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PRELIMINARY COMMUNICATION

Facies mapping is one of very important tasks in modelling of oil and gas reservoirs. Facies type has direct
influence on porosity and permeability values, which eventually influence both the migration and
accumulation of hydrocarbons. The most numerous reservoirs in the Croatian part of the Pannonian basin
major are in the Late Pannonian and Early Pontian sandstones. Various types of these sandstones were
formed in turbiditic depositional environment, which had been periodically activated in relatively calm,
deeper (mostly up to 200 meters), brackish lake environment with marl sedimentation over the basin plain.
Sandstones form sedimentary bodies that are very elongated in approximately NW-SE direction, with sharp
transition toward basin marls in bottom and top. On the contrary, lateral transition is gradual, from the
clean, medium-grained sandstones, toward fine-grained sandstones or siltites, silty sandstones, marly
sandstones, sandy marls and eventually basin marls. Such lateral facies transition in the Kloštar field was
analysed, focusing at the largest sandstone oil reservoir ’T’ of Early Pontian age. There were available 19
wells with the newest e-logs and calculated average porosity in reservoirs. With 6 additionally constructed
virtual wells using Surfer residual calculation, this made a reliable input dataset. The (litho)facies are
analysed through e-logs, porosity map and, eventually, indicator variograms and Indicator Kriging facies
map. Transition of porosity values and their probabilities are clearly recognized on the Indicator Kriging
maps, and can be correlated with the interpreted depositional environment at the specific well location. This
is the first time that Indicator Kriging was applied in Croatian sandstone hydrocarbon reservoirs and result
positively confirmed that this interpolation technique is appropriate and useful tool for facies mapping
based on subsurface data.

Key words: facies, sandstone, marl, indicator variogram, indicator kriging, Late Miocene, Sava
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1. INTRODUCTION

Mapping of the Upper Miocene depositional facies in the
Croatian part of the Pannonian basin is still one of the
most important tasks in the Croatian petroleum geology.

Mapping of facies is important for getting insight to sed-
imentary environments, shapes and boundaries of hy-
drocarbon reservoirs. It is impossible to show all
varieties on one map and that is the reason why several
facies mapping methods were developed. One of the well
known methods is based on spontaneous potential (SP)
and resistivity (R) curve (in Croatia it was represented in
works of e.g. refs.12, 13, 14, 15, 16, 17

However there is another way for lithofacies interpreta-
tion based on subsurface data: if quantitative well-log in-
terpretations of porosity are available, specific porosity
intervals can be related to some lithofacies types. That is
how by mapping of these intervals the lateral distribution
of the corresponding lithofacieses can be predicted. Un-
fortunately this is burdened with significant uncertain-
ties. On one hand, the calculation of effective porosity
from well-logs has uncertainty of its own. Consequently
sometimes the meaningful question is not ’What is the
porosity at a particular location’, but rather ’What is the
probability of porosity lying in a particular interval’ or
’What is the probability of porosity being smaller/larger
than a particular cutoff ’. On the other hand, there hasn’t
been any traditional way to map the lateral distribution
of a porosity interval for a long time.

However, by continuous development of geostatistical
tools, during the late 80’s a special method for kriging
was introduced, called Indicator Kriging (IK).5, 7 This
method has already been applied by other authors2, 3, 4, 7

to address the problems mentioned above. Later, several
authors applied this method for a wide variety of prob-
lems including mapping of soil types2 and facies map-
ping8 as categorical variables, estimating of geological at-
tributes with great number of extreme values,9 or map-
ping of the production data of a hydrocarbon reservoir.6

By accumulating the practice, several textbooks ap-
peared, summarizing these applications and giving theo-
retical background of IK.

In this paper certain key questions are summarized
concerning the meaningful application with aim to dem-
onstrate the possible application in approaching
lithofacies mapping using IK of porosity from well-logs.
An old oil field located close to the margin of the Sava de-
pression named Kloštar field is chosen as a suitable
study area.

2. THE STUDY AREA
Most of the oil and gas reservoirs in SW corner of the
Pannonian basin (i.e. in the Sava, Drava, Slavonia-Srijem
and Mura depressions) are in sandstones of Late
Pannonian and Early Pontian age (Late Miocene).
Depositional model of these sandstones is well inter-
preted by now.10, 12, 14, 16, 17 They represent a result of peri-
odical activity of turbiditic currents in calm, brackish,
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lake environment, where hemipelagic
marls were deposited most of the time.

Late Miocene sandstone-prone
turbidites entered the structural de-
pressions, located between regional
strike-slip faults (mostly like pull-apart
basins). Parts of these depressions
were later subjected to structural up-
lifts as a result of the inversion due to
transpression resulted from the N-S
orientation of the horizontal compo-
nent of regional stress. Hydrocarbons
started to migrate in these traps in Late
Pliocene and Early Quaternary, and
probably even in Late Miocene (e.g. ref.
1).

Sedimentation in smaller structural
depressions had great influence on fa-
cies distribution, as well as on bound-
aries of the reservoir. Fault planes are
also often boundaries between
turbiditic sandstone and basin marl. It
means that sandstones had been de-
posited periodically, with marl in their
top and base. Lateral facies boundaries
are not sharp and there is wide transi-
tion zone toward the basin plain. Later-
ally there is transition from (in axial
parts of submarine channels) me-
dium-grained to fine-grained sand-
stone, marly sandstone, sandy
marlstone and finally marl. Also,
granulometric composition of sand-
stones changes in the direction of
turbidite current palaeotransport,10

from medium-grained to fine-grained
sandstones.

Kloštar field is located 35 km east of
Zagreb on the western slopes of
Moslavaèka Gora Mountain, with alti-
tude from 110 to 180 m.

Geologically, Kloštar field belongs to
the Sava depression. Reservoir rocks
are of Miocene age and Palaeozoic age.
There are 5 oil and gas prone
lithostratigraphic units with altogether
20 reservoirs. Sandstone reservoirs are
located in three units. The oldest is
named ’Pre-Valencianensis beds’ (Early
Pannonian) with sandstone lens. Reser-
voirs of the ’2nd sandstone series’ and
’1st sandstone series’ (Early Pontian)
have greater lateral extension and con-
tain major hydrocarbon reserves.

3. DATA SET

The input dataset included porosity data collected in 25
points of Kloštar field, as average value of Lower Pontian
oil reservoirs of ’1st sandstone series’.

In the analysed reservoir, porosity from wells varies be-
tween 13.8 and 23.3%. It is assumed that the lowest

value represents marlitic sand, as the transitional facies

toward basin marl. On contrary, the maximal value had

been measured in the clean sandstone, deposited in the

deepest and central part of the transport channel. Of

course, the average porosity value of wells strongly de-

pends of their location in depositional environment, and

it is represented by geological sections of the two men-

tioned “extreme” wells shown on Figures 1 and 2.
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Fig. 1. Composite geological column (including stratigraphy, e-logs and
lithology) of the well with minimum average porosity in the analysed
sandstone reservoir 'T' (location belongs to sandy marl lithofacies)

Sl. 1. Slo�eni geološki stup (ukljuèuje stratigrafiju, karota�u i litologiju) kroz bušotinu
u kojoj je odreðena najmanja srednja poroznost u analiziranom le�ištu 'T'
(lokacija pripada litofacijesu pjeskovitog lapora)



4. INDICATOR KRIGING (IK)
The following brief review on indicator formalism and In-
dicator Kriging technique are based on the works of refs.
3, 4, 5, 6, 7

4.1. Indicator formalism and some
consequences

Within an uncored region, one of the most frequently
used method for facies identification is the usage of po-

rosity cutoffs. More precisely, if a par-
ticular facies can be recognized by a
ícutoff, and if the presence of this facies
is assigned with 1 and absence with 0
respectively, one can introduce a
so-called indicator variable (like in Fig-
ure 3) with the following form:
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where:

I(x) is the indicator variable;
z(x) is originally measured value;
vcutoff is cutoff value.

Let’s assume that instead of a single
threshold ícutoff, l cutoffs íl are applied
to the observed data, such that
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where z(x) is the value of a
regionalized variable such as porosity
at location x.

Thus, raw data are transformed into l
new variables, each taking on the value
of 0 or 1. Note, that by selecting vl cut-
offs the main purpose is to obtain a rea-
sonable picture of the frequency of
wells or reservoir sections above or be-
low each cutoff. It can be shown, that
the probability of porosity z(x) below a
cutoff íl within an area A equals

� � � �P A z
A

i x v dxl
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; ,� 

1

(4.3)

With knowledge of P(A, v), one can de-
rive the probability of wells with poros-
ity above cutoff vl:

� �� � � �P z x v P A vl� � �1 , (4.4)

This probability can be estimated di-
rectly from n observed values of z(x):
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(4.5)

where i (i=1, 2, …, n) are n weights
being calculated from a kriging system
through calculation of residual indica-
tor data [i(xk, v)-F*(z)].7 In this latter ex-

pression F*(z) is an unbiased estimate of frequency, F(z):

� � � �� �F z E P A v� , (4.6)

One of the most impressive consequences of the above
derivations is that the aim of the indicator formalism for
continuous variables is to directly estimate the distribu-
tion of uncertainty at unsampled location. The global
probability distribution function of the input data set
also then can be estimated at a series of threshold values.
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Fig. 2. Composite geological column (including stratigraphy, e-logs and
lithology) of the well with maximum average porosity in the analysed
sandstone reservoir 'T' (location belongs to medium grained sandstones
lithofacies)

Sl. 2. Slo�eni geološki stup (ukljuèuje stratigrafiju, karota�u i litologiju) kroz bušotinu
u kojoj je odreðena najveæa srednja poroznost u analiziranom le�ištu 'T'
(lokacija pripada litofacijesu srednjozrnatih pješèenjaka)



4.2. Brief summary of Indicator Kriging (IK)

If data are not clustered spatially, the estimate of F*(z)
can be done from the histogram of all data available. In
the case of Simple Kriging estimator, the residual [P*(A,
vl)-F*(vl)] is used to derive as follows:

� � � � � � � � � �� �P A v F v v i x v F vl l i l

i

n
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�

� 
1

(4.7)

where i(vl) is the k-th weight for cutoff vl.

Note, the simple kriging estimator differs from the Or-
dinary Kriging approach by not requiring the sum of
weights to equal one. The Simple Kriging system of equa-
tion can be given as:
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n
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1
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In the above equation � �� i i m lx x v� ; are the indicator

semivariogram values for the distance xi-xm at cutoff vl,

and the terms � �� x x vk k h l, ;� are average indicator

semivariogram values between location xk and xk+h at cut-
off vl.

The IK process is repeated for all l cutoff (threshold)
values, which discretize the interval of variability of the
continuous attribute z. The distribution of uncertainty,
built from assembling the l indicator kriging estimates,
represents a probabilistic model for the uncertainty
about the unsampled value z(u). Obviously this Indicator
Kriging procedure requires a variogram measure of cor-
relation corresponding to each threshold.

It is important to note, that correct selection of the l cut-
offs is essential for Indicator Kriging, In case of too many

cutoffs the computation time increase drastically, but
with too few cutoffs one can lose some important details
of the distribution.3 In general the number of cutoffs
should be between 5 and 11.

Kriging of an indicator variable does not result only in
values 0 and 1, but rather estimates along a continuous
scale in the [0,1] interval. Thus Indicator Kriging yields
probabilities (or relative frequencies) of the {z(x) < vl}
events. Assuming that rank-ordered cutoffs are (v1 < v2

< …< vn), it is obvious that the estimated probabilities
must obey the relations:

� �� � � �� �P z x v P z x vl l
* ; * ;� � 1 for all l (4.9)

Linear estimation of probabilities belonging to l cutoffs
permits one to draw several types of maps. For each cut-
off, e.g. a map of the probabilities of not exceeding cutoff
(i.e. P*(z(x), vl)), or the probabilities of exceeding vl: (1-
P*(z(x), vl) can be evidently drawn. It is also evident that
the estimated mean can be calculated through a discrete
sum:

� � � � � �� �q A v P A v P A vl

i

L

l l* ; ; * ;*0
1

1� �
�

�� (4.10)

where vl

* is the central value of the interval � �v vl l�1; .

Isoquantile maps can be drawn from the conditional
distribution function fitted at each grid node. For in-
stance, the median can be found by interpolation be-
tween vmax and vmax-1, where P*(A;vmax) is the highest

value of P*(A;v)�0.5. The same procedure yields
quantiles for any value of p, allowing one to map confi-
dence intervals around a mean or median. The estimated
confidence intervals can be calculated directly from the
conditional distribution and do not need any assumption
of the type of distribution of estimation variance.

4.3. Advantages and side effects

Using Indicator Kriging does not require stationarity as-
sumption, or multivariate normality. One of the most im-
portant advantages is its robustness in respect to the
extreme (outlier) values. Another important fact arises
from the indicator formalism. By indicator cutoffs the
originally continuous distribution is discretized. From
this point the analysis runs on interval data rather than
crisp data. That is, the preciseness of the input data is
not necessarily required. It is enough to know that at a
particular location the porosity lies in a particular inter-
val. If this meets with one of the initially defined cutoff
pairs, the input data set can be extended by adding this
information. This is the property which we used in this
work to make the input data set denser.

5. ADDING OF THE NEW “HARD”
DATA AND VARIOGRAM ANALYSIS
OF INDICATOR SET

The input dataset included porosity data collected in 19
wells from the reservoir ’T’. The very densely vertically
spaced porosity values were averaged well by well for the
whole reservoir interval. The minimum of 5.448% has
been excluded from further analysis because it was re-
cognised as outlier.
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Fig. 3. Expression of 35 imaginary values where '1' used for
sandstone locations and '0' for non-sandstone
locations

Sl. 3. Skupina od 35 zamišljenih podataka gdje'1' predstavlja
lokacije pješèenjaka, a '0' lokacije ostalih litofacijesa



The wells are very irregularly spaced, with large areas

of missing information (Fig. 4). To avoid this problem, six

additional points (A, B, C, D, E and F) were set to the lo-

cations with lack of data. Their porosity values were esti-

mated from the neighbouring wells using a linear
variogram model. Additional hard data, their estimated
porosity and X, Y locations are visible also in Figure 4
and in Table 1.

The presumption was that porosity values indicate dif-
ferent sandstone facies (i.e. marly sand, fine-grained and
medium-grained sandstones). It is why porosity dataset
had been transformed in the 6 indicator dataset, based
on following (Table 1) cutoffs: 14, 18, 19, 20, 22 and
24%.

For each of the cutoffs, the corresponding indicator
variogram was calculated using Variowin 2.21.11

The variogram models to be used in indicator kriging
algorithm must obey the following criteria:3

• The theoretical (model) function must be the same
(spherical is used here)

• The sill must be identical (standardized variogram)

• The nugget effect must be the same (it is zero here)

• Only the range can change for different indicator vari-
ables (all ranges were relatively low).

For keeping the simplicity all the experimental indica-
tor variograms are considered as omnidirectional (Fig.
5). For each of the six variables, the starting lag spacing
was set to 250 m.

6. INDICATOR KRIGING MAPPING
USING PROGRAM ’WINGSLIB’

Indicator Kriging (abbr. ’IK’) in WinGslibTM package is
primarily used to generate conditional probabilities
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Fig. 4. Porosity distribution based on hard data derived
from wells (+) and additional artificial hard data (?)
with porosity estimated using SurferTM

Sl. 4. Distribucija poroziteta na temelju èvrstih bušotinskih
podataka (+) i dodatno konstruiranih toèaka (?) u
kojima je poroznost procijenjena SurferomTM

X Y Por (%) 14% 18% 19% 20% 22% 24%

6376161.26 5067837.14 20.045 0 0 0 0 1 1

6376598.12 5067814.56 20.525 0 0 0 0 1 1

6376734.51 5067596.74 21.163 0 0 0 0 1 1

6376888.03 5068296.06 21.093 0 0 0 0 1 1

6377036.31 5068042.44 23.282 0 0 0 0 0 1

6376967.36 5067600.97 22.036 0 0 0 0 0 1

6377085.97 5068506.80 19.666 0 0 0 1 1 1

6377275.39 5068080.14 19.164 0 0 0 1 1 1

6377192.49 5067820.25 19.499 0 0 0 1 1 1

6377340.05 5067550.55 19.863 0 0 0 1 1 1

6377490.35 5066730.24 18.061 0 0 1 1 1 1

6377589.91 5067642.00 19.617 0 0 0 1 1 1

6377672.02 5066901.68 18.504 0 0 1 1 1 1

6377888.33 5066692.16 18.166 0 0 1 1 1 1

6377821.07 5067850.14 17.939 0 1 1 1 1 1

6377977.74 5066964.14 19.628 0 0 0 1 1 1

6378168.97 5066731.69 21.808 0 0 0 0 1 1

6378263.31 5068258.95 18.363 0 0 1 1 1 1

6378478.38 5067245.16 13.798 1 1 1 1 1 1

6376413.48 5068275.11 20.584 0 0 0 0 1 1

6376576.83 5067225.75 20.379 0 0 0 0 1 1

6377165.85 5067027.76 19.593 0 0 0 1 1 1

6377660.83 5067374.25 19.280 0 0 0 1 1 1

6378101.37 5067715.78 17.430 0 1 1 1 1 1

6377715.28 5068240.46 18.513 0 0 1 1 1 1

Table 1. Indicator transformations of porosity based on different cutoffs. Coordinates are in Gauss-Krueger system in zone 5
(E13°30' - E16°30) with latitude of origin 0° and longitude of origin 15°.
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Fig. 5 Experimental variograms for different cut-offs (left) and their approximations with theoretical curves (right)
Sl. 5 Eksperimentalni variogrami za razlièite graniène vrijednosti (lijevo) i njihova teorijska aproksimacija (desno)



within the ’sisim’ stochastic simulation program. More-
over ’ik3d’ is program for simply and ordinary Indicator
Kriging for categorical variables or cumulative indicators
calculated for continuous variable. In the case of continu-
ous variable, the Indicator Kriging algorithm provides in-
dependent discrete models (discrete probabilities) for
the various cutoffs.

The flexibility of the IK approach comes from modelling
the various probabilities with different variogram dis-
tances. Program ’ik3d’ provides the necessary statistics,
but with two constraints. The first is related to the esti-

mated value � �� �F u z nk; to the bound 0 or 1, if originally

valued outside the interval [0, 1]. The second constraint
involves ’k’ separate kriging results and it is harder con-
dition than the first one. These constraints can help with
negative indicator kriging weights or lack of data. Figure
6 is a map showing well locations and values. All maps in
paper are created with program WinGslibTM.

Cumulative probability distribution curve is obligatory
input for indicator mapping. On Figure 7 ’X’ axis repre-
sents classes and ’Y’ probabilities (in percentages).

Lots of input parameters had to be defined using ’ik3d’.
Within the WinGslib system, the executables are
parameterized by a special parameter file (abbr. ’par’).
The procedure needs to be repetitive and that is why the
main parameters of ’ik3d’ program are listed here.

A ’Full IK” approach was used with ’Simple Kriging’ es-
timation. This technique was chosen because it is based
on global mean, and input dataset is small to take locally
varying mean into consideration. In ’Grid definition’ the
number of cells both in X and Y directions was 251. The
final model contains 63 001 cells.

As for cutoffs, six porosity values were selected: 14, 18,
19, 20, 22 and 24%. The corresponding cumulative
probabilities were 0.08, 0.17, 0.36, 0.66 and 0.92
respectively.

The so called “E-type estimation” of porosity averaged
for the whole reservoir interval is shown in Figure 8. This
shows the most probable porosity value in the formation
analysed.

Finally, the interpolated probability maps, for each of
the selected cutoffs are shown in Figure 9.

Lateral distribution of the all mentioned facies (sand-
stone, marly sandstone, sandy marlstone and marl)
across the analysed reservoir can be observed. Of
course, such distribution depends on the selected cut-
offs. In this case, the lowest porosities came from the
part of reservoir with low oil saturation, close to the
oil-water contact. The highest porosities correspond to
the best part of the reservoir, i.e. these values are mea-
sured in the middle of the sandstone body.

The probability maps (Figure 9) have coloured legend.
The blue colour means that there is no probability that
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Fig. 6. Hard-data value map of 19 wells in Kloštar field with
porosity value on each well, as well as 6 additional
artificial hard data

Sl. 6. Polo�ajna karta "èvrstih" (mjerenih) vrijednosti
poroznosti u 19 bušotina na polju Kloštar, kao i 6
dodatno konstruiranih toèaka

Fig. 7. Cumulative probability distribution for 8 porosity classes
(Axes: X are porosity classes, Y is cumulative probability
in %)

Sl. 7. Krivulja kumulativne vjerojatnosti prikazana kroz 8
razreda poroznosti (na osi X su vrijednosti razreda, na
osi Y kumulativne vjerojatnosti u %)

Fig. 8. E-type estimation of porosity derived from IK
estimations of 5 cut-offs (14%, 18%, 19%, 20%, 22%)

Sl. 8. E-tip procjena poroznosti izraèunata iz karata IK za 5
graniènih vrijednosti (14%, 18%, 19%, 20%, 22%)



the cell value will be less than selected cutoff (p = 0). The
red colour shows that cell value is for sure lower than se-
lected cutoff (p = 1).

For example, for the cutoff = 14% (Figure 9) only the
cells being in the SE corner of the study area can have
(with some probability) porosities lower than 14%. The
probability of finding such a low porosity values is 0 for
all the other parts of the map.

On contrary, the map for cutoff=22% (Figure 9) is al-
most entirely in red colour (except the two central loca-
tions). It means that almost all cells will surely (p = 1)
have the values lower than 22%. This is the way how to
read this set of probability maps (Figure 9).

7. DISCUSSION

The Indicator Kriging is a specific geostatistical tech-
nique for spatial phenomena with weak stationarity. In
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Fig. 9. Probability maps for porosity cutoffs. Probability '1' means for sure that value of cell will be lesser than selected cut-off
Sl. 9. Karte vjerojatnosti za graniène vrijednosti poroznosti. Vjerojatnost '1' znaèi kako je sigurno da æe vrijednost æelije biti manja od

odabrane graniène vrijednosti



fact, this kriging technique is weaker than any other
kriging approximation. However, this technique is de-
signed for estimating lateral uncertainty rather than
’crisp’ values. It means that this approach estimates the
local probability distributions on grid cells. IK works
with interval data discretized form of the originally con-
tinuous distribution of a regionalized variable. That is
why this method can be used at any case when data are
too noisy, or when the ’exact’ value is not known, but one
can reliably estimate its interval (range of values).

Looking again at stationarity, there are three level of
this condition. The first-order stationarity (which is in-
variant for any translation) is very strict requirement that
cannot be satisfied using natural dataset. The weaker
form is so called second-order stationarity which re-
quires that the expected value must be independent on
locations, and needs that the covariance is dependent
only on the separation vector between any two locations.
The third form is the so called intrinsic hypothesis which
expects the mean to be independent and the existence of
semivariogram. Just this third-order stationarity is as-
sumed, because the decision to use variogram model
means only the intrinsic hypothesis is expected as the
minimum that the dataset has to satisfy (disregarding the
nugget model).

Most of the kriging techniques are linear, but some of
them are not. In fact, these are linear techniques applied
on some non-linear transformation of the data. Indicator
transformation (like in Equation 4.4) presented in analy-
sis is one of such non-linear transformation and Indica-
tor Kriging is non-linear technique as well. Such
application in this analysis resulted in indicator
variograms for different porosity cutoffs and, more im-
portant, in set of probability maps for such cutoffs. Using
of these maps revealed the areal extension of porosity
probability below defined cutoff.
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