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The most important fullerene is buckminsterfullerene C60, obtained by leap-frog transformation

of the fullerene C20. The second smallest fullerene obtained by leap-frog transformation is C72

(obtained from C24). It is surprising that C72 is unstable. The standard explanation of this fact is

based on steric strain resulting from the existence of two hexagons, each surrounded by 6

hexagons. By analyzing the p-electron content, it is demonstrated that these hexagons show

some »pentagon-like« behavior that may be the cause (or an additional cause) of the instability

of C72. Hence, it is shown that there may be topological (non-steric) reasons for the instability

of C72.
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INTRODUCTION

Buckminsterfullerene, C60, is the first fullerene that was

theoretically conceived and experimentally obtained.1

Theoretically, C60 may be viewed as being constructed

by the leap-frog transformation of the fullerene C20. The

leap-frog transformation2-4 is the transformation in

which the dual of the original fullerene is formed and

then truncated on all vertices.

Fullerene C60 seems to be the most stable fullerene

in nature. Hence, it would be reasonable to expect C72,

the second smallest fullerene obtained by leap-frog

transformation, to be stable as well. Another reason for

expecting stability of C72 is that it has Kekulé structures

in which all p-electrons belong to hexagons. Yet another

reason for expecting stability of C72 is that2 it has a large

band gap and bonding resonance energy, and thus a sta-

ble, closed-shell p-electron configuration.

In reality, the situation is different: C72 is not stable.

Its instability is usually explained by steric strain. In-

deed, C72 has two hexagons, each surrounded by 6 hexa-

gons and because of this structural feature, the C72 mole-

cule must have a large amount of steric strain. Hexagon

indices are described in An Atlas of Fullerenes.2 The

number of hexagons that are adjacent to exactly i other

hexagons is denoted by hi. In this way, every fullerene

isomer can be described by the 7-tuple (h0, h1, h2, h3, h4,

h5, h6). It is claimed that a fullerene is most stable if only

one of the numbers hi is different from 0, and that there

are some stable fullerenes that have two consecutive

numbers hi and hi+1 different. In the case of C72:

(h0, h1, h2, h3, h4, h5, h6) = (0,0,0,12,12,0,2)

which implies that C72 has two »problematic« hexagons,

namely hexagons surrounded by 6 other hexagons.



The main point of this paper is to show that these

two hexagons have unexpected properties regarding the

distribution of p-electrons in Kekulé structures. Hence,

here we offer a strictly topological (non-steric) argument

that may contribute to clarifying the reasons for the lack

of stability of the fullerene C72.

Recently, two of the present authors (M. R., D. V.),

together with Harry Kroto, analyzed the Kekulé structures

of the C60 fullerene.5-7 Also, the properties of Kekulé

structures of C70 have been analyzed.8-9 In these papers,

it is taken into account that the importance of the Kekulé

structure increases with the increase of the following

values:

– number of independent conjugated cycles;

– degree of freedom;

– number of independent conjugated hexagons;

– number of conjugated hexagons;

– number of p-electrons belonging to hexagons.

We are not going to elaborate the relative impor-

tance of Kekulé structures or the identification of the

most important ones, because it has been discussed in

due detail elsewhere.10

A conjugated cycle is the cycle in which single and

double bonds alternate. We say that two cycles are inde-

pendent if they do not share a common edge. A set of

cycles is independent if the cycles are independent pair-

wise. The degree of freedom is the smallest number of

double bonds that completely determine the Kekulé

structure, i.e., it is the smallest subset of double bonds of

the given Kekulé structure that is not contained in any

other Kekulé structure. The number of p-electrons that

belong to hexagons is the number of double bonds inci-

dent to hexagons (each double bond shared by two hexa-

gons is counted twice and the double bonds shared by a

pentagon and a hexagon are counted once, because it is

taken that one electron belongs to the hexagon and the

other to the pentagon).

The resonance graphs of the fullerenes are also ana-

lyzed in the papers.5–7 The resonance graph of a fullere-

ne is a graph the vertices of which are the Kekulé struc-

tures of the fullerene, and two vertices are adjacent if the

corresponding Kekulé structures differ only in the posi-

tion of three double bonds within a hexagon. This graph

need not be connected,7 in which case one of its compo-

nents pertains to the most important Kekulé structures.

Recently, the notion of p-electron content was intro-

duced and analyzed.11-15 The p-electron content of a face

is the number of p-electrons that belong to that face. In

the case of fullerenes, the number of p-electrons is equal

to the number of double bonds that belong to the obser-

ved face. A self-explanatory example (for C70) is given

in Figure 1.

In this paper, we are going to analyze the connection

between the importance of the Kekulé structures and the

p-electron content of the C72 faces.

PRELIMINARIES AND MAIN RESULTS

Up to isomorphism, there are four different faces of C72.

There are three types of hexagons (denoted by A, B, and

C) and one type of pentagons (denoted by P). This is il-

lustrated in Figure 2.

We now define the isomorphism of Kekulé struc-

tures: Two Kekulé structures K1 and K2 are said to be

isomorphic if there is an automorphism of the underly-

ing graph that maps double bonds of K1 to double bonds

of K2 and single bonds of K1 to single bonds of K2.

By means of appropriate computer software (slight

modification of the software used in the research5-7 of

C60 and research8,9 of C70), it can be established that

there are 77400 Kekulé structures of C72, which can be

classified by symmetrical invariance into 3470 classes.

Also, it can be checked using the same program that

the resonance graph of C72 is not connected. Note that

C72 has one particular Kekulé structure K* (Figure 3), in

which all double bonds are shared by hexagons. Every

automorphism of C72 maps K* to K*.

Denote by MIC the connected component of the res-

onance graph of C72 that contains K*. In the sequel, we

provide numerical evidence that this is the most impor-

tant component of the resonance graph.
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Figure 1. A Kekulé structure of C70 and the corresponding p-elec-
tron content.

Figure 2. Labeling of the faces of C72 by letters A, B, C and P. Iso-
morphic faces are denoted by the same letter.



Theorem 1. – Let K1 and K2 be two isomorphic Kekulé

structures. Then, they are either both in MIC or none of

them is in MIC.

Proof: It is sufficient to prove that K1∈MIC ⇒ K2∈
MIC. Let K1a2a3…axK* be the path from K1 to K* and

let f be the automorphism of C72 that maps K1 to K2.

Then, f (K1) f (a2) f (a3)…f (ax) f (K*) is the path from

K2 = f (K1) to K* = f (K*). �

Let S be any subset of the set of Kekulé structures

of C72, such that for each two isomorphic Kekulé struc-

tures K1 and K2 either both K1 and K2 are in S or none of

them is in S. Then, we say that S is an isomorphically

invariant set. By convention, we assume that the empty

set is isomorphically invariant.

Remark 2. – From Theorem 1, it follows that MIC is an

isomorphically invariant set. �

Let K be any Kekulé structure. Denote by ic(K),

df(K), ih(K), ch(K) and pe(K), respectively, the maximal

number of independent conjugated cycles of K, the de-

gree of freedom of K, the maximum number of inde-

pendent conjugated hexagons of K, the number of conju-

gated hexagons of K, and the number of p-electrons that

belong to hexagons in K. It can be easily verified that

the following theorem holds:

Theorem 3. – Let i be any natural number. The sets:

ici = {K : ic(K) = i}

dfi = {K : df(K) = i}

ihi = {K : ih(K) = i}

chi = {K : ch(K) = i}

pei = {K : pe(K) = i}

are isomorphically invariant. �

We can also prove:

Theorem 4. – Let S1 and S2 be two isomorphically in-

variant sets. Then, the set S1 ∩ S2 is also isomorphically

invariant. �

For any finite set X, we denote by X the number of

elements of the set X. Let S be any isomorphically

invariant set. Denote Sm = S ∩ MIC. Also, denote

Sratio = S S
m / .

Let X be any face of C72 and let K be any Kekulé

structure of C72. Denote by K(X) the p-electron content

of the face X in the Kekulé structure K. Let S be any set

of Kekulé structures. Denote

S

K

S

K S( )

( )

X

X

= ∈
∑

,

where S is the number of the Kekulé structures in S.

Let us illustrate this by three examples:

– ch4(C) is the average p-electron content of the hexa-

gon when all Kekulé structures with 4 conjugated

hexagons are taken into consideration;

– df5(A) is the average p-electron content of hexagon

A when all Kekulé structures with degree of freedom

equal to 5 are taken into consideration;

– ic7(B) is the average p-electron content of hexagon

B when all Kekulé structures of the main component

resonant graph that have the maximal number of in-

dependent cycles equal to 7 are taken into conside-

ration.

Theorem 5. – Let X1 and X2 be two isomorphic faces and

let S be the isomorphically invariant set of Kekulé struc-

tures. Then, S(X1) = S(X2). �

From this theorem, it follows:

Remark 6. – Let S be the isomorphically invariant set of

Kekulé structures. To describe all faces, it is sufficient to

calculate S(A), S(B), S(C) and S(P). �

Now we can present our major results, which are

given in the following five tables (the tables were ob-

tained by a computer after about nine-hour long execu-

tion of the algorithm based on several mathematical theo-

rems). All tables are structured as follows:

– The 1st column gives the prescribed value i;

– The 2nd column gives the number of Kekulé structu-

res with value i of the observed property;

– The 3rd column gives the number of Kekulé struc-

tures in the main component of the resonant graph

with value i of the observed property;

– The 4th column gives the ratio of the numbers in the

third and second column;

– The 5th (resp. 6th, 7th, 8th) column gives the average

p-electron content of the hexagon A (resp. hexagon

B, hexagon C, pentagon P) when all the structures

described in the 3rd item are taken into consideration;

– The 9th (resp. 10th, 11th, 12th) column gives the ave-

rage p-electron content of the hexagon A (resp. hexa-

gon B, hexagon C, pentagon P) when all the structures

described in the 3rd item are taken into consideration.
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Figure 3. The most important Kekulé structure of C72.



The above five tables are given here:
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TABLE I. Results pertaining to Kekulé structures with the same maximal number of independent conjugated cycles

i |ici | |ici

m | ici

ratio
ici

m (A) ici

m (B) ici

m (C) ici

m (P) ici(A) ici(B) ici(C) ici(P)

4 1086 0 0.000 – – – – 1.989 1.960 1.983 1.726

5 13575 24 0.002 3.000 1.833 2.167 1.500 2.000 1.979 2.032 1.656

6 12487 160 0.013 2.663 1.944 2.219 1.394 2.091 2.030 2.044 1.577

7 15261 2364 0.155 2.211 2.040 2.186 1.406 1.847 2.146 2.103 1.443

8 7736 7736 1.000 1.663 2.197 2.226 1.300 1.663 2.197 2.226 1.300

9 27255 27255 1.000 1.413 2.298 2.302 1.164 1.413 2.298 2.302 1.164

TABLE II. Results pertaining to Kekulé structures with the same degree of freedom

i |dfi | |dfi

m | dfi

ratio
dfi

m (A) dfi

m (B) dfi

m (C) dfi

m (P) dfi (A) dfi (B) dfi (C) dfi (P)

5 1557 0 0.000 – – – – 1.981 1.963 1.933 1.775

6 16809 60 0.004 2.500 1.950 2.150 1.483 2.014 1.988 2.010 1.666

7 21604 2204 0.102 2.273 2.015 2.166 1.441 1.993 2.082 2.085 1.500

8 9196 7065 0.768 1.720 2.175 2.209 1.330 1.651 2.209 2.216 1.300

9 24037 24013 0.999 1.473 2.268 2.272 1.215 1.473 2.268 2.272 1.215

10 4096 4096 1.000 1.066 2.479 2.490 0.854 1.066 2.479 2.490 0.854

11 100 100 1.000 0.480 2.770 2.780 0.370 0.480 2.770 2.780 0.370

12 1 1 1.000 0.000 3.000 3.000 0.000 0.000 3.000 3.000 0.000

TABLE III. Results pertaining to Kekulé structures with the same maximal number of independent conjugated hexagons

i |ihi | |ihi

m | ihi

ratio
ihi

m (A) ihi

m (B) ihi

m (C) ihi

m (P) ihi (A) ihi (B) ihi (C) ihi (P)

0 289 0 0.000 – – – – 1.869 1.882 1.893 1.913

1 408 0 0.000 – – – – 2.103 1.944 1.865 1.841

2 4512 0 0.000 – – – – 2.007 1.955 1.954 1.756

3 3366 0 0.000 – – – – 2.303 1.949 1.968 1.699

4 12867 0 0.000 – – – – 2.000 2.021 2.058 1.587

5 6198 76 0.012 3.000 1.868 2.237 1.395 2.033 2.045 2.079 1.537

6 12405 108 0.009 2.500 1.972 2.194 1.417 1.762 2.165 2.102 1.439

7 4028 4028 1.000 2.179 2.061 2.212 1.363 2.179 2.061 2.212 1.363

8 6072 6072 1.000 1.534 2.226 2.219 1.299 1.534 2.226 2.219 1.299

9 27255 27255 1.000 1.413 2.298 2.302 1.164 1.413 2.298 2.302 1.164

TABLE IV. Results pertaining to Kekulé structures with the same number of conjugated hexagons

i |chi | |chi

m | chi

ratio
chi(A) chi(B) chi(C) chi(P) chi(A) chi(B) chi(C) chi(P)

0 289 0 0.000 – – – – 1.869 1.882 1.893 1.913

1 228 0 0.000 – – – – 2.026 1.943 1.846 1.873

2 2070 0 0.000 – – – – 1.991 1.920 1.897 1.851

3 3192 0 0.000 – – – – 2.083 1.966 1.953 1.733

4 4437 0 0.000 – – – – 2.153 1.960 1.950 1.732

5 7288 0 0.000 – – – – 2.068 1.990 2.005 1.660

(continued)
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TABLE V. Results pertaining to Kekulé structures with the same number of p-electrons that belong to hexagons

n |pei | |pei

m | pei

ratio
pei

m (A) pei

m (B) pei

m (C) pei

m (P) pei (A) pei (B) pei (C) pei (P)

48 1089 8 0.007 1.500 2.000 1.750 2.000 2.121 1.869 1.778 2.000

49 2640 132 0.050 2.000 1.917 1.833 1.917 2.293 1.839 1.862 1.917

50 3384 306 0.090 2.412 1.853 1.912 1.833 2.284 1.898 1.888 1.833

51 5648 576 0.102 1.750 2.028 1.931 1.750 2.039 1.979 1.931 1.750

52 7101 1530 0.215 1.988 2.003 1.999 1.667 2.090 1.984 2.001 1.667

53 6828 1716 0.251 2.007 2.026 2.056 1.583 1.948 2.057 2.035 1.583

54 8422 3026 0.359 1.594 2.146 2.089 1.500 1.800 2.111 2.090 1.500

55 7644 3756 0.491 1.899 2.106 2.161 1.417 1.870 2.113 2.159 1.417

56 6828 3564 0.522 1.515 2.219 2.195 1.333 1.582 2.218 2.185 1.333

57 7104 4992 0.703 1.518 2.246 2.251 1.250 1.601 2.226 2.257 1.250

58 5088 3780 0.743 1.667 2.241 2.315 1.167 1.606 2.258 2.307 1.167

59 4632 3780 0.816 1.200 2.372 2.344 1.083 1.255 2.362 2.345 1.083

60 3848 3529 0.917 1.462 2.342 2.415 1.000 1.469 2.339 2.417 1.000

61 2244 2040 0.909 1.259 2.415 2.459 0.917 1.235 2.423 2.455 0.917

62 2130 2058 0.966 1.052 2.488 2.503 0.833 1.068 2.483 2.506 0.833

63 1168 1156 0.990 1.355 2.449 2.575 0.750 1.346 2.452 2.574 0.750

64 681 669 0.982 0.789 2.602 2.599 0.667 0.793 2.601 2.601 0.667

65 540 540 1.000 1.000 2.583 2.667 0.583 1.000 2.583 2.667 0.583

66 170 170 1.000 1.024 2.606 2.724 0.500 1.024 2.606 2.724 0.500

67 132 132 1.000 0.500 2.750 2.750 0.417 0.500 2.750 2.750 0.417

68 54 54 1.000 1.000 2.667 2.833 0.333 1.000 2.667 2.833 0.333

69 12 12 1.000 0.000 2.917 2.833 0.250 0.000 2.917 2.833 0.250

70 12 12 1.000 0.500 2.833 2.917 0.167 0.500 2.833 2.917 0.167

72 1 1 1.000 0.000 3.000 3.000 0.000 0.000 3.000 3.000 0.000

i |chi | |chi

m | chi

ratio
chi(A) chi(B) chi(C) chi(P) chi(A) chi(B) chi(C) chi(P)

6 7680 96 0.013 2.750 1.875 2.125 1.542 2.016 2.042 2.055 1.567

7 6980 652 0.093 2.402 1.917 2.035 1.647 1.974 2.075 2.081 1.514

8 6822 2036 0.298 2.095 2.024 2.095 1.532 1.860 2.125 2.135 1.430

9 6456 4548 0.704 1.821 2.108 2.125 1.464 1.776 2.144 2.154 1.406

10 8492 7234 0.852 1.651 2.179 2.184 1.362 1.626 2.198 2.200 1.331

11 7840 7600 0.969 1.551 2.237 2.250 1.255 1.542 2.242 2.253 1.247

12 6375 6146 0.964 1.393 2.319 2.334 1.115 1.385 2.324 2.337 1.108

13 4020 4020 1.000 1.307 2.374 2.401 1.007 1.307 2.374 2.401 1.007

14 2638 2614 0.991 1.102 2.463 2.477 0.876 1.099 2.465 2.478 0.874

15 1276 1276 1.000 1.034 2.505 2.528 0.794 1.034 2.505 2.528 0.794

16 772 772 1.000 0.801 2.609 2.618 0.640 0.801 2.609 2.618 0.640

17 276 276 1.000 0.848 2.598 2.620 0.641 0.848 2.598 2.620 0.641

18 168 168 1.000 0.500 2.750 2.750 0.417 0.500 2.750 2.750 0.417

19 76 76 1.000 0.553 2.737 2.750 0.421 0.553 2.737 2.750 0.421

21 24 24 1.000 0.250 2.875 2.875 0.208 0.250 2.875 2.875 0.208

24 1 1 1.000 0.000 3.000 3.000 0.000 0.000 3.000 3.000 0.000

TABLE IV. cont.



It can be seen (in Table II) that all Kekulé structures

of C72 have degrees of freedom from 5 to 12. The

Kekulé structure with (maximal) degree of freedom 12

is presented in Figure 3. Kekulé structures with degrees

of freedom equal to, respectively, 5, 6,…,11 are pre-

sented in the following figures:

DISCUSSION

First note that the values of ici

ratio , dfi

ratio
ihi

ratio , cfi

ratio ,

and pei

ratio increase (with a few exceptions) with the in-

crement of i. When i is small, these values tend to 0 and

when i is large, these values tend to 1. This means that

almost all Kekulé strucutures of low importance are out-

side MIC and almost all of those of high importance be-

long to MIC. This holds irrespective of the criterion

used (maximal number of independent conjugated cy-

cles, degree of freedom, maximal number of independ-

ent conjugated hexagons, number of conjugated hexa-

gons, or number of p-electrons that belong to hexagons).

Especially note that for the 7 highest values of i the val-

ues of the second and third rows of Tables IV and V coin-

cide, i.e., all structures with 7 highest values of numbers

of conjugated hexagons and p-electron content belong to

the most important component of the resonance graph.

All this leads to the conclusion that MIC represents the
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Figure 4. Kekulé structure with df = 5.

Figure 5. Kekulé structure with df = 6.

Figure 6. Kekulé structure with df = 7.

Figure 7. Kekulé structure with df = 8.

Figure 8. Kekulé structure with df = 9.

Figure 9. Kekulé structure with df = 10.

Figure 10. Kekulé structure with df = 11.



most important component of the resonance graph of

C72. Hence, the study of Kekulé structures within the

MIC is particularly relevant.

As the importance of the observed class of Kekulé

structure grows, one should expect that the number of

p-electrons that belong to each of the hexagons will in-

crease and that number of p-electrons that belong to

each of the pentagons will decrease. Similar results

should be obtained also if we restrict ourselves to the

main component.

Analyze first the pentagon P. Functions ici , dfi , ihi ,

cfi

ratio , pei , dfi

m and pei

m are decreasing. Functions ici

m ,

ihi

m
, and chi

m are decreasing if we disregard one excep-

tion. Also, function chi is decreasing if we disregard two

exceptions. Hence, the p-electron content of pentagon P

behaves according to intuition.

Analyze now hexagons of type B. Functions ici , dfi ,

dfi

m , ici

m
, and ihi

m are increasing. Functions ici , dfi , and

chi

m are increasing if we disregard two exceptions. Func-

tions epi and epi

m show, in general, increasing tenden-

cies, but with several exceptions. Again, we see that the

p-electron contents of hexagons B behave according to

intuition.

Next, we analyze the hexagon of type C. Functions

ici , dfi , pei , dfi

m , and pei

m are increasing, ihi , ici

m
, ihi

m
,

and chi

m are increasing if we disregard one exception,

whereas chi is increasing if we disregard two exceptions.

Hence, again, the p-electron contents of hexagons C be-

have according to intuition.

It remains to analyze the hexagons of type A. Func-

tions ici

m , dfi

m
, and ihi

m are strictly decreasing, dfi is de-

creasing if we disregard one exception whereas chi

m is

decreasing if we disregard two exceptions. All other

functions show, in general, a decreasing tendency, but

with several exceptions. We can see that the behavior of

the p-electron content of a type A hexagon is contra-in-

tuitive. It behaves in a »pentagon-like« manner. As Ke-

kulé structures become more and more important, this

hexagon has fewer and fewer p-electrons. Returning to

the 7-tuple:

(h0, h1, h2, h3, h4, h5, h6) = (0,0,0,12,12,0,2),

one again concludes that the presence of hexagons of ty-

pe A is the cause of the instability of C72. However, we

have shown that the instability is not solely a result of

steric strain, but also features related to the (topolo-

gy-dependent) distribution of p-electrons in Kekulé

structures may significantly contribute to it.

The method put forward and applied in the present

work may also provide a new insight into the properties

of other fullerenes, and help forecast their stability.
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SA@ETAK

O nestabilnosti fulerena C72

Damir Vuki~evi}, Ivan Gutman i Milan Randi}

Najva`niji fuleren je Buckminster fuleren C60. Ovaj fuleren je dobiven leap-frog transformacijom fulerena

C20. Sljede}i najmanji fuleren koji se mo`e dobiti leap-frog transformacijom je C72 (dobiven iz C24). Izne-

na|uju}e je da je ovaj fuleren nestabilan. Standardno obja{njenje njegove nestabilnosti je njegov nepovoljan
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prostorni raspored uzrokovan dvama heksagonima koji su okru`eni sa po 6 heksagona. Analiziraju}i p-elek-

tronski sadr`aj ovih heksagona pokazano je da je pona{anje ovih heksagona sli~nije pona{anju pentagona nego

pona{anju heksagona, {to tako|er mo`e biti uzrokom (ili dodatnim uzrokom) nestabilnosti fulerena C72. Dakle,

u ovom radu se ukazuje i na postojanje topolo{kih razloga (koji nemaju veze s prostornim rasporedom) za ne-

stabilnost ovog fulerena.
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