On Instability of Fullerene \mathbf{C}_{72}

Damir Vukičević, ${ }^{\text {a,* }}$ Ivan Gutman, ${ }^{\text {b }}$ and Milan Randićc ${ }^{\text {c }}$
${ }^{a}$ Faculty of Natural Sciences, Mathematics and Education, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
${ }^{\mathrm{b}}$ Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
${ }^{\mathrm{c}}$ National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

RECEIVED JANUARY 16, 2006; REVISED MARCH 31, 2006; ACCEPTED APRIL 7, 2006

Abstract

The most important fullerene is buckminsterfullerene C_{60}, obtained by leap-frog transformation

Keywords leap-frog transformation fullerene graph π-electron content degree of freedom conjugated cycles independent conjugated cycles of the fullerene C_{20}. The second smallest fullerene obtained by leap-frog transformation is C_{72} (obtained from C_{24}). It is surprising that C_{72} is unstable. The standard explanation of this fact is based on steric strain resulting from the existence of two hexagons, each surrounded by 6 hexagons. By analyzing the π-electron content, it is demonstrated that these hexagons show some »pentagon-like« behavior that may be the cause (or an additional cause) of the instability of C_{72}. Hence, it is shown that there may be topological (non-steric) reasons for the instability of C_{72}.

INTRODUCTION

Buckminsterfullerene, C_{60}, is the first fullerene that was theoretically conceived and experimentally obtained. ${ }^{1}$ Theoretically, C_{60} may be viewed as being constructed by the leap-frog transformation of the fullerene C_{20}. The leap-frog transformation ${ }^{2-4}$ is the transformation in which the dual of the original fullerene is formed and then truncated on all vertices.

Fullerene C_{60} seems to be the most stable fullerene in nature. Hence, it would be reasonable to expect C_{72}, the second smallest fullerene obtained by leap-frog transformation, to be stable as well. Another reason for expecting stability of C_{72} is that it has Kekulé structures in which all π-electrons belong to hexagons. Yet another reason for expecting stability of C_{72} is that ${ }^{2}$ it has a large band gap and bonding resonance energy, and thus a stable, closed-shell π-electron configuration.

In reality, the situation is different: C_{72} is not stable. Its instability is usually explained by steric strain. Indeed, C_{72} has two hexagons, each surrounded by 6 hexagons and because of this structural feature, the C_{72} molecule must have a large amount of steric strain. Hexagon indices are described in An Atlas of Fullerenes. ${ }^{2}$ The number of hexagons that are adjacent to exactly i other hexagons is denoted by h_{i}. In this way, every fullerene isomer can be described by the 7-tuple ($h_{0}, h_{1}, h_{2}, h_{3}, h_{4}$, h_{5}, h_{6}). It is claimed that a fullerene is most stable if only one of the numbers h_{i} is different from 0 , and that there are some stable fullerenes that have two consecutive numbers h_{i} and h_{i+1} different. In the case of C_{72} :

$$
\left(h_{0}, h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}\right)=(0,0,0,12,12,0,2)
$$

which implies that C_{72} has two »problematic« hexagons, namely hexagons surrounded by 6 other hexagons.

[^0]The main point of this paper is to show that these two hexagons have unexpected properties regarding the distribution of π-electrons in Kekulé structures. Hence, here we offer a strictly topological (non-steric) argument that may contribute to clarifying the reasons for the lack of stability of the fullerene C_{72}.

Recently, two of the present authors (M. R., D. V.), together with Harry Kroto, analyzed the Kekulé structures of the C_{60} fullerene. ${ }^{5-7}$ Also, the properties of Kekulé structures of C_{70} have been analyzed. ${ }^{8-9}$ In these papers, it is taken into account that the importance of the Kekule structure increases with the increase of the following values:

- number of independent conjugated cycles;
- degree of freedom;
- number of independent conjugated hexagons;
- number of conjugated hexagons;
- number of π-electrons belonging to hexagons.

We are not going to elaborate the relative importance of Kekule structures or the identification of the most important ones, because it has been discussed in due detail elsewhere. ${ }^{10}$

A conjugated cycle is the cycle in which single and double bonds alternate. We say that two cycles are independent if they do not share a common edge. A set of cycles is independent if the cycles are independent pairwise. The degree of freedom is the smallest number of double bonds that completely determine the Kekulé structure, i.e., it is the smallest subset of double bonds of the given Kekule structure that is not contained in any other Kekule structure. The number of π-electrons that belong to hexagons is the number of double bonds incident to hexagons (each double bond shared by two hexagons is counted twice and the double bonds shared by a pentagon and a hexagon are counted once, because it is taken that one electron belongs to the hexagon and the other to the pentagon).

The resonance graphs of the fullerenes are also analyzed in the papers. ${ }^{5-7}$ The resonance graph of a fullerene is a graph the vertices of which are the Kekulé structures of the fullerene, and two vertices are adjacent if the corresponding Kekulé structures differ only in the position of three double bonds within a hexagon. This graph need not be connected, ${ }^{7}$ in which case one of its components pertains to the most important Kekulé structures.

Recently, the notion of π-electron content was introduced and analyzed. ${ }^{11-15}$ The π-electron content of a face is the number of π-electrons that belong to that face. In the case of fullerenes, the number of π-electrons is equal to the number of double bonds that belong to the observed face. A self-explanatory example (for C_{70}) is given in Figure 1.

In this paper, we are going to analyze the connection between the importance of the Kekule structures and the π-electron content of the C_{72} faces.

Figure 1. A Kekulé structure of C_{70} and the corresponding π-electron content.

PRELIMINARIES AND MAIN RESULTS

Up to isomorphism, there are four different faces of C_{72}. There are three types of hexagons (denoted by A, B, and C) and one type of pentagons (denoted by P). This is illustrated in Figure 2.

Figure 2. Labeling of the faces of C_{72} by letters A, B, C and P. Isomorphic faces are denoted by the same letter.

We now define the isomorphism of Kekule structures: Two Kekulé structures K_{1} and K_{2} are said to be isomorphic if there is an automorphism of the underlying graph that maps double bonds of K_{1} to double bonds of K_{2} and single bonds of K_{1} to single bonds of K_{2}.

By means of appropriate computer software (slight modification of the software used in the research ${ }^{5-7}$ of C_{60} and research ${ }^{8,9}$ of C_{70}), it can be established that there are 77400 Kekulé structures of C_{72}, which can be classified by symmetrical invariance into 3470 classes.

Also, it can be checked using the same program that the resonance graph of C_{72} is not connected. Note that C_{72} has one particular Kekulé structure K^{*} (Figure 3), in which all double bonds are shared by hexagons. Every automorphism of C_{72} maps K^{*} to K^{*}.

Denote by MIC the connected component of the resonance graph of C_{72} that contains K^{*}. In the sequel, we provide numerical evidence that this is the most important component of the resonance graph.

Figure 3. The most important Kekulé structure of C_{72}.

Theorem 1. - Let K_{1} and K_{2} be two isomorphic Kekulé structures. Then, they are either both in MIC or none of them is in MIC.
Proof: It is sufficient to prove that $\mathrm{K}_{1} \in \mathrm{MIC} \Rightarrow \mathrm{K}_{2} \in$ MIC. Let $\mathrm{K}_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{x} \mathrm{~K}^{*}$ be the path from K_{1} to K^{*} and let f be the automorphism of C_{72} that maps K_{1} to K_{2}. Then, $f\left(\mathrm{~K}_{1}\right) f\left(\alpha_{2}\right) f\left(\alpha_{3}\right) \ldots f\left(\alpha_{x}\right) f\left(\mathrm{~K}^{*}\right)$ is the path from $\mathrm{K}_{2}=f\left(\mathrm{~K}_{1}\right)$ to $\mathrm{K}^{*}=f\left(\mathrm{~K}^{*}\right)$.

Let S be any subset of the set of Kekulé structures of C_{72}, such that for each two isomorphic Kekulé structures K_{1} and K_{2} either both K_{1} and K_{2} are in S or none of them is in S . Then, we say that S is an isomorphically invariant set. By convention, we assume that the empty set is isomorphically invariant.

Remark 2. - From Theorem 1, it follows that MIC is an isomorphically invariant set.

Let K be any Kekulé structure. Denote by $i c(\mathrm{~K})$, $d f(\mathrm{~K}), i h(\mathrm{~K}), c h(\mathrm{~K})$ and $p e(\mathrm{~K})$, respectively, the maximal number of independent conjugated cycles of K, the degree of freedom of K , the maximum number of independent conjugated hexagons of K , the number of conjugated hexagons of K , and the number of π-electrons that belong to hexagons in K . It can be easily verified that the following theorem holds:

Theorem 3. - Let i be any natural number. The sets:

$$
\begin{aligned}
i c_{i} & =\{\mathrm{K}: i c(\mathrm{~K})=i\} \\
d f_{i} & =\{\mathrm{K}: d f(\mathrm{~K})=i\} \\
i h_{i} & =\{\mathrm{K}: i h(\mathrm{~K})=i\} \\
c h_{i} & =\{\mathrm{K}: c h(\mathrm{~K})=i\} \\
p e_{i} & =\{\mathrm{K}: p e(\mathrm{~K})=i\}
\end{aligned}
$$

are isomorphically invariant.
We can also prove:
Theorem 4. - Let S_{1} and S_{2} be two isomorphically invariant sets. Then, the set $S_{1} \cap S_{2}$ is also isomorphically invariant.

For any finite set X , we denote by $|X|$ the number of elements of the set X. Let S be any isomorphically invariant set. Denote $\mathrm{S}^{\mathrm{m}}=\mathrm{S} \cap \mathrm{MIC}$. Also, denote $S^{\text {ratio }}=\left|S^{\mathrm{m}}\right| /|S|$.

Let X be any face of C_{72} and let K be any Kekulé structure of C_{72}. Denote by $K(\mathrm{X})$ the π-electron content of the face X in the Kekulé structure K. Let S be any set of Kekulé structures. Denote

$$
S(\mathrm{X})=\frac{\sum_{K \in S} K(\mathrm{X})}{|S|}
$$

where $|S|$ is the number of the Kekule structures in S . Let us illustrate this by three examples:
$-\quad c h_{4}(\mathrm{C})$ is the average π-electron content of the hexagon when all Kekulé structures with 4 conjugated hexagons are taken into consideration;

- $d f_{5}(\mathrm{~A})$ is the average π-electron content of hexagon A when all Kekulé structures with degree of freedom equal to 5 are taken into consideration;
$-\quad i c_{7}(\mathrm{~B})$ is the average π-electron content of hexagon B when all Kekule structures of the main component resonant graph that have the maximal number of independent cycles equal to 7 are taken into consideration.

Theorem 5. - Let X_{1} and X_{2} be two isomorphic faces and let S be the isomorphically invariant set of Kekulé structures. Then, $S\left(\mathrm{X}_{1}\right)=S\left(\mathrm{X}_{2}\right)$.

From this theorem, it follows:
Remark 6. - Let S be the isomorphically invariant set of Kekulé structures. To describe all faces, it is sufficient to calculate $S(\mathrm{~A}), S(\mathrm{~B}), S(\mathrm{C})$ and $S(\mathrm{P})$.

Now we can present our major results, which are given in the following five tables (the tables were obtained by a computer after about nine-hour long execution of the algorithm based on several mathematical theorems). All tables are structured as follows:

- The $1^{\text {st }}$ column gives the prescribed value i;
- The $2^{\text {nd }}$ column gives the number of Kekulé structures with value i of the observed property;
- The $3^{\text {rd }}$ column gives the number of Kekulé structures in the main component of the resonant graph with value i of the observed property;
- The $4^{\text {th }}$ column gives the ratio of the numbers in the third and second column;
- The $5^{\text {th }}$ (resp. $6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}$) column gives the average π-electron content of the hexagon A (resp. hexagon B , hexagon C , pentagon P) when all the structures described in the 3rd item are taken into consideration;
- The $9^{\text {th }}$ (resp. $10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }}$) column gives the average π-electron content of the hexagon A (resp. hexagon B , hexagon C , pentagon P) when all the structures described in the 3rd item are taken into consideration.

The above five tables are given here:

TABLE I. Results pertaining to Kekulé structures with the same maximal number of independent conjugated cycles

i	$\left\|i c_{i}\right\|$	$\left\|i c_{i}^{\mathrm{m}}\right\|$	$i c_{i}^{\text {ratio }}$	$i c_{i}^{\mathrm{m}}(\mathrm{A})$	$i c_{i}^{\mathrm{m}}(\mathrm{B})$	$i c_{i}^{\mathrm{m}}(\mathrm{C})$	$i c_{i}^{\mathrm{m}}(\mathrm{P})$	$i c_{i}(\mathrm{~A})$	$i c_{i}(\mathrm{~B})$	$i c_{i}(\mathrm{C})$	$i c_{i}(\mathrm{P})$
4	1086	0	0.000	-	-	-	-	1.989	1.960	1.983	1.726
5	13575	24	0.002	3.000	1.833	2.167	1.500	2.000	1.979	2.032	1.656
6	12487	160	0.013	2.663	1.944	2.219	1.394	2.091	2.030	2.044	1.577
7	15261	2364	0.155	2.211	2.040	2.186	1.406	1.847	2.146	2.103	1.443
8	7736	7736	1.000	1.663	2.197	2.226	1.300	1.663	2.197	2.226	1.300
9	27255	27255	1.000	1.413	2.298	2.302	1.164	1.413	2.298	2.302	1.164

TABLE II. Results pertaining to Kekulé structures with the same degree of freedom

i	$\left\|d f_{i}\right\|$	$\left\|d f_{i}^{\mathrm{m}}\right\|$	$d f_{i}^{\text {ratio }}$	$d f_{i}^{\mathrm{m}}(\mathrm{A})$	$d f_{i}^{\mathrm{m}}(\mathrm{B})$	$d f_{i}^{\mathrm{m}}(\mathrm{C})$	$d f_{i}^{\mathrm{m}}(\mathrm{P})$	$d f_{i}(\mathrm{~A})$	$d f_{i}(\mathrm{~B})$	$d f_{i}(\mathrm{C})$	$d f_{i}(\mathrm{P})$
5	1557	0	0.000	-	-	-	-	1.981	1.963	1.933	1.775
6	16809	60	0.004	2.500	1.950	2.150	1.483	2.014	1.988	2.010	1.666
7	21604	2204	0.102	2.273	2.015	2.166	1.441	1.993	2.082	2.085	1.500
8	9196	7065	0.768	1.720	2.175	2.209	1.330	1.651	2.209	2.216	1.300
9	24037	24013	0.999	1.473	2.268	2.272	1.215	1.473	2.268	2.272	1.215
10	4096	4096	1.000	1.066	2.479	2.490	0.854	1.066	2.479	2.490	0.854
11	100	100	1.000	0.480	2.770	2.780	0.370	0.480	2.770	2.780	0.370
12	1	1	1.000	0.000	3.000	3.000	0.000	0.000	3.000	3.000	0.000

TABLE III. Results pertaining to Kekulé structures with the same maximal number of independent conjugated hexagons

i	$\left\|i h_{i}\right\|$	$\left\|i h_{i}^{\mathrm{m}}\right\|$	$i h_{i}^{\text {raio }}$	$i h_{i}^{\mathrm{m}}(\mathrm{A})$	$i h_{i}^{\mathrm{m}}(\mathrm{B})$	$i h_{i}^{\mathrm{m}}(\mathrm{C})$	$i h_{i}^{\mathrm{m}}(\mathrm{P})$	$i h_{i}(\mathrm{~A})$	$i h_{i}(\mathrm{~B})$	$i h_{i}(\mathrm{C})$	$i h_{i}(\mathrm{P})$
0	289	0	0.000	-	-	-	-	1.869	1.882	1.893	1.913
1	408	0	0.000	-	-	-	-	2.103	1.944	1.865	1.841
2	4512	0	0.000	-	-	-	-	2.007	1.955	1.954	1.756
3	3366	0	0.000	-	-	-	-	2.303	1.949	1.968	1.699
4	12867	0	0.000	-	-	-	-	2.000	2.021	2.058	1.587
5	6198	76	0.012	3.000	1.868	2.237	1.395	2.033	2.045	2.079	1.537
6	12405	108	0.009	2.500	1.972	2.194	1.417	1.762	2.165	2.102	1.439
7	4028	4028	1.000	2.179	2.061	2.212	1.363	2.179	2.061	2.212	1.363
8	6072	6072	1.000	1.534	2.226	2.219	1.299	1.534	2.226	2.219	1.299
9	27255	27255	1.000	1.413	2.298	2.302	1.164	1.413	2.298	2.302	1.164

TABLE IV. Results pertaining to Kekule structures with the same number of conjugated hexagons

i	$\left\|c h_{i}\right\|$	$\left\|c h_{i}^{\mathrm{m}}\right\|$	$c h_{i}^{\text {ratio }}$	$c h_{i}(\mathrm{~A})$	$c h_{i}(\mathrm{~B})$	$c h_{i}(\mathrm{C})$	$c h_{i}(\mathrm{P})$	$c h_{i}(\mathrm{~A})$	$c h_{i}(\mathrm{~B})$	$c h_{i}(\mathrm{C})$	$c h_{i}(\mathrm{P})$
0	289	0	0.000	-	-	-	-	1.869	1.882	1.893	1.913
1	228	0	0.000	-	-	-	-	2.026	1.943	1.846	1.873
2	2070	0	0.000	-	-	-	-	1.991	1.920	1.897	1.851
3	3192	0	0.000	-	-	-	-	2.083	1.966	1.953	1.733
4	4437	0	0.000	-	-	-	-	2.153	1.960	1.950	1.732
5	7288	0	0.000	-	-	-	-	2.068	1.990	2.005	1.660

TABLE IV. cont.

i	$\left\|c h_{i}\right\|$	$\left\|c h_{i}^{\mathrm{m}}\right\|$	$c h_{i}^{\text {ratio }}$	$c h_{i}(\mathrm{~A})$	$c h_{i}(\mathrm{~B})$	$c h_{i}(\mathrm{C})$	$c h_{i}(\mathrm{P})$	$c h_{i}(\mathrm{~A})$	$c h_{i}(\mathrm{~B})$	$c h_{i}(\mathrm{C})$	$c h_{i}(\mathrm{P})$
6	7680	96	0.013	2.750	1.875	2.125	1.542	2.016	2.042	2.055	1.567
7	6980	652	0.093	2.402	1.917	2.035	1.647	1.974	2.075	2.081	1.514
8	6822	2036	0.298	2.095	2.024	2.095	1.532	1.860	2.125	2.135	1.430
9	6456	4548	0.704	1.821	2.108	2.125	1.464	1.776	2.144	2.154	1.406
10	8492	7234	0.852	1.651	2.179	2.184	1.362	1.626	2.198	2.200	1.331
11	7840	7600	0.969	1.551	2.237	2.250	1.255	1.542	2.242	2.253	1.247
12	6375	6146	0.964	1.393	2.319	2.334	1.115	1.385	2.324	2.337	1.108
13	4020	4020	1.000	1.307	2.374	2.401	1.007	1.307	2.374	2.401	1.007
14	2638	2614	0.991	1.102	2.463	2.477	0.876	1.099	2.465	2.478	0.874
15	1276	1276	1.000	1.034	2.505	2.528	0.794	1.034	2.505	2.528	0.794
16	772	772	1.000	0.801	2.609	2.618	0.640	0.801	2.609	2.618	0.640
17	276	276	1.000	0.848	2.598	2.620	0.641	0.848	2.598	2.620	0.641
18	168	168	1.000	0.500	2.750	2.750	0.417	0.500	2.750	2.750	0.417
19	76	76	1.000	0.553	2.737	2.750	0.421	0.553	2.737	2.750	0.421
21	24	24	1.000	0.250	2.875	2.875	0.208	0.250	2.875	2.875	0.208
24	1	1	1.000	0.000	3.000	3.000	0.000	0.000	3.000	3.000	0.000

TABLE V. Results pertaining to Kekulé structures with the same number of π-electrons that belong to hexagons

n	$\left\|p e_{i}\right\|$	$\left\|p e_{i}^{\mathrm{m}}\right\|$	$p e_{i}^{\text {ratio }}$	$p e_{i}^{\mathrm{m}}(\mathrm{A})$	$p e_{i}^{\mathrm{m}}(\mathrm{B})$	$p e_{i}^{\mathrm{m}}(\mathrm{C})$	$p e_{i}^{\mathrm{m}}(\mathrm{P})$	$p e_{i}(\mathrm{~A})$	$p e_{i}(\mathrm{~B})$	$p e_{i}(\mathrm{C})$	$p e_{i}(\mathrm{P})$
48	1089	8	0.007	1.500	2.000	1.750	2.000	2.121	1.869	1.778	2.000
49	2640	132	0.050	2.000	1.917	1.833	1.917	2.293	1.839	1.862	1.917
50	3384	306	0.090	2.412	1.853	1.912	1.833	2.284	1.898	1.888	1.833
51	5648	576	0.102	1.750	2.028	1.931	1.750	2.039	1.979	1.931	1.750
52	7101	1530	0.215	1.988	2.003	1.999	1.667	2.090	1.984	2.001	1.667
53	6828	1716	0.251	2.007	2.026	2.056	1.583	1.948	2.057	2.035	1.583
54	8422	3026	0.359	1.594	2.146	2.089	1.500	1.800	2.111	2.090	1.500
55	7644	3756	0.491	1.899	2.106	2.161	1.417	1.870	2.113	2.159	1.417
56	6828	3564	0.522	1.515	2.219	2.195	1.333	1.582	2.218	2.185	1.333
57	7104	4992	0.703	1.518	2.246	2.251	1.250	1.601	2.226	2.257	1.250
58	5088	3780	0.743	1.667	2.241	2.315	1.167	1.606	2.258	2.307	1.167
59	4632	3780	0.816	1.200	2.372	2.344	1.083	1.255	2.362	2.345	1.083
60	3848	3529	0.917	1.462	2.342	2.415	1.000	1.469	2.339	2.417	1.000
61	2244	2040	0.909	1.259	2.415	2.459	0.917	1.235	2.423	2.455	0.917
62	2130	2058	0.966	1.052	2.488	2.503	0.833	1.068	2.483	2.506	0.833
63	1168	1156	0.990	1.355	2.449	2.575	0.750	1.346	2.452	2.574	0.750
64	681	669	0.982	0.789	2.602	2.599	0.667	0.793	2.601	2.601	0.667
65	540	540	1.000	1.000	2.583	2.667	0.583	1.000	2.583	2.667	0.583
66	170	170	1.000	1.024	2.606	2.724	0.500	1.024	2.606	2.724	0.500
67	132	132	1.000	0.500	2.750	2.750	0.417	0.500	2.750	2.750	0.417
68	54	54	1.000	1.000	2.667	2.833	0.333	1.000	2.667	2.833	0.333
69	12	12	1.000	0.000	2.917	2.833	0.250	0.000	2.917	2.833	0.250
70	12	12	1.000	0.500	2.833	2.917	0.167	0.500	2.833	2.917	0.167
72	1	1	1.000	0.000	3.000	3.000	0.000	0.000	3.000	3.000	0.000

It can be seen (in Table II) that all Kekulé structures of C_{72} have degrees of freedom from 5 to 12 . The Kekulé structure with (maximal) degree of freedom 12 is presented in Figure 3. Kekulé structures with degrees of freedom equal to, respectively, $5,6, \ldots, 11$ are presented in the following figures:

Figure 4. Kekulé structure with $d f=5$.

Figure 5. Kekulé structure with $d f=6$.

Figure 6. Kekulé structure with $d f=7$.

Figure 7. Kekulé structure with $d f=8$.

Figure 8. Kekulé structure with $d f=9$.

Figure 9. Kekulé structure with $d f=10$.

Figure 10. Kekulé structure with $d f=11$.

DISCUSSION

First note that the values of $i c_{i}^{\text {ratio }}, d f_{i}^{\text {ratio }} i h_{i}^{\text {ratio }}, c f_{i}^{\text {ratio }}$, and $p e_{i}^{\text {ratio }}$ increase (with a few exceptions) with the increment of i. When i is small, these values tend to 0 and when i is large, these values tend to 1 . This means that almost all Kekulé strucutures of low importance are outside MIC and almost all of those of high importance belong to MIC. This holds irrespective of the criterion used (maximal number of independent conjugated cycles, degree of freedom, maximal number of independent conjugated hexagons, number of conjugated hexagons, or number of π-electrons that belong to hexagons). Especially note that for the 7 highest values of i the values of the second and third rows of Tables IV and V coincide, i.e., all structures with 7 highest values of numbers of conjugated hexagons and π-electron content belong to the most important component of the resonance graph. All this leads to the conclusion that MIC represents the
most important component of the resonance graph of C_{72}. Hence, the study of Kekule structures within the MIC is particularly relevant.

As the importance of the observed class of Kekule structure grows, one should expect that the number of π-electrons that belong to each of the hexagons will increase and that number of π-electrons that belong to each of the pentagons will decrease. Similar results should be obtained also if we restrict ourselves to the main component.

Analyze first the pentagon P. Functions $i c_{i}, d f_{i}, i h_{i}$, $c f_{i}^{\mathrm{ratio}}, p e_{i}, d f_{i}^{\mathrm{m}}$ and $p e_{i}^{\mathrm{m}}$ are decreasing. Functions $i c_{i}^{\mathrm{m}}$, $i h_{i}^{\mathrm{m}}$, and $c h_{i}^{\mathrm{m}}$ are decreasing if we disregard one exception. Also, function $c h_{i}$ is decreasing if we disregard two exceptions. Hence, the π-electron content of pentagon P behaves according to intuition.

Analyze now hexagons of type B. Functions $i c_{i}, d f_{i}$, $d f_{i}^{\mathrm{m}}, i c_{i}^{m}$, and $i h_{i}^{m}$ are increasing. Functions $i c_{i}, d f_{i}$, and $c h_{i}^{m}$ are increasing if we disregard two exceptions. Functions $e p_{i}$ and $e p_{i}^{m}$ show, in general, increasing tendencies, but with several exceptions. Again, we see that the π-electron contents of hexagons B behave according to intuition.

Next, we analyze the hexagon of type C. Functions $i c_{i}, d f_{i}, p e_{i}, d f_{i}^{\mathrm{m}}$, and $p e_{i}^{\mathrm{m}}$ are increasing, $i h_{i}, i c_{i}^{\mathrm{m}}, i h_{i}^{\mathrm{m}}$, and $c h_{i}^{\mathrm{m}}$ are increasing if we disregard one exception, whereas $c h_{i}$ is increasing if we disregard two exceptions. Hence, again, the π-electron contents of hexagons C behave according to intuition.

It remains to analyze the hexagons of type A. Functions $i c_{i}^{\mathrm{m}}, d f_{i}^{\mathrm{m}}$, and $i h_{i}^{\mathrm{m}}$ are strictly decreasing, $d f_{i}$ is decreasing if we disregard one exception whereas $c h_{i}^{\mathrm{m}}$ is decreasing if we disregard two exceptions. All other functions show, in general, a decreasing tendency, but with several exceptions. We can see that the behavior of the π-electron content of a type A hexagon is contra-intuitive. It behaves in a »pentagon-like« manner. As Kekulé structures become more and more important, this hexagon has fewer and fewer π-electrons. Returning to the 7-tuple:

$$
\left(h_{0}, h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}\right)=(0,0,0,12,12,0,2)
$$

one again concludes that the presence of hexagons of type A is the cause of the instability of C_{72}. However, we have shown that the instability is not solely a result of steric strain, but also features related to the (topolo-gy-dependent) distribution of π-electrons in Kekulé structures may significantly contribute to it.

The method put forward and applied in the present work may also provide a new insight into the properties of other fullerenes, and help forecast their stability.

Acknowledgements. - One of us (D.V.) gratefully acknowledges the partial support of the Ministry of Science, Education and Sports of the Republic of Croatia (Grant No. 0037117). We thank professor Horst Sachs for useful suggestions and comments.

REFERENCES

1. H. W. Kroto, J. R. Heath, S. C. O'Brian, R. F. Curl, and R. Smalley, Nature 318 (1985) 162-163.
2. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
3. P. W. Fowler, Chem. Phys. Lett. 131 (1986) 444-450.
4. D. E. Manolopulos, D. R. Woodal, and P. W. Fowler, J. Chem. Soc., Faraday Trans. 88 (1992) 2427-2435.
5. D. Vukičević and M. Randić, Chem. Phys. Lett. 401 4-6 (2005) 446-450.
6. D. Vukičević, H. W. Kroto, and M. Randić: Croat. Chem. Acta 78 (2005) 223-234.
7. M. Randić, H. Kroto, and D. Vukičević, unpublished paper.
8. D. Vukičević and M. Randić, Book of Abstracts MATH/ CHEM/COMP 2005, Dubrovnik, June 20-25.
9. D. Vukičević and M. Randić, unpublished paper.
10. M. Randić, Chem. Rev. 103 (2003) 3449-3605.
11. A. T. Balaban and M. Randić, Polyclic Aromat. Compd. 24 (2004) 173-193.
12. A. T. Balaban and M. Randić, J. Chem Inf. Comput. Sci. 44 (2004) 50-59.
13. A. T. Balaban and M. Randić, New J. Chem. 28 (2004) 800806.
14. D. Vukičević, A. T. Balaban and M. Randić, J. Math. Chem. 36 (2004) 271-279.
15. A. T. Balaban and M. Randić, Chem. Inf. Comput. Sci. 44 (2004) 1701-1707.

SAŽETAK

O nestabilnosti fulerena C_{72}

Damir Vukičević, Ivan Gutman i Milan Randić

[^1]prostorni raspored uzrokovan dvama heksagonima koji su okruženi sa po 6 heksagona. Analizirajući π-elektronski sadržaj ovih heksagona pokazano je da je ponašanje ovih heksagona sličnije ponašanju pentagona nego ponašanju heksagona, što također može biti uzrokom (ili dodatnim uzrokom) nestabilnosti fulerena C_{72}. Dakle, u ovom radu se ukazuje i na postojanje topoloških razloga (koji nemaju veze s prostornim rasporedom) za nestabilnost ovog fulerena.

[^0]: * Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)

[^1]: Najvažniji fuleren je Buckminster fuleren C_{60}. Ovaj fuleren je dobiven leap-frog transformacijom fulerena C_{20}. Sljedeći najmanji fuleren koji se može dobiti leap-frog transformacijom je C_{72} (dobiven iz C_{24}). Iznenađujuće je da je ovaj fuleren nestabilan. Standardno objašnjenje njegove nestabilnosti je njegov nepovoljan

