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Inorganic arsenic is a potent carcinogen and environmental pollutant. More than one hundred million 
people are reported to be exposed to elevated concentrations of arsenic mainly via drinking water. Essential 
trace elements can affect toxicity of metals by interacting with metals at the primary site of action and can 
also modify the body’s response to toxic metals by altering their metabolism and transport. This study 
investigates the effects of concomitant administration of selenium, magnesium, and calcium with arsenic 
on blood biochemistry and oxidative stress. Selenium was the most effective in reducing arsenic-induced 
inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity and liver oxidative stress. Calcium 
and magnesium also showed favourable effects on haematological and other biochemical parameters. 
Because selenium was the most effective, it should be added to chelation therapy to achieve the best 
protective effects against arsenic poisoning in humans.
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Arsenic (As) is a widespread environmental 
toxicant that may cause neuropathy, skin lesions, 
vascular lesions, and cancer in chronic exposure (1, 
2). It exists in the inorganic and organic form and in 
different oxidation states (-3, 0, +3, +5). Exposure to 
arsenic is usually through drinking water containing 
naturally high amounts of inorganic arsenic. Chronic 
arsenic poisoning has been widely reported in the 
general population worldwide. Recent studies have 
suggested that its toxicity is owed to the production 
of reactive oxygen species (ROS) (3, 4), which 
include hydrogen peroxide and free radicals such as 
superoxide anions. Sodium arsenite has been shown 
to enhance haeme oxygenase production; an indicator 
of oxidative stress. Sodium arsenate has the ability to 
substitute phosphate in enzyme-catalysed reactions, 

where it can disrupt normal function of the enzymes 
(5).

Selenium is an essential component of glutathione 
peroxidase, an antioxidant enzyme, which plays a 
critical role in the body’s antioxidant defence against 
oxidative damage by preventing the production of 
ROS (6). Arsenic and selenium are metalloids with 
similar chemical properties, but with markedly 
different biological effects. Selenium is known to 
protect against arsenic toxicity (7, 8). Glutathione 
(GSH) acts as a nucleophilic scavenger of numerous 
toxic compounds and their metabolites via enzymatic 
and chemical mechanisms and plays an important role 
in protecting against oxidative damage caused by ROS 
(9, 10). GSH can react non-enzymatically with ROS 
or can act as a substrate in GSH peroxidase-mediated 
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destruction of hydroperoxides. GSH depletion can 
impair a cell’s defence against the toxic action of 
many compounds and may lead to cell injury and 
death (10).

The aim of this study was to see the effects of 
selenium, magnesium, or calcium co-administered 
with arsenic on biochemical indicators such as haem 
synthesis, blood, liver, and kidney oxidative stress, 
liver injury, and blood and tissue arsenic concentration 
in male rats.

MATERIALS AND METHODS

All experiments were performed on 30 male 
Wistar rats, each weighing 50 g to 70 g. The 
animals were obtained from Defense Research and 
Development Establishment (DRDE), Gwalior, India. 
All experiment protocols were approved by DRDE’s 
ethics committee. Before the experiment, the animals 
were  housed in stainless steel cages (six per cage) in 
an air-conditioned room with temperature maintained 
at (25±2) °C and accustomed to 12-hour light and dark 
cycle (light from 6:00 h to 18:00 h) for seven days. 
The rats received standard rat chow diet (Amrut Feeds, 
Pranav Agro, New Delhi, India) and water ad libitum 
throughout the experiment.

The rats were divided into five groups of six 
animals each and were receiving the following 
treatment for 3 weeks:

Group 1: drinking water
Group 2: 50 mg L-1 of sodium arsenite dissolved 

in drinking water
Group 3: 50 mg L-1 of sodium arsenite + 6.3 µmol 

L-1 of sodium selenite by gavage (2 mL kg-1) once a 
day.

Group 4: 50 mg L-1 of sodium arsenite + 20 
mmol L-1 of magnesium sulphate  by gavage 
(2 mL kg-1) once a day.

Group 5: 50 mg L-1 of sodium arsenite + 20 
mmol L-1 of calcium sulphate  by gavage (2 mL kg-1) 
once a day.

The doses for arsenic and trace elements were 
based on previous studies (3, 11). All animals were 
anaesthetised with light ether before sacrificing. 
Whole blood was collected by cardiac puncture and 
placed in heparinized vials. The liver and the kidneys 
were removed, rinsed in cold saline, blotted, and 
weighed before biochemical tests.

The activity of blood δ-aminolevulinic acid 
dehydratase (ALAD) was assayed according to 

Berlin and Schaller (12), while white blood cells 
(WBC), red blood cells (RBC), haematocrit (Hct), 
haemoglobin (Hb), mean cell volume (MCV), mean 
cell haemoglobin (MCH), and mean cell haemoglobin 
concentration (MCHC) were measured using a 
haematology analyser (Sysmex K4500, USA). Blood 
GSH concentration was determined using a modifi ed 
method by Jollow et al. (13). Liver and kidney GSH 
and GSSG (oxidised GSH) levels were determined 
with a spectrofluorometer (Shimadzu RF 5000, 
Japan) using the method of Hissin and Hilf (14). 
Tissue lipid peroxidation was measured using the 
method of Ohkawa et al. (15). ROS was determined 
using the method of Socci et al. (16). The activities 
of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) in serum were determined 
using the method described by Reitman and Frankel 
(17).

Blood, liver, kidney, and brain arsenic were 
measured after wet acid digestion using a Microwave 
Digestion System (CEM, USA, model MDS-2100). 
Arsenic was estimated using a Hydride Vapor 
Generation System (Perkin Elmer model MHS-10) 
fi tted with an atomic absorption spectrophotometer 
(AAS, Perkin Elmer model Analyst 100).

Data are expressed as mean ± SE (standard error). 
Mean values were compared between the group  
using one-way ANOVA and Tukey’s test. Statistical 
signifi cance for differences between the unexposed 
and arsenic-exposed groups (with or without 
micronutrient) was set at P<0.05.

RESULTS

Exposure to arsenic alone led to a signifi cant 
decrease in blood ALAD activity and in GSH 
levels, while ROS showed a signifi cant increase. 
Co-administration with Se (6.3 μmol L-1) showed 
a significant improvement in ALAD, ROS, and 
GSH levels, while co-administration with calcium 
or magnesium had only a marginal effect on these 
parameters (Table 1).

In the kidneys, exposure to arsenic alone led to 
a signifi cant increase in ROS, but GSH, GSSG, and 
thiobarbituric acid reactive substances (TBARS) levels 
did not change signifi cantly. Co-administration with 
selenium, calcium, or magnesium showed no signifi cant 
effects on any of these parameters (Table 2).

Table 3 shows biochemical changes in the liver 
which indicate oxidative stress. ROS, TBARS and 
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GSH levels signifi cantly increased in arsenic-exposed 
animals, while liver GSSG increased marginally. 
Co-administration with selenium significantly 
counteracted arsenic effects, but magnesium and 
calcium had no effect on any of these parameters.

Exposure to arsenic alone signifi cantly increased 
serum AST and ALT, while co-administration with 
selenium, calcium, or magnesium prevented this 
increase.

Tables 1-3 show arsenic concentrations in the 
blood, liver, and kidneys of animals exposed to arsenic 
alone or in combination with selenium, magnesium, 
or calcium. Co-administration with magnesium and 
selenium had a marginal benefi cial effect on blood 
and liver arsenic concentrations, while calcium had 
no effect at all.

DISCUSSION

Arsenic in water is a result of natural and human 
activities. It is believed that nearly one hundred million 
people are at risk of arsenic exposure via drinking 
water. The arsenic issue is perhaps the most distinct 
in Bangladesh and West Bengal, as millions of hand-
pumped tube wells yield drinking water with arsenic 
concentrations above 10 μg L-1, which is the World 
Health Organization drinking water guideline (18-20). 
In West Bengal, India, arsenic concentrations in some 
tube wells go as high as 3400 μg L-1 (21).

This study has investigated the effects of arsenic 
on biochemical parameters indicative of changes in 
haeme biosynthesis, liver and kidney oxidative stress, 
and liver damage, and has investigated the ability of 

Table 1 Haematological effects of selenium, magnesium, and calcium in arsenic-exposed male rats

Animal group
ROS /

nmol mL-1

GSH /
mg mL-1

ALAD /
nmol mL-1

Blood As /
ng dL-1

Negative control
0.011±0.004

(0.009 to 0.013)
6.57±0.11

(6.31 to 6.71)
29.94±1.2

(25.72 to 36.12)
0.16±0.02

(0.13 to 0.19)

As 
0.028±0.003†

(0.026 to 0.033)
4.88±0.11†

(4.59 to 5.14)
19.52±1.4†

(17.03 to 22.14)
8.18±0.12†

(7.65 to 8.56)

As+Se
0.018±0.001‡

(0.017 to 0.019)
5.89±0.31‡

(4.90 to 6.18)
26.69±1.6

(22.97 to 30.23)
5.87±0.23‡

(5.34 to 6.35)

As+Mg
0.014±0.002

(0.012 to 0.16)
5.18±0.11†

(4.91 to 5.47)
21.05±0.46†

(20.19 to 22.14)
8.37±0.38†

(8.01 to 8.90)

As+Ca
0.014±0.001

(0.013 to 0.015)
4.67±0.22†

(4.54 to 4.77)
23.79±0.42†

(23.08 to 25.02)
7.27±0.44†

(6.45 to 7.94)

ROS - reactive oxygen species measured in RBC in the fi rst minute; GSH - glutathione; ALAD - δ-aminolevulinic acid dehydratase 
measured in RBC in the fi rst minute; values are expressed as mean ± SE (N=6); range values are in parenthesis
† - signifi cantly different from all other values; ‡ - signifi cantly different from unmarked values.

Table 2 Effects of selenium, magnesium, and calcium on arsenic-induced oxidative stress parameters in rat kidney

Experimental 
group

TBARS /
μg g-1

ROS /
nmol mL-1

GSH /
μmol g-1

GSSG /
μmol g-1

Kidney As /
ng g-1

Negative control
4.8±0.96

(3.4 to 7.5)
1.5±0.43

(0.76 to 2.3)
3.3±0.47

(2.5 to 3.6)
2.7±0.14

(2.3 to 3.0)
0.05±0.01

(0.03 to 0.06)

As 
5.0±0.23

(4.3 to 5.2)
2.9±0.22†

(2.4 to 3.48)
3.0±0.10

(2.7 to 3.2)
2.9±0.11

(2.4 to 3.5)
1.19±0.34†

(0.64 to 1.65)

As+Se
4.2±0.68

(2.6 to 5.4)
2.9±0.63†

(1.5 to 4.1)
3.4±0.47

(3.0 to 3.8)
2.8±0.11

(2.5 to 3.0)
1.15±0.03†

(1.10 to 1.21)

As+Mg
4.1±0.34

(3.4 to 5.1)
4.1±0.34†

(3.2 to 4.9)
3.9±0.16

(3.6 to 4.2)
2.7±0.18

(2.5 to 2.9)
1.33±0.13†

(1.01 to 1.39)

As+Ca
7.3±1.40

(5.0 to 11.35)
2.9±0.21†

(2.3 to 3.2)
2.8±0.55

(2.7 to 2.9)
2.8±0.14

(2.6 to 3.1)
1.28±0.15†

(1.10 to 1.48)

TBARS - thiobarbituric acid reactive substances; ROS - reactive oxygen species measured in RBC in the fi rst minute; GSH and 
GSSG - reduced and oxidised glutathione; values are expressed as mean ± SE (N=6); range values are in parenthesis
† - signifi cantly different from all other values; ‡ - signifi cantly different from unmarked values
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selenium, magnesium and calcium to counteract these 
changes. Our results single out selenium as the most 
effective protection against arsenic-induced oxidative 
stress. Selenium is an essential trace element, but at 
higher doses it is toxic. It is a component of antioxidant 
enzyme glutathione peroxidase, which together with 
superoxide dismutase (SOD), catalase (CAT), and 
vitamin E neutralises ROS. Selenium is known to 
affect the distribution of many toxic metals. Arsenic 
has been reported to increase hepatobiliary transport 
of selenium and facilitate its accumulation in RBCs, 
and selenite, in turn, to increase biliary excretion 
of arsenic (3, 22, 23). Glattre et al. (24) studied 
the distribution and interaction between arsenic 
and selenium in rat thyroid. Rats receiving arsenic 
plus selenium had the same concentrations of both 
elements as those measured in the groups pre-treated 
with arsenic or selenium alone. This suggests that 
both arsenic and selenium accumulate in the thyroid 
tissue. Post-mortem examination of the thyroid 
following arsenic exposure showed reduction in size 
and histological changes in thyroid follicles, whereas 
only minor changes were observed in selenium or 
arsenic-plus-selenium treated group. This competition 
between selenium and toxic metals was contributed 
to functional proteins and bioligands or active tissue 
sites or to formation of a reversible compound, metal 

selenide, which reduced “free” toxic metal ions in 
the body. Metal selenide may result from interaction 
between a metal and active selenium (selenide) 
released from sodium selenite in vivo (18). Badiello et 
al. (25) suggested that selenium could detoxify metal 
ions, in addition to its antioxidant action. The authors 
consider dietary selenium supplementation necessary, 
preferably in the form of selenomethionine.

Metals and calcium interact at several sites in the 
body, including cell membrane (through mechanisms 
that regulate ion transport) (26). Calcium defi ciency 
is known to decrease lead clearance and increases 
lead absorption, whereas excess calcium only slightly 
decreases lead clearance and has little effect on lead 
absorption (27). The mechanism by which calcium 
interferes with arsenic absorption is not clear. 
However, several interesting studies suggest that 
calcium intake rather than calcium status modulates 
metal absorption in animals (28). Calcium appears 
to partly inhibit metal absorption via competition for 
common binding sites on intestinal binding proteins 
(29).

Relative sensitivity of ALAD to arsenic has been 
reported earlier (30). In this study, we observed 
signifi cant depletion of ALAD upon arsenic exposure, 
perhaps due to the binding of As (III) to the essential 
-SH group. A decrease in ALAD activity is usually 

Table 3 Effects of selenium, magnesium, and calcium on arsenic-induced oxidative stress in rat liver

Experimental 
group

TBARS /
μg g-1

ROS /
nmol mL-1

GSH /
μmol g-1

GSSG /
μmol g-1

AST /
nmol mg-1

ALT /
nmol mg-1

Liver As /
ng g-1

Negative 
control

4.6±0.47
(3.6 to 5.6)

1.7±0.13
(1.6 to 2.3)

5.9±0.10
(5.6 to 6.1)

4.3±0.17
(3.8 to 4.6)

10.9±0.18
(8.6 to 11.1)

10.87±0.12
(10.1 to 

11.4)

0.1±0.04
(0.5 to 1.4)

As 
6.3±0.90†

(4.4 to 7.8)
2.9±0.22†

(1.9 to 3.8)
3.9±0.16†

(3.7 to 4.3)
5.1±0.32

(4.6 to 6.5)

16.1±1.08†

(12.8 to 
19.6)

19.86±0.83†

(15.9 to 
22.5)-

3.3±0.11†

(2.5 to 3.9)

As + Se
4.7±0.48

(3.5 to 5.8)
1.8±0.13

(1.5 to 2.1)
5.1±0.30

(4.7 to 6.0)
4.7±0.40

(3.8 to 5.4)

12.0±0.38‡

(10.8 to 
13.7)

13.14±0.43‡

(11.4 to 
15.1)

2.1±0.18‡

(1.7 to 2.4)

As + Mg
6.0±0.23†

(5.0 to 7.4)
2.2±0.15‡

(1.7 to 2.4)
6.5±0.34

(6.0 to 7.5)
4.8±0.14

(4.2 to 5.2)

12.6±0.21‡

(11.3 to 
14.2)

12.16±0.14‡

(11.6 to 
13.4)

3.5±0.32†

(2.2 to 4.3)

As + Ca
5.8±0.16†

(4.0 to 7.1)
2.7±0.40†

(2.0 to 3.8)
7.3±0.20

(6.9 to 7.6)
4.8±0.12

(4.4 to 5.1)

12.3±0.25‡

(11.4 to 
12.9)

16.79±0.17§

(15.4 to 
18.1)

3.2±0.13†

(2.7 to 3.5)

TBARS - thiobarbituric acid reactive substances; ROS - reactive oxygen species measured in RBC in the fi rst minute; 
GSH and GSSG - reduced and oxidized glutathione; AST and ALT - alanine and aspartate transaminases measured in 
protein in the fi rst minute; values are expressed as mean ± SE (N=6); range values are in parenthesis
† - signifi cantly different from all other values; ‡ and § - signifi cantly different from unmarked values
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related to inadequate diet, particularly defi cient in 
essential metals like selenium (22). In our study, 
we found a signifi cant recovery in ALAD activity 
in the arsenic-exposed rats concomitantly receiving 
selenium, which might be due to preferential binding 
of selenium to proteins. We did not observe signifi cant 
changes in GSH concentration. GSH is a tripeptide 
of three amino acids (glutamic acid, cysteine, and 
glycine) and is involved in various physiological 
and metabolic functions. It is a major inter-organ 
transporter of cysteine, which has a nucleophilic thiol 
group important for detoxifi cation of electrophilic 
metabolites. Liver supplies constituents for GSH 
synthesis in the kidney and intestine. In this study, 
increased liver and kidney GSH shows antioxidant 
action of the trace metals. Mishra et al. (30) also 
reported a signifi cant decline in GSH concentration 
following arsenic exposure. They also observed a 
decrease in the GSH:GSSG ratio as an indicator of 
oxidative stress in the liver and kidney. Administration 
of calcium and magnesium in our study did not 
increase blood GSH concentration (Table 2), and GSH 
depletion may also explain the hepatotoxic effects of 
arsenic (Table 3). A decrease in GSH and increase 
in GSSG levels is a sensitive indicator of oxidative 
stress, and our study clearly shows that arsenic 
may be the culprit, possibly due to a disruption of 
oxidant/antioxidant balance. Arsenic-induced TBARS 
production in our study also supports the oxidative 
stress hypothesis. As selenium reduced elevated 
TBARS level, it seems to play a vital role in protecting 
cells from oxidative stress.

This protective role of selenium is further 
corroborated by AST and ALT activities, indicative 
of liver damage. All three trace metals were effective 
in reducing the level of transaminases in arsenic-
exposed animals.

Our study has shown that trace metals are valuable 
against arsenic exposure, selenium in particular if 
administered at a low level. However, most of the 
observed changes were only marginal and of much 
smaller magnitude than the effects of chelation 
therapy. We therefore recommend that selenium is 
added to chelation therapy to achieve the best effect.
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Sažetak

ZAŠTITNO DJELOVANJE SELENA, KALCIJA I MAGNEZIJA PROTIV OKSIDATIVNOGA STRESA 
UZROKOVANOG ARSENOM U MUŽJAKA ŠTAKORA

Anorganski arsen snažan je kancerogen i onečišćivač okoliša. Više od stotinu milijuna ljudi izloženo 
je povišenim koncentracijama arsena, ponajviše u pitkoj vodi. Esencijalni elementi u tragovima mogu 
utjecati na toksičnost metala na primarnome mjestu djelovanja te na drugačiji odgovor tijela na toksične 
metale tako što mijenjaju njihov metabolizam i prijenos. Namjera ovoga istraživanja bila je utvrditi utjecaj 
istodobne primjene selena, magnezija i kalcija s arsenom na neke biokemijske parametre u krvi te na 
oksidativni stres. Selen primijenjen istodobno s arsenom najdjelotvornije je smanjio inhibiciju dehidrataze 
delta-aminolevulinske kiseline (ALAD) u krvi te oksidativni stres u jetri. I djelovanje kalcija i magnezija 
pokazalo se povoljnim na neke hematološke i biokemijske parametre. Ovi rezultati upućuju na obećavajuću 
ulogu selena u sprječavanju nastanka znakova i simptoma povezanih s izlaganjem arsenu.
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