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INTRODUCTION

In many contexts, such as drug screening, reaction/no
reaction testing or presence/absence sampling, educatio-
nal and psychological tests... collected data are of dicho-
tomous type and therefore units are presented with binary
vectors. If we aim to present such units graphically or
classify them into classes, the first step is to calculate
'distances' between units or classes of units. A group of
dissimilarity measures designed for binary vectors is po-
pularly known as matching coefficients.

In his article,1 Hubálek gives a list of 43 association
(affinity) or similarity (resemblance) coefficients and stres-
ses:
''The purpose of this survey is to compare both theoreti-
cally and empirically a substantial majority of association
and similarity coefficients (used, or just proposed), and to
select a group of those which will be found most useful
and theoretically least objectionable.''

Continuing his work from this and other lists, we
have chosen and compared 22 association coefficients.2

We found classes of order equivalent coefficients and we
calculated distances between these classes.

In the paper of Verbanac at al.,3 the authors com-
ment on this approach:

''Use of Daylight binary fingerprints as structural de-
scriptors and Tanimoto coefficient as a similarity measure
is a common practice, in spite of their limitations.''

In this paper, we discuss a further step to a better
knowledge and adequate application of association and si-
milarity coefficients. Namely, some data analysis methods
demand that dissimilarities used should be Euclidean or
metric or..., but dissimilarity measures used in applica-
tions often do not have all these nice properties (see Table
I). For example, graphical representations of multivariate
data, widely used in research and applications of many
disciplines, are based on techniques of representing a set
of observations by a set of points in a low-dimensional
real (usually) Euclidean vector space, so that observations
that are similar to one another are represented by points
that are close together. Multidimensional scaling (MDS)



techniques belong to this family of graphical representa-
tions. Here, different approximations give rise to the dif-
ferent techniques of MDS: Metric MDS and Nonmetric
MDS – see Cox and Cox.4 Assumption of the metric MDS
techniques (called Classical Scaling or Principal Coordi-
nates Analysis) is that the dissimilarities between obser-
vations are distances within a set of points in some Eu-
clidean space.

We discuss power transformation as a method that
transforms nonmetric dissimilarities into metric distances,
or nonmetric dissimilarity measures into metric dissimila-
rity measures. There is a simple geometric interpretation
of this passage from nonmetric to metric: any power be-
tween 0 and 1 of dissimilarity d increases the short dis-
tances – usually the range of dissimilarity is [0, 1], rela-
tively more than the long distances, retaining the metric
inequality to hold for 'metric triples' and forcing it to hold
for 'nonmetric triples'. Also, if the range of a dissimila-
rity is [0, ∞], the power transformation da for a between
0 and 1 is a concave function and therefore it has the
sub-additivity property that retains the metric inequality
to hold for the 'metric triples' and forces it to hold for
'nonmetric triples'.

As a brief example, if the values of dissimilarity d

between units X, Y and Z are d(X, Y) = 0.49, d(X, Z) =
0.25 and d(Y, Z) = 0.25, the triangle inequality holds

d(X, Y) = 0.49 ≤ 0.25 + 0.25 = d(X, Z) + d(Z, Y)

and if we calculate the square root of dissimilarity d,

d
1

2 (X, Y) = 0.7 ≤ 0.5 + 0.5 = d
1

2 (X, Z) + d
1

2 (Z, Y)

the triangle inequality remains. But if we begin with 'non-
metric triple' U, V and W with the dissimilarities d(U, V) =
0.81, d(U, W) = 0.25 and d(V, W) = 0.25, the triangle in-
equality does not hold

d(U, V) = 0.81 ≤/ 0.25 + 0.25 = d(U,W) + d(V,W)

and calculating the square root of dissimilarity d,

d
1

2 (U, V) = 0.9 ≤ 0.5 + 0.5 = d
1

2 (U, W) + d
1

2 (V, W)

we gain the triangle inequality. If we continue this cal-
culation with even lower values of the exponent, for
example 1/4

d
1

4 (U, V) =

0.948 ≤ 0.707 + 0.707 = d
1

4 (U, W) + d
1

4 (V, W)

the triangle inequality remains and if we continue, at the
end, we get the discrete distance for the 0 value of the
exponent.

Any exponent higher than 1 has the opposite effect,
making it more difficult for triangles to close in the dis-
similarity space.

Since our idea is to transform a given nonmetric dis-
similarity measure into a metric distance or semi-distance,
the natural task is to find the highest value of the exponent
that forces all triangles to close in a dissimilarity space.
With this exponent, the changes caused by the power
transformation of the given dissimilarities between units
are the least possible.

We call this highest value of the exponent the metric
index of the dissimilarity measure.

In this paper, we

• develop a method for determining the metric index for
even nonnegative dissimilarity measures on binary vec-
tors, and

• evaluate the exact values of metric indices for 19 dis-
similarity coefficients.

PRELIMINARIES

Dissimilarities

Consider a set of units E. Function d is a dissimilarity
measure on the set of units E if and only if it is

P1. symmetric: d(X, Y) = d(Y, X) for all X, Y ∈ E, and

P2. straight: d(X, X) ≤ d(Y, X) for all X, Y ∈ E.

A dissimilarity measure d that is

D1. nonnegative: d(X, Y) ≥ 0 for all X, Y ∈ E, and

D2. vanishes on the diagonal: d(X, X) = 0 for all X ∈ E

is a dissimilarity on E. The ordered pair (E, d) is a dis-
similarity space. We denote by D+ the set of all dissimi-
larities on E.

Moreover, a dissimilarity measure d on E is said to
be

D3. definite if and only if d(X, Y) = 0 ⇒ X = Y;

D4. even (semi-definite) if and only if d(X, Y) = 0 ⇒ for
all Z ∈ E: d(X, Z) = d(Y, Z);

D5. metric if and only if the triangle inequality for all
X, Y, Z ∈ E: d(X, Y) ≤ d(X, Z) + d(Y, Z) holds.

D6. ultrametric if and only if the ultrametric inequality
for all X, Y, Z ∈ E: d(X, Y) ≤ max{d(X, Z), d(Y, Z)}
holds.

D7. additive if and only if Buneman’s inequality or four-
point condition d(X, Y) + d(U, V) ≤ max(d(X, U) + d(Y,
V), d(X, V) + d(Y, U)) holds for all X, Y, U, V ∈ E.

These properties are related as follows:

D6 ⇒ D5 ⇒ D4 ⇐ D3 and D7 ⇒ D5.

See also the list of dissimilarity measures on binary vec-
tors and their properties in Table I.
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Metric dissimilarity d on E is called a semi-distance.
Naturally, a dissimilarity space (E, d) is a semi-metric
space if and only if d is a semi-distance. (E, d) is a metric
space if and only if d is also definite; then, d is a dis-
tance or a metric. We denote the subset of D+ compris-
ing all semi-distances by D∞ – the notation established
in Classification and Dissimilarity Analysis.5

For all a > 0, we introduce the power transforma-
tion by

da(X, Y) := (d(X, Y))a for all X, Y ∈ E

where d is a nonnegative dissimilarity measure on E; and
for a = 0, we define d0 to be the discrete distance

d0(X, Y) : =
0

1

for

otherwise.

X Y=



,

We explicitly use the sign := for definitions and new
notations.

The power transformation preserves properties D1 –
D4 and D6. Note that we defined the power transforma-
tion for exponent a ≥ 0. If we define also

d∞ (X, Y) := lim
a→∞

da (X, Y) for all X,Y ∈ E

with d∞, we can lose D4, which is the evenness property.

For example, let’s d(X, Y) < 1, d(X, Z) < 1 and d(Y,
Z) > 1. Then, the values of transformed d∞ dissimilarities
are

d∞ (X, Y) = d∞ (X, Z) = 0 and d∞ (Y,Z) = ∞.

We see that, regardless of d, d∞ is not even.

Joly and Le Calvé proved5

• d ∈ D∞ ⇒ da ∈ D∞ for all a: 0 ≤ a ≤ 1 ;

• d ∈D+ ⇒ there is a unique nonnegative number p ∈IR ,
such that

da ∈ D∞ for all a: a ≤ p, and

da ∉ D∞ for all a: a > p.

We call this threshold value

p = p(d) := sup
a

{for all X, Y, Z ∈ E:

da(X, Y) ≤ da (X, Z) + da (Y, Z)}

the metric index of dissimilarity d. We can extend the de-
finition of a metric index to all nonnegative dissimilarity
measures and therefore we decided to use this term instead
of the distance index we used in previous papers.6,7,8,9

If a dissimilarity d is not even, then p(d) = 0.

For an ultrametric dissimilarity d, we have da ultra-
metric for all a ≥ 0 and therefore for an ultrametric d, we
define p(d) = ∞.

Association Coefficients

In the case when all the properties measured on each
unit are of the presence/absence type, the description of
a unit is a binary vector with the i-th component equal to
1 if the unit has the i-th property, and equal to 0 if it
lacks the i-th property. Therefore, if m is the number of
measured properties, the description of a unit X is a
binary vector x = [x1,..., xm] ∈ IBm, IB := {0, 1}, where

xi = 1, if unit X has the i-th property,

xi = 0, if X lacks the i-th property, i = 1, 2,...,m.

For x, y ∈ IBm we denote x y := x yi ii

m

=∑ 1
, x := [1 – xi]

and we define the counters

a := x y, b := x y, c := x y, d := x y,

where a + b + c + d = m. Using the letter d to denote the
counter and/or the dissimilarity measure might be con-
fusing, but its use is always evident from the context. Se-
veral association coefficients are defined with these coun-
ters.1,2,10 For example, Hubálek1 in his article gives a list of
43 coefficients. From this and other lists, we have chosen2

and compared 22 association coefficients and for our
analysis here we have selected 19 nonequivalent associa-
tion coefficients – see Table I. With adequate transfor-
mations – see column Diss. in Table I, we transformed
them to the dissimilarity measures having the range [0, 1]

or [0, ∞]. Note that association coefficients Q0 and – bc –
are dissimilarities denoted d12 and d15 and therefore no
transformation is needed.

Since the triangle inequality D5 implies evenness, we
further consider only even D4 dissimilarity measures.
Therefore, as defined at the end of previous section, the
noneven dissimilarities Q0,

1

2
(1 – Q), – bc – and Simp-

son’s 1 – s21 have a metric index equal to 0.

In cases of indeterminacy – expressions of the form 0

0
,

we eliminate indeterminacies by appropriately defining
values in critical cases. We use the definitions proposed
in Ref. 2 – the second column of Table I contains the la-
bels used there. This solution substantially simplifies our
study and also permits to write robust computer programs
for calculation of association coefficients.

For example, we defined Jaccard’s coefficient by the
expression:

s6 :=
1
a

a b c

d m

+ +







=for

otherwise,

,

thus ensuring s6(X,X) = 1 also for the vector 0 := [0, 0... 0].
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DETERMINING THE METRIC INDEX

Properties of the Metric Index

In this section, we give an alternative proof of the Joly
and Le Calvé theorem5 extended to even nonnegative dis-
similarity measures. This proof also suggests the method
for determining the metric index explained in the next
subsection (The Method).

Theorem 1. – For any even nonnegative dissimilarity mea-
sure d on E there is a unique nonnegative number p, its
metric index, such that

da is metric for all a ≤ p, and

da is not metric for all a > p.

Proof: For any three units X, Y, Z ∈E we can always as-
sume that

d(X, Y) ≤ d(X, Z) ≤ d(Y, Z) . (1)

We only consider cases such that d(X, Y) > 0, since by the
theorem assumption d is even and therefore d(X, Y) = 0
implies d(X,Z) = d(Y,Z). For such a triple, the triangle
inequality holds as an equality

402 M. BREN AND V. BATAGELJ
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Table I. Association coefficients

Measure Sim. si Definition Dissim. di D2 D3 D4 D5

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Russel and Rao (1940)

Kendall, Sokal-Michener (1958)

Rogers & Tanimoto (1960)

Jaccard (1900)

Kulczynski (1927), T–1

Dice (1945), Czekanowski (1913)

Sokal & Sneath (1963), un2

Kulczynski

Sokal & Sneath (1963), un4

Q0

Yule (1927), Q

– bc –

Driver & Kroeber (1932), Ochiai (1957)

Sokal & Sneath (1963), un5

Pearson, f

Baroni-Urbani, Buser (1976), S**

Braun-Blanquet (1932)

Simpson (1943)

Michael (1920)

s1

s2

s3

s6

s7

s8

s9

s10

s11

d12

s14

d15

s16

s17

s18

s19

s20

s21

s22

a

m

a d

m

+

a d

a d b c

+
+ + +2( )

a

a b c+ +

a

b c+

a

a b c+ +
1

2
( )

a

a b c+ +2( )

1

2
a

a b

a

a c+
+

+






1

4
a

a b

a

a c

d

d b

d

d c+
+

+
+

+
+

+






bc

ad

ad bc

ad bc

−
+

4
2

bc

m

a

a b a c( )( )+ +

ad

a b a c d b d c( )( )( )( )+ + + +

ad bc

a b a c d b d c

−
+ + + +( )( )( )( )

a ad

a b c ad

+
+ + +

a

a b a cmax( , )+ +

a

a b a cmin( , )+ +

4
2 2

( )

( ) ( )

ad bc

a d b c

−
+ + +

1–s

1–s

1–s

1–s

s–1

1–s

1–s

1–s

1–s

d

1

2
(1–s)

d

1–s

1–s

1

2
(1–s)

1–s

1–s

1–s

1

2
(1–s)

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

N

N

Y

N

N

N

N

N

N

N

N

N

Y

N

N



d(X, Y) + d(X, Z) = d(Y, Z) or
d(X, Y) + d(Y, Z) = d(X, Z)

or as an inequality d(X, Z) + d(Y, Z) = 2 d(X, Z) ≥ d(X, Y)
= 0, all remaining valid also for all da, a > 0.

An evident consequence of the inequality

ua + va ≥ (u + v)a for all a, 0 ≤ a ≤ 1

is that for all triples X, Y, Z ∈ E that satisfy the triangle
inequality, also

da(X, Y) + da(X, Z) ≥ da(Y,Z)

holds for all a, 0 ≤ a ≤ 1. Hence, if d is metric on E, its
metric index, if it exists, is more or equal to 1.

Now, if the triangle inequality holds for all da, a >
1, d is an ultrametric – see also Résultat 2 in Joly and Le
Calvé.5 To prove this, let for all a > 1

da(X, Y) + da (X, Z) ≥ da (Y, Z) . (2)

Since d(Y, Z) > 0, we can define

uXYZ :=
d X Y

d Y Z

( , )

( , )
and vXYZ :=

d X Z

d Y Z

( , )

( , )
.

We will omit the indexes, where there will be no possible
confusion: from (1) we have that u ≤ v ≤ 1 and dividing
(2) by da(Y, Z), we get

ua + va ≥ 1

for all a > 1, which is possible only if at least v is equal
to 1. Therefore, d(X,Z) = d(Y,Z) and d is ultrametric. We
pose p(d) = ∞.

When d is not an ultrametric, there is an a ∈ IR+ and
a triple X, Y, Z ∈ E, for which the dissimilarity measure
da is not metric

da(X,Y) + da(X,Z) ≤ da(Y,Z).

If we denote d := da, we have

d(X,Y) + d(X,Z) ≤ d(Y,Z)

indicating that d is not metric. Its metric index, if it exists,
is less than 1 and the relation between metric indexes
p(d) and p(d), if they exist, is p(d) = a p(d).

Therefore, without loss of generality, we can limit
our further discussion to triples X, Y, Z ∈ E that do not
obey the triangle inequality

d(X,Y) + d(X,Z) < d(Y,Z).

Dividing the inequality by d(Y,Z), we get

0 < u + v < 1.

Consider the function f: [0, 1] → IR defined by

f(a) := ua + va – 1.

It is continuous, f(0) = 1, f(1) = u + v – 1 < 0 and for 0 <
u, v < 1

f '(a) = ua ln u + va ln v < 0.

We see that f (a) is strictly decreasing and of opposite
signs at the endpoints of the interval [0, 1]. Hence, there
is a unique value a0 = a0(u, v) ∈(0, 1) such that f(a0) = 0,
that is

ua0 + va0 = 1.

Therefore,

da0 (X, Y) + da0 (X, Z) = da0 (Y, Z)

the metric inequality holds as an equality. For all a less
than a0, the function f(a) is positive

0 < f(a) = ua + va – 1

1 < ua + va

da(Y, Z) < da(X, Y) + da(X, Z)

the triangle inequality holds for the triple X, Y, Z. For all
a more than a0 the function f(a) is negative and the
triangle inequality fails.

Now, if for all triples X, Y, Z ∈E that fail the triangle
inequality, we compute the values a0, then there is unique

p := inf a0 ≥ 0

that we call the metric index of the dissimilarity d, p =
p(d). �

Corollary 2. – Under the conditions of Theorem 1, if the
set of units E is finite, then p(d) > 0.

Proof: See the end of the preceding proof. Because there
is a finite number of units, also the number of a0s is
finite and since a0 > 0, it follows that also p is positive,
p = min a0 > 0. �

Proposition 3. – Let d be metric on E. If there is a triple
X, Y, Z ∈ E such that d(X, Z) > 0, d(Y, Z) > 0 and

d(X, Y) = d(X, Z) + d(Y, Z)

then p(d) = 1.
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Proof: Evidently p(d) ≥ 1. Since for a > 1 and u, v > 0, it
follows that

(u + v)a > ua + va

and we have

da(X, Y) = (d(X, Z) + d(X, Z))a > da(X, Z) + da(Y, Z) .

The triangle inequality fails. Therefore, for a > 1, da is
not metric. �

When the set of units E = IBm – the case of dissi-
milarity measures on binary vectors, in general, the me-
tric index depends on their dimension. Therefore, for a
nonnegative dissimilarity measure d, we denote its metric
index on IBm by pm(d) or simply pm and consequently the
metric index p(d) of d valid on all sets of units IBm, m ∈
IN is

p(d) = inf{pm(d); m ∈ IN}.

The Method

This method for determining the metric index of any even
nonnegative dissimilarity measure on IBm is based on the
steps of the proof of Theorem 1.

Let d be an even nonnegative dissimilarity measure
on IBm. Our task is to find pm(d) for an arbitrary m ∈ IN,
that is the minimal exponent a such that

ux y z0 0 0

a + vx y z0 0 0

a = 1

holds for some triple x0, y0, z0 ∈ IBm, and for all other
triples x, y, z ∈ IBm

uxyz
a + vxyz

a > 1

holds.

On the region R ⊂ IR3 determined by inequalities

0 < u ≤ v < 1, u + v < 1 and 0 < a < 1

we observe the function F: R → IR defined by

F(u, v, a) := ua + va .

It is continuous and from its derivatives on R we see that
F is increasing and concave in directions u and v and de-
creasing and convex in direction a. Therefore we can
not apply methods of Linear or Mathematical program-
ming where convexity is essential for the existence of
the necessary and sufficient condition for global optima.
Hence, we constructed a step by step method to find the
(x0, y0, z0) triple and corresponding exponent a.

For a fixed m ∈ IN, we denote

B := {(x, y, z) ∈ IB3m; 0 < d(x, y) ≤ d(x, z) < d(y, z) ∧
d(x, y) + d(x, z) < d(y, z)}

and determine u0 := min{uxyz; (x, y, z) ∈ B}. Now we
restrict ourselves to

B0 := {(x, y, z) ∈ B; uxyz = u0}

and determine v0 := min{vxyz; (x, y, z) ∈ B0}; finally, a0

is determined by

u0
0a + v0

0a = 1 .

Proposition 4. – If v0 = u0 then pm = a0 is the metric index
of d on IBm.

Proof : For any triple (x, y, z) ∈ B we have

u0 = v0 ≤ uxyz ≤ vxyz .

Since F is an increasing function of u as well as of v, this
gives:

1 = F(u0, u0, a0) ≤ F(uxyz, vxyz, a0) .

As we proved in the previous section, there is a unique
value a such that

1 = uxyz
a + vxyz

a = F(uxyz , vxyz , a) ≤ F(uxyz , vxyz , a0) .

Since F is a decreasing function of a: a0 ≤ a and pm =
a0 holds. �

Remark 5. – For u0 = v0 the exponent a0 is obtained as
the solution

a0 = –
log

log

2

0u

of the equation 2 u0
0a = 1.

And this is the end only if we are lucky that u0 = v0. If
not?

Question: What if v0 > u0?

Let us denote s := u + v and rewrite F in the form

F(u, v, a) = ua + (s – u)a =; F (u, s, a) .

We study the function F on the region W ⊂ IR3 deter-
mined by inequalities

0 < u ≤ s

2
, 0 < s < 1 and 0 < a < 1.

F is continuous on W and from its derivatives on W we
see that F is increasing in directions u and s and de-
creasing in the a direction. We denote s0 := u0 + v0 and
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compute u = min{uxyz; (x, y, z) ∈ B \ B0}. Again we
restrict to

B1 := {(x, y, z) ∈ B; uxyz = u}

and compute v = min{vxyz; (x, y, z) ∈ B1}.

Proposition 6. – If s ≥ s0, then a > a0 holds.

Proof: Because u0 < u, s0 ≤ s = u + v and F is an in-
creasing function in u and s, we have

1 = u0
0a + v0

0a = F(u0, s0, a0) < F(u, s, a0) .

As we proved in the previous section, there is a unique
value a such that

1 = ua + va = F(u, s, a) < F(u, s, a0) .

Since F is a decreasing function in a, a0 < a holds.

Remark 7. – If s ≥ s0 for all (x, y, z) ∈B \ B0, then pm =
a0 holds.

And again, this is the end only if we are lucky that s ≥ s0.
If not?

Question: What if s < s0 for some (x, y, z) ∈ B \ B0?

Proposition 8. – If u ≥ 2
− 1

0a , then pm = a0 .

Proof: As the values u0, v0 (u0 < v0), a0 and u are known,
we determine

v = min{vxyz; uxyz = u}.

Since d(x, y) ≤ d(x, z), the lowest value we can get for v is
v = u and in this case the value of a is also minimal:

min a = –
log

log

2

u
.

Therefore, we can get a < a0 only if min a < a0, that is, if

u < 2
− 1

0a =: ub .
�

Now we can summarize the complete procedure of
determining pm and p:

STEP 1: Compute u0 and v0. If v0 = u0, then pm = –
log

log

2

0u
;

STEP 2: If v0 > u0, then compute also a0 and u. If u ≥ ub,
then pm = a0;

STEP 3: If u < ub, then determine B1, v and s.

If s ≥ s0, set B0 = B1 � B0 and continue with step 2.
Otherwise for

CASE A: F(u, v, a0) = ua0 + va0 ≥ 1: set B0 = B1 � B0

and continue with step 2.
CASE B: F(u, v, a0) = ua0 + va0 < 1: set u0 = u, v0 = v,

B0 = B1 � B0 and go back to step 1.

Since the sets B, B0 and B1 are finite, we get in a finite
number of steps the global minimum of all exponents
and so we determine the value of pm. Finally,

p = inf{pm; m ∈ IN}.

It may happen that pm does not depend on m.

The Method Written in Integer Coordinates

We can rewrite the dissimilarity measures among binary
vectors x, y, z ∈ IBm in the form that involves counters
that count frequencies of all possible triples component
wise. There are eight possible triples from 111 to 000 and
we denote their frequencies by A,B,...,H – see Table II,
where

A + B + C + D + E + F + G + H = m.

Since

axy = A + B axz = A + C ayz = A + E

bxy = C + D bxz = B + D byz = B + F

cxy = E + F cxz = E + G cyz = C + G

dxy = G + H dxz = F + H dyz = D + H

we can express

d(x, y) =: dxy(A,B,C,D,E,F,G,H),

d(x, z) =: dxz(A,B,C,D,E,F,G,H),

d(y, z) =: dyz(A,B,C,D,E,F,G,H)

where dxy, dxz and dyz map the lattice

Sm := {(A,B,C,D,E,F,G,H) ∈ IN8 :
A + B + C + D + E + F + G + H = m}

into the reals. Let

S := {(A,B,C,D,E,F,G,H) ∈ Sm :
0 < dxy ≤ dxz < dyz ∧ dxy + dxz < dyz},
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Table II. Frequencies of all possible triples

x 1 1 1 1 0 0 0 0

y 1 1 0 0 1 1 0 0

z 1 0 1 0 1 0 1 0

A B C D E F G H



u :=
d

d

xy

yz

and v :=
d

d

xz

yz

.

Of course, 0 < u + v < 1 on S. Now, we determine

u0 := min{u : (A,B,C,D,E,F,G,H) ∈ S},
S0 := {(A,B,C,D,E,F,G,H) ∈ S : u = u0} and
v0 := min{v : (A,B,C,D,E,F,G,H) ∈ S0}

and we follow steps 1 to 3 from the previous section just
replacing B, B0 and B1 by S, S0 and S1, respectively.

Local Optimization Procedure

We can approach the problem of determining the metric
index also by solving numerically the corresponding opti-
mization problem

p = argmax{a : ∀x, y, z ∈IBm : da(x, y) +

da(y, z) ≥ da(x, z)}.

We use a local optimization procedure

initial (read, random) x, y, z;

p := 1;

while ∃(u,v,w) ∈ N(x,y,z) : dp(u,v) + dp(v,w) < dp(u,w)

do begin

p := Solve(a : da(u,v) + da(v,w) = da(u,w) );

x := u; y := v; z := w

end

over a neighbourhood of the current triple
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Table III. The results of metric index computation

Dissimilarity
measure

Dimension m

2 3 4 5 20 50 100 p

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

1 – s1

1 – s2

1 – s4

1 – s6

s7
1−

1 – s8

1 – s9

1 – s10

1 – s11

d12

1

2
(1 – s14)

d15

1 – s16

1 – s17

1

2
(1 – s18)

1 – s19

1 – s20

1 – s21

1

2
(1 – s22)

0.5

0.706

0.564

1

1

0.489

0.630

0.563

1

0.630

0.630

0.474

0.595

0.562

0.804

0.603

0.564

0.462

0.575

0.561

0.731

0.592

0.526

0.379

0.500

0.553

0.594

0.569

0.378

0.335

0.436

0.548

0.575

0.566

0.316

0.308

0.395

0.544

0.570

0.565

0.279

1

1

log

log
.2

3

2

1709=

1

0

log

log
.2

3
0 630=

log

log
.2

3

2

1709=

0

0

0

0

0

0.5

0.564

0.564

0

1

0

0.279



N(x, y, z) =
{(x', y', z') : r ∈ 1..m ∧ (x'r = ¬xr ∨ y'r = ¬yr ∨ z'r = ¬zr)}.

This means that we get a triple of binary vectors (x', y',
z') from the neighbourhood if, at the selected position r,
we simply change at least one digit in at least one of bi-
nary vectors x, y or z.

From the local minima (x*, y*, z*) obtained by this
procedure, we can usually guess a general pattern of 'ex-
tremal' triples, from which we compute an upper bound
for pm:

pm := p(x*, y*, z*), x*, y*, z* ∈ IBm .

Example 9. – For the Sokal & Sneath dissimilarity d11 =
1 – un4, we obtain for m = 20 the local optimum solution

x* = [00000000000011111111],

y* = [00000000000011111110],

z* = [00000000000000000001]

with the corresponding dissimilarities

d11(x*, y*) = 0.050480769,
d11(x*, z*) = 0.310855263,
d11(y*, z*) = 0.611336032.

This gives the upper bound for the metric index p20 =
0.500366330.

In terms of integer coordinates: the upper bound p20

= 0.500366330 of the metric index p20 is attained when
B = 7, C = 1 and H = 12. Solution obtained with the
method confirms this results as the exact value of p20 –
see Table III.

RESULTS

We summarize all our results on metric index computa-
tion in Table III. The values of metric indexes given in
this table are exact to the third decimal place and ac-
cording to the statement of Joly and Le Calvé in sub-
sections Dissimilarities, if we take fewer decimals the
values have to be exact too. We calculated these values
of metric indices using the method explained in sections
The Method, steps 1 to 3, and The Method Written in In-

teger Coordinates. If only the p value is given, then pm

does not depend on dimension m.
For dissimilarities: Russel and Rao, two families Sq

– contain Kendall, Rogers & Tanimoto and Tq – contains
Jaccard, Dice and Sokal & Sneath un2, calculations of the
metric index are in Appendix, other complete calcula-
tions with all steps and proofs are available as a preprint
in the Preprint Series of the Institute of Mathematics,
Physics and Mechanics, University of Ljubljana. All steps
and proofs are also available at the www address
http://vlado.fmf.uni-lj.si/vlado/vladounp.htm.

CONCLUSIONS

In the paper we discussed power transformation as a
method that transforms nonmetric dissimilarities into
metric distances, or nonmetric dissimilarity measures into
metric dissimilarity measures. We presented a method for
determining the metric index of a given dissimilarity be-
tween binary vectors and we applied it to some well
known dissimilarity coefficients. The results obtained
offer new information that can be used when selecting
dissimilarity coefficients for applications.

We stress also that for Ochiai 1 – s16, Sokal & Sneath
1 – s17, Pearson (1 – s18)/2 and Dice 1 – s8 dissimilarities,
we confirmed the well known results, that their square
roots are distances.

We expect that the proposed method can be success-
fully applied to dissimilarities between other types of units.

Acknowledgments. – This work was supported in part by the
Ministry of Science of Slovenia. We thank dr. Ale{ Zalo`nik
for numerous remarks and suggestions that significantly im-
proved the presentation of the material.

APPENDIX

The results presented in the following sections were sug-
gested by the local optimization procedure and verified
with the method described in the section The Method.

Russel and Rao

If we write Russel and Rao dissimilarity measure

d1(x, y) := 1 – s1(x, y) = 1 –
a

m
=

b c d

m

+ +

in integer coordinates for x, y, z ∈ IBm, we get

dxy(A,B,...,H) = (C + D + E + F + G + H)/m,

dxz(A,B,...,H) = (B + D + E + F + G + H)/m and

dyz(A,B,...,H) = (B + C + D + F + G + H)/m.

If we assume 0 < dxy ≤ dxz ≤ dyz and write S := D + F + G

+ H, we have

uxyz = dxy / dyz =
C E S

B C S

+ +
+ +

,

vxyz = dxz / dyz =
B E S

B C S

+ +
+ +

.

The minimal value u0 = 1/m is attained when C + D + E

+ F + G + H = 1 and B + C + D + F + G + H = m, that
is, for A = E = 0, B = m – 1 and C = 1 or S = 1. We get
v0 when B = m – 1 and C = 1: v0 = (m – 1) / m. In this
case

THE METRIC INDEX 407

Croat. Chem. Acta 79 (3) 399¿410 (2006)



s0 = u0 + v0 =
1 1

m

m

m
+ −

= 1

and so a0 = 1. Since

s = uxyz + vxyz =
B C D E F G H

B C D F G H

+ + + + + +
+ + + + +

2( ) ≥ 1 ,

pm = a0 = 1 and therefore p = 1 – see Proposition 3. This
is in agreement with the fact that the triangle inequality
holds for d1 as written in Table I.

Families Sq and Tq

Gower and Legendre10 introduced two families of func-
tions

Sq =
a d

a d b c

+
+ + +q( )

and Tq =
a

a b c+ +q( )

(where q > 0 to avoid negative values) that contain some
well-known similarity measures – see Table IV.

Investigating metric and Euclidean properties of the
dissimilarities 1 – Sq, 1 – Tq and (1 – Sq)1/2, (1 – Tq)1/2,
they found out that these properties depend on q: there is
a critical value qM such that for values of q near 0 these
dissimilarities are not metric – but for q ≥ qM they
become metric. These results are summarized in Gower’s
and Legendre’s10 theorems 9 and 10.

THEOREM 9. 1 – Sq is metric for q ≥ 1 and (1 – Sq)1/2 is
metric for q ≥ 1/3. If q < 1, then 1 – Sq may not be metric
and if q < 1/3, (1 – Sq)1/2 may be non-metric.

THEOREM 10. Says the same for 1 – Tq and (1 – Tq)1/2.

If we write t := 1/q, we see that for t > 1 the dissi-
milarity

dt = 1 – T1/t =
b c

t a b c

+
+ +

may not be metric. Therefore, we can ask:

Find the metric index p for the dissimilarity dt.

First, we shall compute the metric index pm for an
arbitrary m ∈ IN. We shall see that it is independent of m

and thus answers our question.

In the integer coordinates we express

dt(x, y) = dxy(A,B,...,H; t) =
C D E F

t A B C D E F

+ + +
+ + + + +( )

,

dt(x, z) = dxz(A,B,...,H; t) =
B D E G

t A C B D E G

+ + +
+ + + + +( )

,

dt(y, z) = dyz(A,B,...,H; t) =
B C F G

t A E B C F G

+ + +
+ + + + +( )

.

Investigating all possibilities to get the smallest po-
sitive value of uxyz = dxy / dyz gives us a possible solution
B = m – 1 and C = 1. To increase u, we pose more ge-
nerally B + C + H = m, B,C > 0 – now B = m – 1, C = 1
is just a special case and calculate the sum s

s = u + v =
C

t B C

B

t C B+
+

+
=

t B C BC

t BC t B C BC

( )

( )

2 2

2 2 2

2+ +
+ + +

Denoting x := B / C, we re-express it in the form

s(t, x) =
t t

t t t

x x

x x

2

2 2

2

1

+ +
+ + +( )

.

From the first derivatives

s't = –x
( ) ( )

( ) ( )

t t

t t

+ + +
+ +
x x

x x

2 2

2 2

1

1
and s'x =

t t

t t

( )( )

( )

2 21 1

1

− −
+ +

x

x x( )2 2

we see that s is decreasing with t and that s'x = 0 for t =
0, ±1 or x = ±1. Since t > 1 and 1 / (m–1) ≤ x ≤ m–1, we
get, when t is fixed, the minimal sum for x = 1, that is
for B = C. In this case

u = v =
1

1t +
and a =

log

log( )

2

1t +
.

Proposition 10. – If B > 0, C > 0 and a =
log

log( )

2

1t +
, t > 1,

then

ua + va =
C

t B C

B

t C B+








 +

+








 ≥

a a

1.
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Table IV. Some well-known similarities

Definition q p

Kendall,
Sokal-Michener (1958)

Rogers & Tanimoto (1960)

Jaccard (1900)

Dice (1945),
Czekanowski (1913)

Sokal & Sneath

a d

m

+

a d

a d b c

+
+ + +2( )

a

a b c+ +

a

a b c+ +
1

2
( )

a

a b c+ +2( )

S1

S2

T1

T1/2

T2

1

log

log
.2

3

2

1709=

1

log

log
.2

3
0 630=

log

log
.2

3

2

1709=



Proof: For x = B / C > 0, we define

f(t, x) := ua + va =
1

1

1

1

2

1

2

1

t

t

t

t

x
x

+








 +

+















+
+log

log( )

log

log( )

The function f(t, x) has the following properties

• f (t, 1

x
) = f (t, x) and so we can consider the function f

only on the rectangle R := {(t, x); t > 1 ∧ 0 ≤ x ≤ 1};

• f(t, 0) = f(t, 1) = 1;

• f(1, x) = 1 and limt→∞ f(t, x) = 1.

Searching for the minimal value of the function we com-
pute the first derivative

f'x(t, x) = a
1

1

1

tx

a

+










−
−
+
t

t( )x 1 2
+ a

x

x

a

t +










−1
t

t( )+ x 2

and for x = 1, we have

f'x(t, 1) = – a t
1

1

1

+








+

t

a

+ a t
1

1

1

+








+

t

a

= 0

From the second derivative

f''xx (t, x) =

–
(( ) )

( )

1 2

2 2

− + 

 




+

a x a

x x

x

x

a

t t

t

t+
+

( )

( )

1

1

2 1

1

2

+ 

 




+
+

a a

x

x

a

t

t

t

we get

f''xx (t, 1) =
2 1

1 1 2

a a
a

t t

t t

( )

( ) ( )

−
+ +

and f''xx (t, 1) > 0 if and only if at – 1 > 0, that is, if and
only if

t >
log( )

log

t + 1

2
= log2 (t + 1) ,

which is true for t > 1. Since f (t, 1) = 1 for all t > 1, we
see that for x = 1 the function f has a local minimum
equal to 1.

Now for fixed t, t > 1, we show that there is only
one point xt ∈(0, 1) such that f'x (t, xt) = 0. Therefore, xt

is a local maximum of the curve and f (t, x) > 1 for t > 1
and 0 < x < 1.

We fix t > 1. For x, 0 < x < 1, we rewrite the equa-
tion f'x (t, x) = 0:

x2 =
t

t

x x

x

a2 1
+

+










+

log x2 = (1 + a) log
t

t

x x

x

2 +
+

and we denote the left and the right side of the last
equation by f(x) and gt(x), respectively. We have f(1) =
gt(1) = 0 and

lim ( )
x

x
→+0

f = lim ( )
x

x
→+0

gt = – ∞ .

From derivatives

f '(x) =
2

x
,

g't(x) = (1 + a)
t t

t t

( )

( )( )

1 2

1

2+ +
+ +

x x

x x x
,

f ''(x) = –
2
2x

,

g''t(x) = (1+a)
− + + + + + +

+ +
t t t t t t t

t t

( )

( ) ( )

2 2 4 2 4

1

2 2 3 2 2 3 4

2 2 2

x x x x x x

x x x

we see that both functions are increasing and concave on
the interval (0, 1). Since for all t > 1

g't(1) = (1 + a)
2

1
2 1

t

t
f

+
> = ' ( )

the curve gt is steeper than f when x = 1. But comparing
the power series

f '(x) =
2

x
and

g't(x) = (1 + a) 1 1 12 4

2
2

x
x x+ − + − +











t

t

t

t
O( ) N

x→0 1+ a

x

taking into account that: 2 > 1 + a, we see that for x → +0
the curve f becomes steeper and therefore they intersect at
exactly one point (xt, f(xt)) = (xt, gt(xt)), xt ∈(0, 1). �

An immediate consequence of this proposition is
that pm = a. Since pm does not depend on m, the metric
index p of the dissimilarity dt is also equal to

p = pm =
log

log( )

2

1t +
.

Now we will compute the metric index for the second
family of dissimilarities

1 – Sq =
b c

t a d b c

+
+ + +( )

=: dt ,

where t := 1/q. If we express dt in integer coordinates,
we get expressions similar to those for the family 1 – Tq.
Also, the results are similar: for B + C + G = m, we have

THE METRIC INDEX 409

Croat. Chem. Acta 79 (3) 399¿410 (2006)



u =
C

t B G C( )+ +
and v =

B G

tC B G

+
+ +

and for x := (B + G) / C, we get again

s(t, x) = u + v =
t t

t t t

x x

x x

2

2 2

2

1

+ +
+ + +( )

.

According to Preposition 10, we get the minimal exponent
a for z = 1, that is, when B + G = C. This implies m =
2 C; m is even. If we write m = 2n, n ∈ IN, we get in this
case

u = v =
1

1t +
and a =

log

log( )

2

1t +
= p2n .

If m is odd, m = 2n + 1, n ∈ IN, x is never equal to 1,
therefore ua + va > 1 and hence

p2n+1 >
log

log( )

2

1t +
for all n ∈ IN .

But for larger dimensions x = n/(n + 1) tends to 1 and

p2n+1 N
n→∞

p2n =
log

log( )

2

1t +
.

This is the value of the metric index p also for the
second family.
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SA@ETAK

Metri~ki indeks nesli~nosti

Matev` Bren i Vladimir Batagelj

U radu je diskutirana transformacija koja proizvoljnu nesli~nost prevodi u poluudaljenost a definitnu ne-
sli~nost u udaljenost. Uveden je postupak za ra~unanje metri~kog indeksa primjenom kojeg je zatim odre|ena
njegova vrijednost za 19 standardnih mjera nesli~nosti na dihotomnim podacima.
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