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A map M is a combinatorial representation of a closed surface. Convex polyhedra, starting from
the Platonic solids and going to spherical fullerenes, can be operated to obtain new objects,
with a larger number of vertices and various tiling. Three composite map operations: leapfrog,
chamfering and capra, play a central role in the fullerenes construction and their electronic pro-
perties. Generalization of the above operations leads to a series of transformations, characterized
by distinct, successive pairs in the Goldberg multiplication formula m(a,b). Parents and products
of most representative operations are illustrated.
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INTRODUCTION

A map M is a combinatorial representation of a (closed)
surface.1,2 Let us denote the number of vertices, edges,
faces by: v, e, f, respectively; the vertex degree by d; and
the face size by s, in the map. Subscript »0« will mark
the corresponding parameters in the parent map.

Some basic relations in a map were discovered by
Euler in the early eighteenth century:3,4

d edn =∑ 2 (1)

s f es =∑ 2 (2)

where vd and fs are the number of vertices of degree d and
the number of s-gonal faces, respectively, and (d, s ≥ 3).
The two relations are joined in the famous formula:

n – e + f = c(M) = 2(1 – g) (3)

with c being the Euler characteristic and g the genus5 of
a graph (i.e., the number of handles attached to the sphere
to make it homeomorphic to the surface on which the
given graph is embedded; g = 0 for a planar graph and 1
for a toroidal graph). Positive/negative c values indicate
positive/negative curvature of a lattice. This formula is use-
ful for checking the consistence of an assumed structure.

Nuclearity of fullerene polyhedra can be counted by
Goldberg’s6 relation:

m = (a2 + ab + b2); a ≥ b a + b > 0 (4)

which predicts the multiplication factor m in a 3-valent
map transformed by a given operation (see below). The



m factor is related to the formula giving the volume of a
truncated pyramid, of height h: V = mh/3, from the ancient
Egypt.

This paper is organized as follows: the next (second)
section presents some classical composite operations, with
definitions given in terms of simple map operations; the
third section deals with generalized operations, inspired
by Goldberg’s representation of polyhedra in the (a,b)
»inclined coordinates«; the fourth section presents some
molecular realizations of these composite operations, both
as closed and open objects. The last two sections provide
a summary of the paper and the references, respectively.

CLASSICAL COMPOSITE OPERATIONS

We are restricted here to the most important composite
operations, assuming that the basic, simple operations, such
as: Dual, Medial, Stellation, Truncation, Snub, etc., are
known. The reader can consult some previously publish-
ed papers.1,2,7

LEAPFROG Le (tripling) operation8–12 can be written
as:

Le(M) = Du(P3(M)) = Tr(Du(M)) (5)

where P3 is a particular case of the Polygonal Ps capping
(s = 3, 4, 5), realizable13,14 by (i) adding a new vertex in
the center of the face, (ii) putting s-3 points on the boun-
dary edges, and (iii) connecting the central point with one
vertex (end points included) on each edge. In this way, the
parent face is covered by trigons (s = 3), tetragons (s = 4)
and pentagons (s = 5). The P3 operation is also called
stellation or (centered) triangulation.

A sequence of stellation-dualization rotates the parent
s-gonal faces by p/s. Leapfrog operation is illustrated,
for a pentagonal face, in Figure 1.

A bounding polygon, of size 2d0, is formed around
each original vertex. In the most frequent cases of 4- and
3-valent maps, the bounding polygon is an octagon and
a hexagon, respectively.

The following formulas account for lattice parame-
ters of the transformed map:

Le(M): n = s0 f0 = d0n0; e = 3e0; f = n0 + f0;
m(1,1) = 3 (6)

In trivalent maps d0 = 3, so that Le(M) is also called
a tripling operation. Note that the vertex degree in Le(M)
is always 3, as a consequence of dualization of a trian-
gulation.

A nice example of using the Le operation is: Le(Dode-
cahedron) = Fullerene C60. The leapfrog operation can be
used to isolate the parent faces by surrounding bounding
polygons. The transformed Le-fullerenes have a closed
shell p-electronic structure.2

CHAMFERING (quadrupling) Q is another composite
operation, achieved by the sequence:6,13,14

Q(M) = E_(TrP3
(P3(M))) (7)

where E_ means the (old) edge deletion in the truncation
TrP3

of the new, face centered, vertices introduced by the
P3 capping (Figure 2). The old vertices are preserved.

The following formulas relate lattice parameters of
the transformed map to those of the parent map:

Q(M): n = (d0 + 1)n0; e = 4e0; f = f0 + e0;
m(2,0) = 4 (8)

Q operation leaves the initial orientation of the poly-
gonal faces unchanged. Note that the chamfering of a 4-
valent map is not a regular graph anymore (because of
the mixing of the new trivalent vertices with the parent
4-valent ones). Only a 3-valent map is chamfered to a
3-regular graph.

Q always isolates the parent faces by hexagons. An
example of this operation is: Q(Dodecahedron) = Ful-
lerene C80. The transformed Q-fullerenes preserve the
p-electronic structure of the parents.14

The »chamfering« (edge chamfering being equivalent
to vertex truncation)6 is most often called »quadrupling«,
by the vertex multiplication m = 4, in trivalent maps.

CAPRA Ca (septupling) – the goat is the romanian
equivalent of the English children’s game leapfrog. It is
a composite operation,15 necessarily coming third, by
the Goldberg’s6 multiplying factor m(2,1).

The transformation can be written as:14

Ca(M) = TrP5
(P5(M)) (9)
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M Le(M)

Figure 1. Leapfrogging a pentagonal face of a trivalent map.

Q(M)M

Figure 2. Quadrupling a pentagonal face of a trivalent map.



with TrP5
meaning the truncation of new, face centered,

vertices introduced by the P5 capping (Figure 3). Note
that, P5 involves an E2 (i.e., edge trisection) operation.

Ca isolates any face of M by its own hexagons, which
are not shared with any old face (in contrast to Le or Q).
The transformed Ca-fullerenes preserve the p-electronic
shell type of the parents.14

Ca operation can continue with an En homeomorphic
transformation of the edges bounding the parent-like faces
(i.e., those resulting from TrP5

), thus resulting in open
maps with all polygons of the same (6+n) size. This last
simple operation is hereafter denoted13,14 by Opn.

The sequence leading to open objects within this
operation can be written as:

Opn(Ca(M)) = Opn(TrP5
(P5(M))) (10)

When n = 1, this specification is omitted. The Op
objects (i.e., molecules) have an open-shell p-electronic
structure, eventually including non-bonding orbitals.

Table I lists the net parameters in Capra transforms,15

either in simple or iterative application to finite or infi-
nite (i.e., open) objects.

According to the m-value in trivalent maps, Capra is
a septupling S1 operation. Another septupling operation
S2 was defined in Ref. 13.

Only a 3-valent regular map leads to a regular 3-valent
graph in Capra; clearly, maps/graphs of a degree greater
than 3 will not be regular anymore.

Since pentangulation of a face can be done either
clockwise or counter-clockwise, it results in an enantio-
meric pair of objects: CaS(M) and CaR(M), in terms of
the sinister/rectus stereochemical isomers.15 Figure 4 il-
lustrates the Schlegel projections of such a pair derived
from the cube.

Sequence CaS(CaS(M)) results in a twisted trans-
form, while CaR(CaS(M)) will straighten the (central part
of) structure. Sequence Du(Op(Ca(M))) is just the snub
Sn(M), this transform being a chiral one. Examples will
be given below.

GENERALIZED OPERATIONS

One of us (P. E. J.) has proposed a generalization of ope-
rations on maps, inspired by the work of Goldberg,6 and
its representation of polyhedra in the (a,b) »inclined co-
ordinates« (60° between axes). The nuclearity multipli-
city factor m is given by Eq. (4).
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E2(M) Ca(M)

Figure 3. Capring a pentagonal face of a trivalent map.

TABLE I. Parameters transformed by the iterative Ca operation

Operation Parameter

Ca(M) n1 = n0 + 2e0 + s0 f0 = (2d0 + 1)n0
e1 = 7e0
f1 = s0f0 + f0

Op(Ca(M)) n1Op = n1 + s0f0 = (3d0 + 1)n0
e1Op = 9e0
f1Op = f1 – f0 = s0f0

Ca2(M) n2 = n1 + 2e1 + s∑ f1,s = n1 + 2e1 + 7s0 f0 = n0 + 32e0
e2 = 72 e0
f2 = s∑ f1,s + f0 = 8s0 f0 + f0

Op(Ca2(M)) n2Op = n1Op + 2e1Op + 7f1Op = n0 + 38e0
e2Op = 3n0 + 108e0
f2Op = (7+1)f1Op = 16e0

Can(M) case d0 > 3
nn = 8nn–1 – 7nn–2 ; n ≥ 2

Figure 4. Enantiomeric pair of Capra transforms of the cube
(Schlegel projection).



Figures 5 and 6 illustrate the method on a hexagonal
face. The points of the »master« hexagon must lie either
in the center of a lattice hexagon or on a lattice vertex.
The edge length of the parent hexagon is counted by the
primitive lattice vectors.

A similar procedure was used by Coxeter,16 who built
up icosahedral polyhedra/fullerenes as dual master trian-
gular patches, represented by pairs of integers.

Some of the generalized composite operations, corres-
ponding to non-prime m, can be expressed as operation
sequences, as shown in Table II. It is obvious that (a,a)
and (a,0) operations provide achiral products (e.g., fulle-
renes of the full Ih point group symmetry) while (a,b), a ≠ b,
result in chiral transformed maps (e.g., fullerenes of the ro-
tational I point group symmetry). The (a,0) operations pro-
duce non-rotated maps. The above generalized operations,
as implemented in the software package CageVersatile,17

work on any face and vertex-degree type maps. The only
problem in applying the algorithm appears in cases of odd-
fold master faces, centered at a point, as is the case of (3,1)
operation. In such cases, a different procedure was used.

In the case of trivalent regular maps, relations (1) and
(2) can be rewritten as:

3 ⋅ n0 = 2 ⋅ e0 = s0 ⋅ f0 (11)
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Figure 5. Generalized (a, a) and (a, 0) operations.
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Figure 6. Generalized (a, b) operation: a = b + 1.

TABLE II. Inclined coordinates (a, b), multiplication factor m = (a2 + ab + b2), number of atoms N and operation symbols
(running on the dodecahedral C20 fullerene)

(a, b) m N Operation Obs.

1 (1, 0) 1 20 I Identity

2 (1, 1) 3 60 Le1,1 Rotated by p / s; achiral

3 (2, 0) 4 80 Q2,0 Non-rotated; achiral

4 (2, 1) 7 140 Ca2,1 Rotated by p / 2s; chiral

5 (2, 2) 12 240 Le1,1, Q2,0 Rotated by p / s; achiral

6 (3, 0) 9 180 Le1,1, Le1,1 Non-rotated; achiral

7 (3, 1) 13 260 – Rotated; chiral

8 (3, 2) 19 380 – Rotated; chiral

9 (3, 3) 27 540 Le1,1, Le1,1, Le1,1 Rotated by p / s; achiral

10 (4, 0) 16 320 Q2,0, Q2,0 Non-rotated; achiral

11 (4, 1) 21 420 Le1,1, Ca2,1 Rotated; chiral(a)

12 (4, 2) 28 560 Q2,0, Ca2,1 Rotated by p / 2s; chiral

13 (4, 3) 37 740 – Rotated; chiral

14 (4, 4) 48 960 Le1,1, Q2,0, Q2,0 Rotated by p / s; achiral

15 (5, 0) 25 500 – Non-rotated; achiral

16 (5, 1) 31 620 – Rotated; chiral

17 (5, 2) 39 780 – Rotated; chiral

18 (5, 3) 49 980 Ca2,1, Ca2,1 chiral / achiral(a)

19 (5, 4) 61 1220 – Rotated; chiral

20 (5, 5) 75 1500 – Rotated; achiral

(a) Achiral, when the sequence CaR(CaS(M)) is used.



Keeping in mind the multiplication factor m (see Eq.
(4)), the number of vertices in the transformed map is:

n1 = m ⋅ n0 (12)

Eq. (11) leads to:

3 ⋅ n1 = 3 ⋅ m ⋅ n0 = 2 ⋅ e1 (13)

e1 =
3

2
⋅ m ⋅ n0 =

3

2
⋅ m ⋅ 2

3
e0 = m ⋅ e0 (14)

The above operations introduce new hexagons, keep-
ing the original faces. Thus, the number of faces of any
size s in M1 is:

f1,s = f1,6 + f0 (15)

Relation (11) becomes:

2 ⋅ e1 = s∑ ⋅ f1,s = 6 ⋅ f1,6 + s0 ⋅ f0 (16)

Substitution of e1 in (16) leads to:

f1,6 =
m −1

6
⋅ s0 ⋅ f0 (17)

f1,s =
m −1

6
⋅ s0 ⋅ f0 + f0 (18)

For the nth iterative operation, one deduces:

nn = mn ⋅ n0 (19)

en = mn ⋅ e0 (20)

fn,s =
m

n −1

6
⋅ s0 ⋅ f0 + f0 (21)

Relations (19) to (21) hold for all the presented opera-
tions running on a trivalent regular M0. In other words,
the above relations are true of the 3-valent Platonic solids:
tetrahedron T, cube C and dodecahedron D.

For other degree maps, in cases of Le, Q and Ca
operations, some relations are presented elsewhere.18

MOLECULAR REALIZATION

This section illustrates the »molecular« realization or, in
other words, the transformation of molecules (such as
graphitoids) by mathematical operations.

Closed Objects

It has been established that Le operating on fullerenes
provides properly closed p-shell, Clar fullerenes. The Q
and Ca operations, more related to each other, generally
do not change the shell-type of the parent.

Recall that, according to the Clar theory, any poly-
hedral map may be searched for a perfect Clar PC struc-

ture2,19 (Figure 7), which is a disjoint set of faces (built
up on all vertices in M) whose boundaries form a 2-fac-
tor. A k-factor is a regular k-valent spanning subgraph. A
PC structure is associated with a Fries structure,20 which
is a Kekulé structure having the maximum possible n/3
number of benzenoid (alternating single-double edge)
faces. A Kekulé structure is a set of pairwise disjoint ed-
ges/bonds of the molecule (over all of its atoms) that
coincides with a perfect matching and a 1-factor in Graph
Theory. A trivalent polyhedral graph, like that of fulle-
renes, has a PC structure if and only if it has a Fries
structure.2 Such structures represent total resonant sextet,
TRS, benzenoid molecules and are expected to be extre-
mely stable, in the valence bond theory.2,21 Leapfrog Le
is the only operation that provides PC transforms.

Coverings larger than benzene, like naphthalene or
azulene (i.e., a pair of pentagonal-heptagonal carbon
rings), appear only slightly less favorable in the valen-
ce-bond based conjugated circuit theory.21–24

By extension, Diudea13 proposed a corannulenic sy-
stem (Figure 7b). A Disjoint Corannulenic DCor struc-
ture is a disjoint set of corannulenes, all interconnected
by essentially single bonds. This represents the connect-
ed equivalent of the Fries structure.

Among the above three classical composite opera-
tions, Le, Q and Ca, none is able to provide a DCor struc-
ture. This is, however, possible by the operation sequen-
ce Le(Q(M)) or Q(Le(M)), as shown in Figure 7b. This
sequence is equivalent to the generalized (2,2) operation.

Any DCor cage shows also a PC structure, the reci-
procal being not necessarily true. The supra-organized
corannulenic units are expected to contribute to the sta-
bility of the whole molecule. The need for a disjoint Cor
system comes from the sense of the (large) ring current.
Theoretical calculations by the ipsocentric CTOCD (i.e.,
continuous transformation of the origin of current den-
sity) method25 show diatropic current circulation, close to
the corannulenic external boundary, whose intensity could
diminish due to counter-sense currents, in eventual adja-
cent (i.e., edge sharing) Cor units.26–28
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(a) (b)

(3,0)(C20) = Le(Le(C20)) = C180 (2,2)(C20) = Q(Le(C20)) = C240
PC DCor

Figure 7. Transforms of C20, by generalized operations, leading
to perfect Clar PC (a) and disjoint corannulenic DCor (b) struc-
tures.



The sequence Ca(Le(M)) provides another kind of
corannulenic pattern: joint corannulenic JCor, with join-
ed Cor faces. Looking at the Cor-flowers as »supra« faces,
the transform by Ca of a 3-valent Platonic tessellation (s,
3) remains a Platonic covering, but now it must be writ-
ten as (([s]Cor, 3), s being the size of the core polygon.

As shown above, if a molecule shows a DCor struc-
ture, additional stabilization is expected. It is also pos-
sible for such molecules to behave in the magnetic field
similarly to planar corannulenes, as investigated by se-
veral authors.26–28 We hope that the hypothesis concerning
DCor (see also Refs. 29–32) will be proved in the near
future.

As mentioned above, operations (a,b), a ≠ b provide
chiral transformed maps. It is, however, possible for the
horizontal edge of the parent hexagon to be inclined either
to the right or to the left, thus resulting in pair operations
and enantiomeric products (see Figure 4).

If a composite operation includes an even repetition
of a pro-chiral operation, the sequence of one kind pro-
chiral operation will lead to either a chiral transform or
an achiral object, the last one in the case of 1:1 ratio of
pro-enantiomeric operations (see Figure 8).

Open structures

A sequence of different operations enables to construct
various objects, with either positive or negative curva-
ture.15, 33–36

Recall that an orientable surface S (i.e., having two
sides) is characterized by the Euler parameter c(M) =
2(1 – g) (see also Eq. (3)). c(M) is directly calculable by
the genus5 g, being the number of holes made in a plas-
tic sphere to make it homeomorphic to S. Positive/nega-
tive c values indicate positive/negative curvature of a
lattice embedded in S. Embedding is a representation of
a graph on a closed surface such that no crossing lines
appear.5,37

Negative curvature can be induced in graphite (the
reference, of zero curvature) by replacing hexagons by
sevenfold, or larger sized rings. Such nets cannot form
closed polyhedra, in contrast to the objects derived from
graphite by introducing pentagons or smaller rings, which

bring positive curvature, causing cage closure. Thus, ne-
gatively curved structures belong to infinite periodic sur-
faces, with zero mean curvature.

The operation leading to open (repeat) units is Opn,
which is an En homeomorphic transformation of the
parent faces. Most often n = 1, thus being omitted. It can
be associated with any composite operation. In this res-
pect, the (2,1) Capra operation is particularly suitable.15

Figure 9 illustrates the Op(Ca(M)) sequence.

Open (transformed) maps can no longer be embedded
in a surface of genus zero (e.g., in the plane or the sphere).
Thus, according to (3), negative c values need g > 1 (see
Figure 9).

The genus5 of an open Capra object, Op(Ca(M)), is
calculable by using the results from Table I and Eq. (3),
as:15

c(Op(Ca(M))) =
n1Op – e1Op + f1Op = n0 – e0 = 2 – 2g (22)

g = (2 – n0 + e0) / 2 = f0 / 2 (23)

Relation (23) arises from the spherical character of
the parent polyhedron, for which the Euler relation is writ-
ten as: n0 – e0 + f0 = 2. Since f0 is just the number of open
faces, (23) can be extended to any open object, derived
by a composite operation from a spherical polyhedron.

Clearly, lattices with g > 1 will have negative c(Op(M))
and consequently negative curvature. For the five platonic
solids, the genus of the corresponding (Op(Ca(M)) is: 2
(Tetrahedron); 3 (Cube); 4 (Octahedron); 6 (Dodecahe-
dron), and 10 (Icosahedron).

Note that Op(Ca(M)) leads to the Platonic (7,3) co-
vering of negatively curved units. An interesting example
of using the above operation sequence is as follows: the
Ca transform of Dodecahedron (Figure 10a) is opened by
Op1 (Figure 10b) and then capped by appropriate all pen-
tagon decorated caps. This is just the way13 to hypothe-
tic fullerenes,38 eventually covered only by pentagons and
heptagons.
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(5,3)(C) = CaS(CaS(C)); m = 49; n = 392 (7,0)(C) = CaR(CaS(C)); m = 49; n = 392
(Rotated; chiral) (Non-rotated; achiral)

Figure 8. A pair of Capra transforms of the cube.

(a) (b)

Op(Ca(T)) Op(Ca(C))
n = 40; e = 54; f7 = 12; g = 2 n = 80; e = 108; f7 = 24; g = 3

Figure 9. Opening Op operation leads to negative curvature lat-
tices, embedded as repeat units in genus 2 and 3 surfaces.



Subsequent transformation of open objects leads to
more relaxed units (Figure 11). Such open, negatively
curved units can be viewed as rational models for 3D
junctions of nanotubes.33,39

Using the building block Op(Ca(T)), Diudea13 con-
structed a supra-molecular (open) dodecahedron, a multi-
torus of genus 21, entirely covered by heptagons F7 (Fig-
ure 12a). A new capring leads to a more relaxed object
(Figure 12b). Such supra-dodecahedra represent one of
the twin labyrinths interlaced in construction of the FRD-
type surface; they could appear in a self-assembling pro-
cess in the synthesis of nanoporous schwarzites.40–42

The sequence Le(Op(Ca(M))) enables a covering by
disjoint azulenic (5,7) units,13 shown as infinite repeat
units in Figure 13. The building block Le(Op(Ca(T)))
can be used13 to construct the supra-dodecahedron in
Figure 13b, entirely covered by azulenic disjoint units.
They represent fully-resonant-azulenoid objects (of g >
0), in terms of Kirby’s extension23,43 of the Clar theory19

on benzenoid systems.

CONCLUSIONS

Convex polyhedra, starting from the Platonic solids and
going to spherical fullerenes, can be generated by map
operations.

Three composite map operations: leapfrog, chamfer-
ing and capra, have been analyzed with respect to their
characteristics.

Generalization of the above operations provided a
series of transformations, characterized by distinct, suc-
cessive pairs in the Goldberg multiplication formula
m(a,b).

Parents and products of most representative opera-
tions have been illustrated, both as finite cages or infi-
nite repeat units.

REFERENCES

1. T. Pisanski and M. Randi}, in: C. A. Gorini, (Ed.), Geo-

metry at Work, Math. Assoc. Am. 53 (2000) 174–194.
2. P. W. Fowler and T. Pisanski, J. Chem. Soc., Faraday Trans.

90 (1994) 2865–2871.
3. L. Euler, Comment. Acad. Sci. I. Petropolitanae 8 (1736)

128–140.
4. L. Euler, Novi Comment. Acad. Sci. I. Petropolitanae 4 (1758)

109–160.
5. F. Harary, Graph Theory, Addison-Wesley, Reading, MA,

1969.
6. M. Goldberg, Tohoku Math. J. 43 (1937) 104–108.

GENERALIZED OPERATIONS ON MAPS 361

Croat. Chem. Acta 79 (3) 355¿362 (2006)

(a) (b)

Ca(D) Op(Ca(D)); S = 1.574
n = 140 n = 200; e = 270; f7 = 60; g = 6

Figure 10. Closed and open objects by Capra.

CaR(Op(CaS(C))) CaR(Op(CaS(D)))
n = 464; e = 660; f = 192; g = 3 n = 1160; e = 1650; f = 480; g = 6

Figure 11. Units of negative curvature, derived by operation se-
quences from the cube and dodecahedron.

(a) (b)

Supra-D(Op(Ca(T))) Ca(Supra-D(Op(Ca(T))))
n = 620; e = 900; f7 = 240; g = 21 n = 4100; g = 21

Figure 12. Supramolecular structures built-up by tatrahedral units.

(a) (b)

Le(Op(Ca(T))) Supra-(azulenic)-D(Le(Op(Ca(T))))
n = 120; e = 174; f7 = 52; g = 2 n = 2400; g = 21

Figure 13. Units covered by disjoint azulenic pairs, representing
fully-resonant-azulenoid (aromatic) structures.



7. M. V. Diudea, P. E. John, A. Graovac, M. Primorac, and T.
Pisanski, Croat. Chem. Acta 76 (2003) 153–159.

8. P. W. Fowler, Phys. Lett. 131 (1986) 444–450.
9. P. W. Fowler and J. I. Steer, J. Chem. Soc., Chem. Commun.

(1987) 1403–1405.
10. P. W. Fowler and K. M. Rogers, J. Chem. Soc., Faraday

Trans. 94 (1998) 1019–1027.
11. P. W. Fowler and K. M. Rogers, J. Chem. Soc., Faraday

Trans. 94 (1998) 2509–2514.
12. M. V. Diudea and P. E. John, MATCH, Commun. Math.

Comput. Chem. 44 (2001) 103–116.
13. M. V. Diudea, Forma 19 (2004) 131–136.
14. M. V. Diudea, in: M. V. Diudea (Ed.), Nanostructures-Novel

Architecture, NOVA, New York, 2005, pp. 203–242.
15. M. V. Diudea, Studia Univ. Babess-Bolyai (Cluj) 48 (2003)

3–16.
16. H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Pubs,

Dover, 1973.
17. M. Stefu and M. V. Diudea, CageVersatile 1.3, Babess-Bolyai

University (Cluj), 2003.
18. M. Stefu, M. V. Diudea, and P. E. John, Studia Univ. Babess-

Bolyai (Cluj) 50 (2005) 165–175.
19. E. Clar, The Aromatic Sextet, Wiley, New York, 1972.
20. K. Fries, J. Liebigs Ann. Chem. 454 (1927) 121–324.
21. J. R. Dias, J. Chem. Inf. Comput. Sci. 39 (1999) 144–150.
22. D. J. Klein and H. Zhu, in: A. T. Balaban, (Ed.), From Chemi-

cal Topology to Three-Dimensional Geometry, Plenum Press,
New York, 1997, pp. 297–341.

23. E. C. Kirby, MATCH, Commun. Math. Comput. Chem. 33
(1996) 147–156.

24. J. V. Knop, W. R. Muller, K. Szymanski, S. Nikoli}, and N.
Trinajsti}, MATCH, Commun. Math. Comput. Chem. 29 (1993)
81–106.

25. T. A. Keith and R. F. W. Bader, Chem. Phys. Lett. 210
(1993) 223–231.

26. A. Acocella, R. W. A. Havenith, E. Steiner, P. W. Fowler,
and L. W. Jenneskens, Chem. Phys. Lett. 363 (2002) 64–72.

27. P. W. Fowler and E. Steiner, Chem. Phys. Lett. 363 (2002)
259–266.

28. P. Lazzeretti, in: J. W. Emsley, J. Feeney, and L. H. Sutcliffe
(Eds.), Progress in Nuclear Magnetic Resonance Spectro-

scopy, Elsevier, Amsterdam 36 (2000) 1–88.
29. H. Hosoya, Y. Tsukano, K. Nakada, S. Iwata, and U. Naga-

shima, Croat. Chem. Acta 77 (2004) 89–95.
30. H. Hosoya, Y. Tsukano, M. Ohuchi, and K. Nakada, in: M.

Doyama, J. Kihara, M. Tanaka, and R. Yamamoto (Eds.),
Computer Aided Innovation of New Materials II, Elsevier,
1993, pp. 155–158.

31. J.-I. Aihara, T. Yamabe, and H. Hosoya, Synth. Met. 64
(1994) 309–313.

32. D. J. Klein, T. @ivkovi}, and A. T. Balaban, MATCH, Com-

mun. Math. Comput. Chem. 29 (1993) 107–130.
33. Cs. L. Nagy and M. V. Diudea, Studia Univ. Babess-Bolyai 48

(2) (2003) 37–46.
34. A. L. Mackay and H. Terrones, Nature 352 (1991) 762–762.
35. D. Vanderbilt and J. Tersoff, Phys. Rev. Lett. 68 (1992) 511–

513.
36. T. Lenosky, X. Gonze, M. Teter, and V. Elser, Nature 355

(1992) 333–335.
37. J. L. Gross and T. W. Tucker, Topological graph theory, Do-

ver Pubs, Dover, 2001.
38. A. Dress and G. Brinkmann, MATCH, Commun. Math. Com-

put. Chem. 33 (1996) 87–100.
39. Cs. L. Nagy and M. V. Diudea, in: M. V. Diudea (Ed.), Na-

nostructures-Novel Architecture, NOVA, New York, 2005,
pp. 311–334.

40. H. A. Schwarz, Monatsber. Dtsch. Wiss. Acad. Berlin, 1865.
41. H. A. Schwarz, Gesammelte Matematische Abhandlungen,

Springer, Berlin, 1890.
42. G. Benedek, H. Vahedi-Tafreshi, E. Barborini, P. Piseri, P.

Milani, C. Ducati, and J. Robertson, Diamond Relat. Mater.
12 (2003) 768–773.

43. E. C. Kirby, in: M. V. Diudea (Ed.), Nanostructures-Novel

Architecture, NOVA, New York, 2005, pp. 175–191.

SA@ETAK

Poop}ene operacije na kartama

Mircea V. Diudea, Monica Stefu, Peter E. John i Ante Graovac

Karta je kombinatorni prikaz zatvorene povr{ine. Nad konveksnim poliedrima, od Platonovih tijela pa do
kuglastih fulerena, mogu se provoditi razne operacije kako bi se dobili novi objekti s velikim brojem vrhova i
raznim prekrivanjima. Tri operacije na kartama, leapfrog, chamfering i capra, igraju sredi{nju ulogu u kon-
strukciji fulerena i prou~avanju njihovih elektronskih svojstava. Poop}enja ovih operacija vode do niza trans-
formacija karakteriziranih uzastopnim i razli~itim parovima brojeva u Goldbergovoj formuli. Za najva`nije ope-
racije prikazani su roditelji i potomci.
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