).

Now Lemma 2 and a similar calculation as above imply that elements of k0 are skew
symmetric on M ⊗ S as well. So all elements of g0 are skew symmetric on M , i.e.,
M is unitary.

As for Lemma 2, we can also get the same conclusion if G is semisimple with no
compact factors.

In practice, we often know the K-decomposition of M :

M =
⊕

δ

Mδ ⊗ Vδ,

where Vδ, δ ∈ K̂ are the K-types, and Mδ are the multiplicity spaces. Suppose that
we are given some K-invariant inner product on M . We can assume that this inner

§We remark here that connectedness of G and K plays no role in this definition. The same is true
for most of the statements in this paper. It is however customary to assume connectedness when
studying the Dirac operator actions because some of the structural results depend on it.
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product is fixed and K-invariant on each Vδ, and we can modify it freely on each
Mδ. M will be unitary if and only if we can find a modification such that elements
of p0 are skew symmetric.

In view of Theorem 1, we are trying to modify the inner product on M so that
D becomes symmetric.

By (1), D2 is a scalar on each K̃-component of M⊗S. By Parthasarathy’s Dirac
inequality, if there is any chance to modify the form and make M unitary, these
scalars must be ≥ 0, so they are of the form λ2, λ ∈ R.

On those K̃-components where D2 = λ2 6= 0, D has two real eigenvalues, λ and
−λ. So D is symmetric on Ker(D2−λ2) if and only if the eigenspaces corresponding
to ±λ are orthogonal. On the kernel of D2, D is symmetric if and only if it is 0.

Let us now assume that p is even-dimensional. For example, this is true if G and
K have equal rank. In that case, S is Z2-graded, i.e., S = S+ ⊕ S−, where S± are
invariant under Spin(p0) and hence also under K̃. If S is constructed as

∧
U for

a maximal isotropic subspace U of p, then S+ consists of elements of
∧

U of even
degree, while S− consists of elements of

∧
U of odd degree.

It is clear that D switches M ⊗ S+ and M ⊗ S−. We call elements of M ⊗ S+

even and elements of M ⊗ S− odd. Let us take some even v ∈ M ⊗ S, such that
D2v = λ2v(6= 0). Then the space spanned by v and Dv is two-dimensional (since Dv
is odd), invariant for D, and it contains a D-eigenvector for λ and a D-eigenvector
for −λ. These are just λv ±Dv.

This implies that D-eigenspaces for ±λ are of equal dimension, and they are
described as span of λv + Dv (respectively λv − Dv) for even v ∈ Ker(D2 − λ2).
Hence, the eigenspaces will be orthogonal if and only if

〈λv + Dv, λw −Dw〉 = 0,

for all even v, w ∈ Ker(D2 − λ2). Since even and odd elements are orthogonal, this
is equivalent to

〈Dv, Dw〉 = λ2〈v, w〉, for all even v, w ∈ Ker(D2 − λ2). (2)

This is also the right condition for λ = 0, since it is equivalent to D being 0 on
KerD2. So we proved

Corollary 2. Let G be a connected reductive group so that the maximal compact
subgroup K has rank equal to the rank of G. Let M be an irreducible (g,K)-module
with a K-invariant Hermitian inner product.

Then M is unitary if and only if the following conditions hold:

1. All eigenvalues of D2 on M ⊗ S are nonnegative,

2. Condition (2) holds for each eigenvalue λ2 of D2.

4. Example G = SL(2,R)× SL(2,R)

As an example, let us consider the case of the spherical principal series of SL(2,R)×
SL(2,R) with real infinitesimal character. The reason for skipping the smallest
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example, G = SL(2,R), is the fact that the situation there is a little too simple: the
Dirac inequality is not only necessary but also sufficient for unitarity.

We need some notation from the SL(2,R)-case; see [7], or [3], 1.3.10. We will
use the following basis of g = sl(2,C):

H =
(

0 −i
i 0

)
, E =

1
2

(
1 i
i −1

)
, F =

1
2

(
1 −i
−i −1

)
.

Then H spans k = so(2,C) while E and F span p, and the commutation relations
are the usual ones

[H, E] = 2E, [H,F ] = −2F, [E, F ] = H.

We normalize the form B so that B(E, F ) = 1.
Let µ ∈ R be the parameter of a spherical principal series representation of

SL(2,R). Because of equivalences, we can assume µ ≥ 0. The corresponding
(sl(2,C), SO(2))-module M = Mµ is spanned by the SO(2)-isotypic vectors vn,
n ∈ 2Z, where vn is of weight n for H. The action of E and F is given by

Evn =
1
2
(µ + (n + 1))vn+2, Fvn =

1
2
(µ− (n− 1))vn−2.

Since D for SL(2,R) can be written as E⊗F +F ⊗E, and since the action of C(p)
on the spin module S(p) = C 1⊕ CE is given by

E · 1 = E, E · E = 0; F · 1 = 0, F · E = −2,

it follows that

D(vn ⊗ 1) = Fvn ⊗ E =
1
2
(µ− (n− 1))vn−2 ⊗ E (3)

D(vn ⊗ E) = −2Evn ⊗ 1 = −(µ + (n + 1))vn+2 ⊗ 1.

Let us get back to G = SL(2,R)×SL(2,R), K = SO(2)×SO(2) and g = sl(2,C)×
sl(2,C). Consider the (g,K)-module M = Mµ1 ⊗Mµ2 . If E1, E2 denote the “E” of
each factor of g, then S is the span of 1, E1, E2 and E1 ∧ E2. Moreover, these four
elements are an orthogonal basis for S with respect to 〈 , 〉S , which we can take to
be orthonormal after rescaling. The weight vectors for k in M are vn,m = vn ⊗ vm,
where n and m are even integers. Any K-invariant inner product on M is given by
setting

‖vn,m‖2 = cn,m

for some positive scalars cn,m, and requiring different vn,m to be orthogonal to each
other.

We write condition (2) for orthogonal even vectors v0,0⊗1 and v−2,−2⊗E1∧E2.
Since D = F1 ⊗ E1 + E1 ⊗ F1 + F2 ⊗ E2 + E2 ⊗ F2, we see using (3) that

D(v0,0 ⊗ 1) =
1
2
(µ1 + 1)v−2,0 ⊗ E1 +

1
2
(µ2 + 1)v0,−2 ⊗ E2,

D(v−2,−2 ⊗ E1 ∧ E2) = −(µ1 − 1)v0,−2 ⊗ E2 + (µ2 − 1)v−2,0 ⊗ E1.
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These vectors must be orthogonal:

−1
2
(µ2 + 1)(µ1 − 1)c0,−2 +

1
2
(µ1 + 1)(µ2 − 1)c−2,0 = 0,

so
(µ1 + 1)(µ2 − 1)c−2,0 = (µ2 + 1)(µ1 − 1)c0,−2.

Since cm,n are positive and since µ1, µ2 can also be taken positive, it follows that
µ1 − 1 and µ2 − 1 are of the same sign. They cannot both be positive since by
Parthasarathy’s Dirac inequality µ2

1 + µ2
2 ≤ 2. So µ1 − 1 < 0 and µ2 − 1 < 0, i.e.,

the point (µ1, µ2) lies in the unit square.
If this is the case, then we can get e.g. c0,−2 from c−2,0. Similar considerations

show that all cm,n can be reconstructed from one of them, say c0,0, provided that the
point (µ1, µ2) lies in the unit square. So this condition is also sufficient for unitarity.

In this example, there is another way to get the same result. Namely, M = Mµ1⊗
Mµ2 is unitary if and only if Mµ1 and Mµ2 are both unitary (sl(2,C); SO(2))-
modules, and that is the case if and only if µ1 and µ2 are both less than 1. These
are just the complementary series for SL(2,R).
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