
Kekulé Structures of Fullerene C70

Milan Randi}a and Damir Vuki~evi}b

a
National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

b
Faculty of Natural Sciences, Mathematics and Education, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia

RECEIVED JANUARY 30, 2006; REVISED MAY 31, 2006; ACCEPTED JUNE 19, 2006

Despite that, besides Buckminsterfullerene C60, fullerene C70 is the next most stable structure,
there are considerable differences in structural properties of these two most common fullere-
nes. The paper reports on numerous mathematical properties of the set of Kekulé structures of
C70. Of over 50,000 Kekulé structures of fullerene C70, only 2780 Kekulé valence structures are
distinct, while all the others are symmetry related. The subset of distinct Kekulé valence struc-
tures was examined and classified into six classes according to the degree of freedom (df), vary-
ing from df = 5 to df = 11. Enumeration of conjugated circuits R1, R2 and R3 points to two sym-
metry related dominant Kekulé structures having the maximal number of 20 R1. There are 16
distinct symmetry unrelated Kekulé structures of C70 that have no conjugated circuits R1 at all.
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INTRODUCTION

Not long ago, in collaboration with H. Kroto, we examin-
ed the Kekulé valence structures of Buckminsterfulle-
rene and their properties 1,2 and here we will first extend
such investigations to C70 and then make a comparison
between the two fullerenes. In this article, we focus on
mathematical properties of fullerene C70, which is the next
most common fullerene after Buckminsterfullerene C60.
As it is well known, the two fullerenes differ only in that
C70 has a »belt« of additional ten benzene hexagons in
its structure, thus departing slightly from the spherical form
of C60. In view of the close relationship of C70 to C60,
we decided to examine C70 more closely and find out to
what degree the apparent similarity between these two
basic fullerenes extends to their mathematical properties,
which describe their inner composition. As we will show,
the two fullerenes show considerable differences in many
properties though one might have expected otherwise.

ANATOMY OF KEKULÉ VALENCE STRUCTURES

Ever since introduced by the Czech chemist3 Friedrich
August Kekulé von Stradonitz (1829–1896) in 1865,4 Ke-
kulé valence structures have played a major role in or-
ganic chemistry. However, following the historic work of
Heitler and London5 on stability of hydrogen molecule
in 1927, which led to Valence Bond (VB) calculations,
Kekulé valence structures received novel attention by be-
coming the basis for VB computations on polycyclic co-
njugated hydrocarbons. This work, initiated in particular
by Linus Pauling,6,7 Wheland8 and other pioneers of the
early Quantum Chemistry, still continues despite the wide-
spread explosion of Molecular Orbital calculations. We
may mention in particular the recent works of Klein and
co-workers9,10 and Jiang and co-workers,11,12 who deve-
loped ab initio VB calculations that can be applied to ben-
zenoid systems having two dozen and more p-electrons.
However, despite the long history of Kekulé valence



structures, it was relatively recently that several interest-
ing properties of Kekulé valence structures, listed below,
have surfaced. For a comprehensive review of these pro-
perties of polycyclic conjugated hydrocarbons, we direct
the reader to the recent review article »Aromaticity in
Polycyclic Conjugated Hydrocarbons.«13 We will illustra-
te these properties of Kekulé valence structures on co-
rannulene. Corannulene has 11 Kekulé valence structu-
res, the three distinct of which (unrelated by symmetry
operations) are shown in Figure 1. The conjugated rings
of corannulene can be viewed as a portion of conjugated
rings of fullerenes.

– Conjugated Circuits (Figure 2): A close look at in-
dividual Kekulé valence structures of conjugated hydro-
carbons as well as fullerenes reveals that such systems

have a number of circuits in which there is regular alter-
nation of CC double and CC single bonds.14–16 Conju-
gated circuits (measured by the number of carbon p-elec-
tron centres involved) can be of (4n+2) and (4n) size.
The former make a positive contribution towards the
molecular resonance energy (RE) while the latter make a
negative (destabilizing) contribution to molecular stabi-
lity as measured by RE. In Figure 2, we have illustrated
conjugated circuits of one of the three distinct (noniso-
morphic) Kekulé valence structures of corannulene.17

– Degree of Freedom (df) (Figure 3): Each Kekulé va-
lence structure has a unique subset of CC double bonds,
which does not appear in any other Kekulé valence
structure. The cardinality of this subset is known as the
innate degree of freedom of the Kekulé valence structu-
re.18–20 When this subset is inscribed within the molecu-
lar structure, the locations of all other CC double bonds
are completely determined, i.e., there is no choice of the
locations of the remaining CC double bonds within the
structure. Kekulé structures with a large degree of free-
dom contribute more to molecular stability while the Ke-
kulé structures with a small degree of freedom show a
»long-range order«. In Figure 3, we illustrate a selection
of CC bonds for the three distinct Kekulé valence struc-
tures of Figure 1, two of which have df = 2 and one has
df = 3.

– Resonance Theory: Herndon21,22 developed a simple
and straightforward »Resonance Theory« for benzenoid
hydrocarbons by showing that a simplified Hamiltonian
based on the set of Kekulé valence structures suffices to
reproduce very satisfactorily molecular stabilities (mea-
sured by the RE) previously calculated by MINDO cal-
culations,23 the semi-empirical SCF (Self-Consistent Field)
theory developed by M. J. S. Dewar and C. de Llano. The
Hamiltonian matrix elements between two Kekulé valence
structures could be constructed by counting the number
of CC double bonds at different locations in the two
structures.

– Equivalence between Resonance Expressions: Schaad
and Hess24 were the first to observe that the expressions
for RE obtained by counting conjugated circuits of dif-
ferent size and the expressions derived from the Resonance
Theory of Herndon obtained from the Hamiltonian bas-
ed on counting CC double bonds, which differ between a
pair of Kekulé valence structures, are the same. Thus, the
two conceptually distinct approaches turn out to be
mathematically equivalent. As Klein and Trinajsti}25

pointed out, this equivalence leads to quantum chemical
bases for the Conjugated Circuit Model. For more on the
theoretical basis of the conjugated circuit model see nu-
merous papers of Klein and collaborators.26–45 Conjugat-
ed circuits model continues to be of interest not only for
fullerenes but also for nanotubes.46

– Resonance Graph (Figure 4): If one considers only
the relations between Kekulé valence structures which
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A B1 C1

Figure 1. The three nonisomorphic Kekulé valence structures of
corannulene. The first one is unique the other two, by rotation of
72°, generate the remaining Kekulé valence structures of coran-
nulene.

Figure 2. All conjugated circuits for the last Kekulé valence struc-
ture of Figure 1.

df = 3 df = 2 df = 2

A B1 C1

Figure 3. Illustration of CC bonds which when selected as CC
double bonds determine the bond type character of all other CC
bonds in the structure.



differ in location of only three CC double bonds within a
single benzene ring, one obtains a simplified VB interac-
tion graph, known as the Resonance Graph.47–49 Reso-
nance graphs can be viewed as a collection of fused n-
dimensional cubes, with n running from 1 to N, where N

is the largest number of disjoint smallest conjugated cir-
cuits confined to a single benzene ring. The graph can be
connected or disconnected, and the Kekulé valence struc-
tures that constitute the largest connected subgraph of the
resonance graph contribute most to the molecular energy.

– Information Content of Kekulé Valence Structure:
Gutman and Randi}50 came across a highly important
observation concerning Kekulé valence structures which
shows that a single Kekulé valence structure contains in-
formation on all the remaining Kekulé valence structu-
res, which can one by one be derived from any selected
structures after one has identified all conjugated circuits
in such a structure, the number of which is (K–1). All
that is required to obtain other Kekulé valence structures
from the considered one is to exchange CC single and
CC double bonds within a single conjugated circuit. Fig-
ure 2 illustrates the theorem of Gutman and Randi} on
one of the Kekulé structures of corannulene by display-
ing ten conjugated circuits of that structure, each of which
can produce one of the remaining ten Kekulé valence struc-
tures of corannulene.

– p-Electron Ring Partition (Figure 5): Kekulé valen-
ce structures are familiar to most chemists as a conve-
nient geometrical representation for polycyclic conjugat-
ed hydrocarbons, but it was only very recently that the

notion of numerical Kekulé valence structures was pro-
posed.51 Numerical Kekulé valence structures are based
on partition of p-electrons to individual rings of polycyclic
conjugated hydrocarbons. CC double bond contributes
both its p-electrons to a ring if it is not shared by other
rings while if common to two rings, it shares p-electrons,
one to each ring. When the contributions of all Kekulé
structures are superimposed, individual rings vary in the
number of p-electrons, revealing variations in local aro-
matic properties of individual rings.52–60 In the case of
fullerenes, all CC double bonds are shared between two
rings; thus, ring partitions are simply given by the num-
ber of CC double bonds in each ring. Figure 5 shows the
corresponding p-electron ring partitions for the three dis-
tinct Kekulé valence structures of corannulene C20H10.
Each of the resulting partitions represents the numerical
representation of the corresponding Kekulé valence struc-
ture. When the contributions from all 11 Kekulé valence
structure are added, we obtain for the hexagonal rings
41/11 or 3.7272... p-electrons and for the central penta-
gon 15/11 or 1.3636 p-electrons.

More information on all the above mentioned inte-
resting and intriguing properties of Kekulé valence struc-
tures can be found in a recent comprehensive review ar-
ticle on aromaticity of polycyclic conjugated hydrocar-
bons of one of the present authors.13 In summary, let us
mention that the parameters Rn, which were empirically
estimated, satisfy the inequality:

R1 > R2 > R3 > R4

Hence, the dominant role in determining molecular
RE comes from the smallest conjugated circuits. In ad-
dition, we should also comment on the »classical« Hückel
(4n+2) rule, which is known to hold only for monocyclic
structures. It constitutes a great achievement of MO theory,
because it explained the difference between the stability
of benzene C6H6 and elusive cyclobutadiene C4H4. All
attempts to extend the Hückel rule to polycyclic conju-
gated hydrocarbons failed. However, one can view co-
njugated circuits as a natural generalization of the Hü-
ckel (4n+2) rule, but note that we have moved from an
MO point of view to a VB point of view. Individual co-
njugated circuits represent monocyclic systems and hence
do not violate the Huckel rule. The count of conjugated
circuits not only allows one to obtain expressions for the
molecular resonance energy RE but also allows classi-
fication of polycyclic conjugated hydrocarbons as aro-
matic and antiaromatic. According to this classification,
conjugated systems having only 4n+2 conjugated circuits
form the class of highly aromatic systems, while those
having only 4n conjugated circuits are highly antiaroma-
tic.13,15 Structures having both 4n+2 and 4n conjugated
circuits belong to a class »in-between«, compounds that
will show some aromatic and some antiaromatic charac-
teristic.
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Figure 4. The resonance graph RG for corannulene: A, B1 and C1

are the three Kekulé valence structures of Figure 1. Structures Bk

and Ck are obtained from B1 and C1, respectively, by rotation
(k–1) times 72°.
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Figure 5. The partitioning of p-electrons for the three Kekulé va-
lence structures of Figure 1.



PROPERTIES OF C70 KEKULÉ VALENCE
STRUCTURES

Fullerene C70, the skeleton of which is illustrated in Fig-
ure 6, has 25 hexagons and 12 pentagons. It has 52,168
Kekulé structures as it was first reported by Gutman et

al.61 and confirmed here using our back-tracking algo-
rithm previously developed for the study of Kekulé va-
lence structures of Buckminsterfullerene. The maximal
number of the smallest conjugated circuits R1 is 20, found
in two Kekulé valence structures illustrated in Figure 7.
In Table I, we list enumeration of Kekulé structures hav-

ing a different number of R1. The middle columns relate
to symmetry distinct structures and the total number of
Kekulé structures having k conjugated circuits R1, while
the quotient of the two is in the last column. Note that it
is not possible to have a Kekulé structure with 19 R1, i.e.,

one less than the maximal number, because if hexagons
CC double and CC single bonds are exchanged in one,
this will also affect adjacent hexagons and reduce the
maximal number of CC double bonds in them. As we
see, the quotient is rather constant for most cases, except
for the cases with a very large number of R1 and the case
of zero R1 conjugated circuits. The symmetry group of
C70 has 20 elements, which reduce the 52,168 Kekulé
structures to 2780 distinct Kekulé structures. Hence, in
the following we need to examine more closely the pro-
perties of this smaller subset of Kekulé structures of C70.
In contrast to the case of Buckminsterfullerene of 12,500
different Kekulé structures, there were 158 distinct Ke-
kulé structures. Hence in the case of C60, distinct Kekulé
structures make 1.26 % of all structures but in the case
of C70 the distinct Kekulé valence structures make 5.33 %
of all structures.

In Figure 7, we have already illustrated the Kekulé
structures with the maximal number of R1 conjugated cir-
cuits. It is not difficult to see that of the 20 R1 conjugat-
ed circuits in these two structures (which are symmetry
related) we can select at most nine disjoint conjugated
circuits. One such possibility is illustrated in Figure 8, in
which five hexagons of the central hexagonal belt are se-
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Figure 6. The skeleton of C70.

TABLE I. Distinct (nonisomorphic) and the total number of Kekulé
structures having k conjugated circuits R1

Number
of R1

Number of
nonisomorphic

structures

Total number
of structures

Quotient

0 16 205 12.81

1 17 340 20.00

2 94 1730 18.40

3 128 2520 19.69

4 179 3270 18.27

5 280 5400 19.29

6 327 6285 19.22

7 369 6970 18.89

8 375 7150 19.07

9 291 5490 18.87

10 265 4826 18.85

11 171 3220 18.83

12 119 2220 18.66

13 77 1370 17.79

14 33 610 18.48

15 23 350 15.22

16 9 150 16.67

17 3 30 10.00

18 3 30 10.00

19 0 0

20 1 2 2

Figure 7. The two Kekulé valence structures having the maximal
number (20) of the smallest conjugated circuits R1.

Figure 8. One choice of selecting nine disjoint conjugated circuits
forming the Clar structure of C70.



lected, leaving inside and outside the belt five hexagons
adjacent to the central innermost pentagon and five adja-
cent to the outermost pentagon (representing the periphery
of the C70 figure). Each group of these five pentagons
allow two additional disjoint R1 conjugated circuits, to-
talling nine. The resulting structure, having nine R1 and
eight CC double bonds, represents the Clar structures of
C70. The Clar structure of Buckminsterfullerene has eight
R1 conjugated circuits and six CC double bonds. In Fig-
ure 9, we have illustrated the 16 most important (accord-
ing to the theory of resonance circuits) Kekulé valence
structures of C70 having 16 or more conjugated circuits
R1 and in Figure 10 we similarly show 16 the least im-
portant Kekulé valence structures of C70 having no co-
njugated circuits R1 at all.

Table II shows the count of disjoint conjugated cir-
cuits R1. As can be seen from the last row of Table II, in
C70 there are 212 different and symmetry unrelated Clar
structures and the total of 3872 Clar structures. In this
respect, there is considerable difference between C70 and
C60, which has only one distinct Clar structure and five
Clar structures in all. We will examine the Clar structu-
res of C70 more closely in the next section.

Clar Structures of Fullerene C70

Clar structures of Bckminsterfullerene obtained by plac-
ing the aromatic p-sextets in eight out of twenty hexago-
nal rings in C60 were first reported by El-Basil.62,63 Since
each sextet is obtained by superposition of two Kekulé
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Figure 9. The 16 most important Kekulé valence structures of C70 having 16 or more conjugated circuits R1.



structures of benzene, it follows that a single C60 Clar
structure involves 28 or 256 Kekulé valence structures.
In the case of C70, it follows similarly that a single C70

Clar structure involves 29 or 512 Kekulé valence struc-
tures. In total, as we can see from the last row of Table
II, there are 3872 Kekulé structures that contribute to the
Clar structure of C70. Instead of depicting that many Ke-
kulé valence structures, we will outline a simple proce-
dure that allows one to easily construct them, if wanted.
For that purpose, in Figures 11–13 we have depicted
components which when combined produce the required
Kekulé valence structures. First, Figure 11 shows two
diagrams of C70, in which only a single hexagon has in-
scribed three CC double bonds. By rotating the figure by
72°, one can obtain the remaining eight structures, there
being ten such components in all. Figure 12 shows three

476 M. RANDi] AND D. VUKI^EVI]

Croat. Chem. Acta 79 (3) 471¿481 (2006)

TABLE II. The count of disjoint conjugated circuits R1

Number of
disjoint R1

Number of
nonisomorphic

structures

Total number
of structures

Quotient

0 16 205 12.81

1 26 500 19.23

2 200 3675 18.38

3 167 3250 19.46

4 320 5951 18.60

5 793 14893 18.78

6 331 6320 19.09

7 257 4702 18.29

8 458 8800 19.21

9 212 3872 18.26

Figure 10. The 16 least important Kekulé valence structures of C70 having no conjugated circuits R1 at all.



diagrams of C70 with partially inscribed CC double bonds
in the central part involving the central pentagon and the
five adjacent hexagons. The three diagrams are noniso-
morphic and except for the first, which is unique (its only
isomorphism is identity), the other two can generate, by
rotating the figure by 72°, four additional (isomorphic)
diagrams, thus totalling together with the first unique
diagram in all 11 components. Finally, Figure 13 again
shows three diagrams of C70 with partially inscribed CC
double bonds in the periphery involving the outside pen-
tagon and the five adjacent hexagons. The three diagrams
are again nonisomorphic and except for the first, which
is unique (its only isomorphism is identity), the remain-
ing two can generate, by rotating the figure by 72°, four
additional (isomorphic) diagrams, thus totalling together
with the unique diagram in all 11 components. By choos-
ing any structure given in Figure 11, any in Figure 12
and any in Figure 13 and joining their double bonds, we
get one of Kekulé structures involved in the Clar struc-
ture of C70. When we also consider components obtained
by rotating the diagrams shown in this way, we can con-
struct 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 11 ⋅ 11 = 3872 (i.e., all) Kekulé struc-
tures participating in defining the Clar structures of C70.

Resonance Graph

According to ab initio VB calculations on p-conjugated
hydrocarbons, Klein and collaborators found that only a
subset of all Kekulé valence structures contribute signi-
ficantly to molecular stability (that is, to the total mole-
cular energy). They identified these Kekulé valence struc-
tures as those which can be obtained from the dominant
Kekulé valence structure by successive exchange of CC
single and CC double bonds within any of the single ben-
zene hexagons. All Kekulé valence structures that can be
generated in this fashion belong to the main component
of the Resonance Graph (RG). A class of 3872 Kekulé
valence structures contributing to the Clar structure be-
long to the valence structures of the main component of
the Resonance Graph, which however contains additio-
nal valence structures. In Table III, the left columns show
the number of nonisomorphic and the total number of Ke-
kulé valence structures forming the main component of
the Resonance Graph. As can be seen from Table III, there
are in all 17,454 valence structures in the Resonance
Graph, of which 3872 belong to the class forming Clar
structures. If we consider only nonisomorphic structures,
the total of which is 3872, only about a fourth, i.e., 932,
are Kekulé structures of the RG, but if we consider all
Kekulé valence structures, then out of 52168 valence
structures only about 1/3, i.e., 17,454, make a significant
contribution to molecular energy computations.

A close look at Table III shows that all Kekulé va-
lence structures having 13 R1 and more belong to the main
component of the RG, with the exception of a single struc-
ture (shown in Figure 14), while at the same time all Ke-
kulé valence structures having 5 R1 and less do not belong
to the main component of RG. The ratio of the number
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Figure 12. Three diagrams of C70 with partially inscribed CC double bonds in the central part involving the central pentagon and the five
adjacent hexagons.

Figure 13. Three diagrams of C70 with partially inscribed CC double bonds in the periphery involving the outside pentagon and the five
adjacent hexagons.

Figure 11. Two diagrams of C70 in which only a single hexagon
has inscribed three CC double bonds.



of Kekulé valence structures having between 6 R1 and
12 R1 belonging to the main component increases as the
number of R1 conjugated circuits increases. We can com-
pare the results obtained for the C70 fullerene with simi-
lar results for the C60 buckminsterfullerene. Just as in the
case of buckminsterfullerene, the resonance graph of C70

is too complex to be graphically presented. However, we
know that instead of the 8-dimensional cube being the
largest n-dimensional cube possible for C60, now we have
the 9-dimensional cube as the largest n-cube possible. In
addition, the resonance graph of C70 involves numerous
fused 8-dimensional cubes, 7-dimensional cubes and smal-
ler n-cubes, all constituting a single connected compo-
nent of the resonance graph. In their variational resonan-
ce valence bond study of the ground state of C60, Flocke,
Schmalz and Klein6 used the 5828 (that form the main
component of the RG from the total of 12,500 Kekulé
valence structures of C60) based on the Heisenberg mo-
del for Hamiltonian, which considers electron correlation
as a result of exchange interactions. Such Hamiltonian
has been used extensively in solid state physics and can
be derived as the dominant terms in cluster expansions
or degenerate perturbation methods.64–66 The calculations
on conjugated hydrocarbons thus definitively demon-
strated the significance of the main component of the
RG. The difference between such calculations made on
benzenoid hydrocarbons and nonbenzenoid conjugated
systems (which include fullerenes) is that in the case of
benzenoid systems RG has a single component.

Of the 12,500 Kekulé valence structures of C60, at
most 5828 play an important role for stabilization of the
molecule. Wu, Schmalz and Klein9 have shown using an
extended Heisenberg Hamiltonian with next-nearest-neigh-
bour and ring permutation terms, including only the spin
pairing corresponding to 5828 Kekulé valence in the case
of C60, recovered 99.90 % of the energy that is obtained
using the full Kekulé basis, and using the extended Hei-
senberg model on the same 5828 Kekulé basis structures
they recovered as much as 99.96 % of the full Kekulé
basis result. It is clear that the subset of Kekulé valence
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TABLE III. The number of nonisomorphic and the total number of
Kekulé valence structures forming the main component of the Reso-
nance Graph

Main component Other

Number
of R1

Number
of non-

isomorphic
structures

Total
number

of
structures

Number
of R1

Number
of non-

isomorphic
structures

Total
number

of
structures

0 0 0 0 16 205

1 0 0 1 17 340

2 0 0 2 94 1730

3 0 0 3 128 2520

4 0 0 4 179 3270

5 0 0 5 280 5400

6 3 50 6 324 6235

7 37 700 7 332 6270

8 118 2240 8 257 4910

9 171 3300 9 120 2190

10 186 3532 10 79 1294

11 160 3050 11 11 170

12 109 2050 12 10 170

13 77 1370 13 0 0

14 32 600 14 1 10

15 23 350 15 0 0

16 9 150 16 0 0

17 3 30 17 0 0

18 3 30 18 0 0

19 0 0 19 0 0

20 1 2 20 0 0

Total 932 17454 1848 34714

TABLE IV. Count of nonisomorphic Kekulé structures having a dif-
ferent number of disjoint R1 conjugated circuits

Main component Other

Number
of

disjoint
R1

Number
of non-

isomorphic
structures

Total
number

of
structures

Number
of

disjoint
R1

Number
of non-

isomorphic
structures

Total
number

of
structures

0 0 0 0 16 205

1 0 0 1 26 500

2 0 0 2 200 3675

3 0 0 3 167 3250

4 0 0 4 320 5951

5 0 0 5 793 14893

6 5 80 6 326 6240

7 257 4702 7 0 0

8 458 8800 8 0 0

9 212 3872 9 0 0

Total 932 17454 1848 34714

Figure 14. Kekulé valence structures having 14 R1 (six of which
are disjoint) and not belonging to the main component of the RG.



structures that makes a single connected component of
the resonance graph are the important valence structures,
while the 6672 structures can be overlooked when ener-
getic properties of C60 are considered. Thus, in the case
of C70, we can expect results of similar quality by using
17,454 valence structures instead of 52,168.

If we focus attention on the count of disjoint conju-
gated circuits R1, then we find that all Kekulé valence
structures having nine, eight or seven disjoint R1 conju-
gated circuits belong to the main component of RG, while
all Kekulé valence structures having five and less disjoint
R1 conjugated circuits do not belong to the main compo-
nent of RG. As can be seen from Table IV, of the 331
nonisomorphic Kekulé structures having six disjoint R1

conjugated circuits only five belong to the main compo-
nent of RG. The structure that does not belong to RC has
already been illustrated in Figure 14.

Table V shows the count of conjugated circuits in the
main component of the resonance graph. The distances
shown relate to the dominant two Kekulé valence struc-
tures as the origin. The rows give conjugated circuits and
columns give the distances.

Degree of Freedom

Table IV shows the distribution of the innate degree of
freedom within the totality of 52,158 Kekulé valence
structures of C70. The innate degree of freedom, df, is
defined as the smallest number of CC double bonds that
completely determines the location of all the remaining
CC double bonds in a Kekulé valence structure. As can
be seen from Table VI, the maximal degree of freedom
in C70 is 11, there being four valence structures with df =
11. Of the Kekulé structures belonging to the main com-
ponent of RG, four have the degree of freedom six, while
the smallest possible degree of freedom for C70 is five.
Comparison of Table IV and Table VI shows that the
count of disjoint R1 better discriminates between Kekulé
valence structures belonging to the main component of
RG than the degree of freedom.

p-Electron Ring Partitions

We will end this analysis of Kekulé valence structures of
C70 fullerene by examining the distribution of p-elec-
trons within the hexagonal rings of C70. In Figure 15, we
have illustrated partition of the 70 p-electrons to the 25
hexagons (on the left in Figure 15) and the 12 pentagons
(on the right in Figure 15). Since the structure of fulle-
renes is closed, the partition of p-electrons is accomplish-
ed very simply by counting the CC bonds in each ring.
As can be seen from Figure 15, for the selected Kekulé
structure we have 18 hexagons with three p-electrons, four
hexagons with two p-electrons and three hexagons to
which a single p-electron is assigned. The total number
of p-electrons assigned to the 25 hexagons is therefore
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Table V. The count of conjugated circuits in the main component
of the resonance graph. The distances shown relate to the do-
minant two Kekule valence structures as the origin. The rows give
conjugated circuits and columns give the distances

Minimal distance from one of the two main Kekulé
structures

Number of
conjugated

cycles

0 1 2 3 4 5 6 7 8 9

6 0 0 0 0 0 0 0 20 30 0

7 0 0 0 0 0 0 0 470 200 30

8 0 0 0 0 0 0 1370 770 100 0

9 0 0 0 0 0 1250 1560 460 30 0

10 0 0 0 0 350 2032 1020 130 0 0

11 0 0 0 0 1330 1330 390 0 0 0

12 0 0 0 220 1230 560 40 0 0 0

13 0 0 0 700 490 180 0 0 0 0

14 0 0 30 350 220 0 0 0 0 0

15 0 0 200 110 40 0 0 0 0 0

16 0 0 80 70 0 0 0 0 0 0

17 0 20 10 0 0 0 0 0 0 0

18 0 20 10 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

20 2 0 0 0 0 0 0 0 0 0

TABLE VI. Count of nonisomorphic Kekulé structures having a dif-
ferent number of innate degrees of freedom

Main component Other

Degree
of

freedom

Number
of non-

isomorphic
structures

Total
number

of
structures

Degree
of

freedom

Number
of non-

isomorphic
structures

Total
number

of
structures

5 0 0 5 110 2080

6 4 70 6 712 13540

7 159 3020 7 812 15390

8 456 8750 8 209 3652

9 266 4902 9 5 52

10 43 680 10 0 0

11 4 32 11 0 0

Total 932 17454 1848 34714

Figure 15. Partition of the 70 p-electrons to the 25 hexagons (on
the left) and the 12 pentagons (on the right).



65, which is the maximal number possible. Note that five
of the »belt« hexagons have the maximal possible num-
ber of p-electrons per ring, which is three, but the other
five hexagon of the »belt« region have one or two. Thus,
in comparison with Buckminsterfullerene, where all he-
xagons can attain the maximal number of three p-elec-
trons, that is not the case here. Here, the presence of ad-
ditional hexagons in fact decreases, rather than increases,
the local aromaticity of the hexagonal rings. We obtain,
on average, for this particular Kekulé valence structure
2.60 p-electrons per ring. The remaining five p-electrons
belong to 12 pentagons, giving on average 0.41667 p-elec-
trons for pentagons.

In Table VII, we have collected information on par-
tition of p-electrons to hexagonal rings for all noniso-
morphic Kekulé valence structures as well as for the to-
tal number of Kekulé valence structures belonging to the
main component of the resonance graphs and to the re-
maining part of the RG. As can be seen even just by su-
perficial examination of Table VI, most hexagonal rings
of the main RG component have between 2.04 and 2.36
p-electrons, while most of the hexagonal rings of the
Kekulé valence structures not belonging to RG have be-

tween 1.88 and 2.24 p-electrons. This observation alone
suffices to indicate quite clearly that Kekulé valence
structures of RG are more significant and will contribute
more to the molecular stability than the Kekulé structu-
res that do not belong to RG. In the last row of Table
VII, we show the average p-electron content of hexago-
nal rings of C70 for Kekulé valence structures belonging
to the main component of RG and also for those not be-
longing to the main component of RG. The difference
between the two values, 2.1928 and 2.0564, does not ap-
pear large, but when the two numbers are multiplied by
25, the total number of hexagonal rings in C70, then we
can better appreciate the importance of the Kekulé va-
lence structures that constitute the resonance graph.
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SA@ETAK

Kekuléove strukture fulerena C70

Milan Randi} i Damir Vuki~evi}

Bez obzira na to {to je fuleren C70 drugi najstabilniji fuleren nakon C60 Buckminsterfullerena, me|u ovim
fulerenima postoje zna~ajne strukturne razlike. U radu se iznosi mno{tvo matemati~kih svojstava Kekuléovih
struktura fulerena C70. Od preko 50000 Kekuléovih struktura fulerena C70, samo je 2780 struktura koje nisu
izomorfne. Ove strukture su klasificirane s obzirom na stupnjeve slobode (degree of freedom, df) u 6 klasa koje
se kre}u od df = 5 do df = 11. Prebrojavanjem konjugiranih prstenova R1, R2 i R3 utvr|eno je da postoje dvije naj-
zna~ajnije strukture sa 20 R1 konjugiranih prstenova i da su one me|usobno izomorfne. S druge strane postoji
16 neizomorfnih Kekuléovih struktura fulerena C70 koje uop}e nemaju konjugiranih prstenova R1.
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