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In the vastness of molecular space, there are many series X, XY, …, XYn…XYN, where N lies

between 3 and say 10, whose data for a given property and phase are approximately linear with

respect to n. A vectorial representation of the tabulated data in a series and a vector index to

describe the series have been developed. The authors started with X as a metallic atom

and with the property as heat of atomization, and showed that the vector index manifested

periodicity. Then they moved to cases where X itself is a molecule and where the properties are

enthalpies of formation, entropy, retention index, hydrophobicity, and boiling point. The vector

index is a two-dimensional vector whose upper element describes the value of the property for

the atom or molecule X and whose lower element describes the abscissa difference of any two

members of the series after the data have been fitted, in least-squares fashion, to a standard,

linear with n, series A, AL, … ALn, … ALN. Matrices can transform the data vectors of any

series of species whatsoever to any other series of the same dimensionality. Matrices can also

transform the vector index for property data of any approximately linear series, in any phase, to

the vector index for any other approximately linear series.
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INTRODUCTION

Background

A large group of Russian chemists at the Saint Peters-

burg University (LSU, earlier Leningrad State Universi-

ty) devoted decades to compiling molecular databases

for small molecules, in graphical form for maximum

impact, shelved in a manner consistent with chemical

periodicity.1–6 One of the motivations for this effort was

a vision that it would be possible, eventually, to go from

the entries in one database, e.g., group-2 halides, to tho-

se in another, e.g., transition-metal oxides.7 References 3

and 4 contain graphs for the enthalpy of atomization DHa

for molecules formed from group 1-oxides; Mg and Ca

oxides; groups-4 to 8 oxides; group-13 hydrides and

halides; group-14 and 15 hydrides and oxides; group-16

hydrides, oxides, and sulfides; group-17 hydrides, oxid-

es, and fluorides; and group-18 fluorides. Graphs have

the oxidation state of the central atom on the x axis (ab-

scissa) and DHa on the ordinate. References also contain

many plots for the standard enthalpy of formation DH f
o

(298.15 K). (Some graphs have as X a molecule, such as

N2O3, and in these cases both values are normalized to

one »metal« atom, in this instance divided by two.) The-

se databases are the first of four starting points for the

work reported in this paper.

Inspection of the database graphs for either of these

two properties reveals that they are qualitatively similar,

that they echo periodic behaviors of the central atoms,

and that they suggest linearity as a function of the num-



ber of added ligand atoms, n. Many of these graphs were

replotted in various ways during our study to explore

these phenomena more thoroughly (and at the same time

to employ more recent data). The most useful represen-

tation is for the x axis to be the total number of atoms in

the molecules, 1 + n. The suggestion of linearity is con-

sistent with other findings that the binding energy per li-

gand (e.g., H attached to a carbon atom) is roughly con-

stant for many molecules.8,9 The linearity is not perfect

because the ligands interact (the »endoeffect«7) and also

affect the central atom. The approximate linearity of these

graphs is the second starting point for this essay.

The periodicity of properties of diatomic molecules

has been studied so thoroughly that a periodic system has

been constructed for them. Actually there are several good

systems (just as there are various good charts of the ele-

ments) – additive,10 outer-matrix product,11 and group-

dynamic.12 Each of these systems can be generalized to

larger molecules,12–14 though demonstration of their

faithfulness to reality is demonstrable only by averaging

the properties for triatomic 13 and four-atom15 molecules

(N = 3 and 4) and seems virtually impossible beyond

that. By abandoning the obsession to treat all molecules

with N atoms and instead selecting series of molecules

for which data are available, one can explore general

trends deeper in molecular space than N = 4 (but not so

deep as to where biological species are found). This

exploration is the third starting point for this work.

Quantum computation cannot yet produce a global

demonstration of molecular periodicity – computation,

like experiment, yields numerical values for just one or

for a few (e.g., isoelectronic) molecules at a time; these

have to be assembled to demonstrate that periodicity ex-

ists in molecular data. At the moment, periodicity re-

mains a fundamental reality of chemistry.16,17

Decades of research in discrete mathematical chem-

istry have resulted in the formulation of hundreds of top-

ological indices and combinations of indices, docu-

mented in an immense literature, that describe molecular

graphs.18–21 They are applicable primarily to organic

molecules, and some of them have been retrofitted for

atoms other than carbon (heteroatoms). The excellent

Jhet index of Balaban22,23 has been additionally fitted so

as to include periodicity; however, the operative parame-

ter is not available for all atoms. These indices are the

final starting point for this paper.

Goals

1. To define, for series of small molecules XYn with

property DHa, an index that characterizes the series;

2. To show that the method is valid for more complex

species and for other properties;

3. To transform the data, and the vector indices, for

some property for one set of species to any other set

(thus fulfilling the vision of the group at LSU).

Definitions

We use the word »species« to mean atom(s), molecu-

le(s), or both. By a »series« we shall mean a central

atom and the molecules formed by the bonding of its

ligands; by »ligands« we mean any species attached to a

central atom or molecule. The end of a data series is

when the maximum number of ligands, N, are bonded.

We do not consider series with only two species and in

reality we like N to be as large as possible (such as eight,

for oxides of iron).

THEORY

Definitions

We begin with the DHa, which describes the reaction:

X + nY → XYn + DHa (1)

DHa = 0 if n = 0, i.e., for a lone atom, and is negative for

stable molecules n > 1.

Let there be one standard atom, A, whose DHa is of

course zero. Let there be n ligands L. Let the data for

DHa be plotted on a graph with an x axis enumerating n

+ 1 (total number of atoms). The point for A is located at

(x, y) = (1,0) and the bonding of each successive L

increases x by 1 and lowers DHa by an increment of

1000; the abscissae for ALn will be x(ALn) = (n + 1) and

the ordinates will be (–1000) n. Now let data for DHa of

any real-world system of interest, consisting of a central

atom X with N ligands Y, be plotted on the same graph.

The point for X is located at (x, y) = (1,0) and the

bonding of each successive Y increases x by 1 and

lowers DHa by increments; the abscissae for XYn will be

x(XYn) = (n + 1) and the ordinates will be DHa(XYn) < 0
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Figure 1. � and �: raw data DHa for N, NO, and NO2, and for
P, PO, and PO2 are plotted against x, the total number of atoms
in the molecules. �: data for the standard atom A and standard
molecules AL and AL2. � and �: the raw data fitted, by inverse
least-squares, to the line while keeping the two differences of the
three abscissae equal. The original abscissae (diamonds) are x;
the fitted abscissae (squares) are x*, and if the points were forced
to be exactly on the line for A to AL2, then their abscissae would
be xo.



(Figure 1). This figure shows a series with only three

members; it is with such series that we begin the mathe-

matical articulation that follows.

Imagine that we slide the data points for the real-

world molecules XY and XY2 horizontally so that they

fit as closely as possible to the line for the standard se-

ries A, AL, and AL2, while at the same time keeping the

differences in their abscissae equal to each other (but

not necessarily equal to 1 as they were when originally

plotted). Using x* represent the new abscissae; the dif-

ference (x*(XY2) – x*(XY)) will be equal to (x*(XY) –

x*(X), or equal to (x*(XY) – 1) (Figure 1). In actuality,

this mapping amounts to a manual, horizontal, inverse

least-squares procedure – fitting the points to a defined

straight line. The equal abscissa differences x*(XL2) –

x*(XL) and x*(XL) – 1 will be used below to characte-

rize the series.

Before laying out the derivation, we should answer

the question: »Why not characterize the data for the se-

ries by means of the slopes of their least-squares trend

lines?«. The response: simple trend lines will not serve

because they will miss the atom points at (1,0). While a

mathematical expression for a trend line pivoted at (1,0)

can certainly be derived; the derivation is not much simp-

ler than that to be presented here.

Mathematical articulation

Now given X, XY, and XY2, it is required that:

x*(XY2) – x*(XY) = x*(XY) – 1 (2)

Next, it is required that the points x* for XY and XY2

(not for X, which is fixed at its original location) be fit-

ted in a least-squares fashion to the line for the standard

species:

d{[x*(XY2) – xo(XY2)]
2 + [x*(XY) – xo(XY)]2}1/2 = 0 (3)

where xo(XY) and xo(XY2) are the abscissae correspond-

ing to the real-world species if they were to fall, when

slid horizontally, exactly onto the line for the standard

species. Due to the way in which the locations of A, AL,

and AL2 were defined, it follows that:

xo(XY) = |DHa(XY)| / 1000 + 1 (4)

xo(XY2) = |DHa(XY2)| / 1000 + 1 (5)

From Equations (2) to (4), we have:

d{[x*(XY2) – [|DHa(XY2) / 1000 + 1]]2

+ [x*(XY) – [|DHa(XY)| / 1000 + 1]]2}1/2 = 0 (6)

When x*(XY2) is expressed in terms of x*(XY) in

Eq. (1) and then substituted into Eq. (3), the minimum

condition is expressed in terms of only one variable,

x*(XY). This variable can now be determined by taking

the partial derivative of the argument of Eq. (6) with

respect to x*(XY), setting it equal to zero, and solving

for x*(XY). The result may then be substituted into Eq.

(2) to find x*(XY2).

The derived equations are as follows:

x*(XY) = 1 + (1/5)[|DHa(XY)| / 1000] +

(2/5)[|D(XY2)| / 1000] (7)

x*(XY2) = 1 + (2/5)[|DHa(XY)| / 1000] +

(4/5)[D(XY2) / 1000] (8)

Now consider a series ending in XY3. It is necessary

to supplement Equation (2) with an expression that

equates the abscissa difference between the points for

XY3 and XY2 to the abscissa difference between the

points for XY2 and XY:

x*(XY3) – x*(XY2) = x*(XY2) – x*(XY) (9)

The substitutions and differentiation then result in

the following:

x*(XY) = 1 + (1/14)[|DHa(XY)| / 1000] +

(2/14)[|DHa(XY2)| / 1000] +

(3/14)[|D(XY3)| / 1000] (10)

x*(XY2) = 1 + (2/14)[|DHa(XY)| / 1000] +

(4/14)[|DHa(XY2)| / 1000] +

(6/14)[|DHa(XY3)| / 1000] (11)

x*(XY3) = 1 + (3/14)[|DHa(XY)| / 1000] +

(6/5)[|DHa(XY2)| / 1000] +

(9/14)[|DHa(XY3)| / 1000] (12)

For the series ending in XY4, a similar procedure re-

sults in:

x*(XY) = 1 + (1/30)[|DHa(XY)| / 1000] +

(2/30)[|DHa(XY2)| / 1000] +

(3/30)[|DHa(XY3)| / 1000] +

(4/30)[|DHa(XY4)| / 1000] (13)

x*(XY2) = 1 + (2/30)[|DHa(XY)| / 1000] +

(4/30)[|DHa(XY2)| / 1000] +
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(6/30)[|DHa(XY3)| / 1000] +

(4/30)[|DHa(XY4)| / 1000] (14)

x*(XY3) = 1 + (3/30)[|DHa(XY)| / 1000] +

(6/30)[|DHa(XY2)| / 1000] +

(9/30)[|DHa(XY3)| / 1000] +

(12/30)[|DHa(XY4)| / 1000] (15)

x*(XY4) = 1 + (4/30)[|DHa(XY)| / 1000] +

(8/30)[|DHa(XY2)| / 1000] +

(12/30)[|DHa(XY3)| / 1000] +

(16/30)[|DHa(XY4)| / 1000] (16)

(Recall that in every case, x*(X) = 1.) Clear trends

are visible among the numerators of the coefficients in

these expressions. There is also lawful behavior for the

denominators: for the general case:

x*(XYn) = 1 + ( )–a n

n

N

N

n1

1

⋅ ⋅
=

∑ [|DHa(XYn)| = / 1000] (17)

where n is a dummy index, N is the maximum number

of ligands, and aN is:

aN = (1/3)N3 + (1/2)N2 + (1/6)N (18)

A check of Eq. (17) is provided by considering just

A and ALn and substituting their values DHa(ALn) for

DHa(XYn) in Eq. (17). The result corresponds to the def-

inition given above:

x*(XYn) = 1 + n = x*(ALn) (19)

Formulations for other properties or more general

species

We have discussed a case where the real-world data have

their first point X at (x,y) = (1,0) and where subsequent

points lie approximately on a line with a negative slope.

This is only the first of several different approximately

linear cases that will be considered:

1. Atom X at (1,0) and subsequent points with negative

ordinates;

2. Atom X at (1,y) and subsequent points with negative

ordinates (which may mean that the points straddle

the x axis if y > 0); this will happen for DHa if we

generalize the central atom X so that it becomes a

molecule, or will happen if we take up another pro-

perty such as the standard enthalpy of formation,

DHf
o(298.15 K);

3. X at (1,0) and subsequent points with positive ordi-

nates;

4. X at (1,y) and subsequent points with positive ordi-

nates (which may mean that the points straddle the x

axis if y < 0); this can happen for standard entropy,

S
o

298.

In addition to these cases, there may be a situation

where one or more missing molecules invite interpola-

tive prediction.

The Archive Data Vector U and the Vector Index V

We may archive the original data in a vector characteriz-

ing the series. Its dimension equals the number of mem-

bers in the series and each element consists of one ta-

bulated datum and its tabulated random error D'. The iden-

tifier for the vector provides information on the central

atom, the ligand, the total number of objects in the series

(1 plus the number of ligands N), and the data property

being studied:

U(X,Y,(N+1),DHa) =

x x

x x

x xn n

( ) ' ( )

( ) ' ( )

...

( ) ' ( )

X X

XY XY

XY XY

±
±

±














D

D

D






(20)

Finally, we define the index characterizing DHa for

each series. This is the vector index.

V(X,Y,(N + 1),DHa) =

D

D

H

x x x

a

n n

( )

exp *

X

* (XY )– * (XY )–1









 (21)

The upper element of the vector, V1, represents the

property value of the first point – for Case 1 it is zero.

The lower element V2 gives any one of the abscissa dif-

ference(s) x*(XYn+1) – x*(XYn).

For example, consider N through NO2 and P through

PO2 (Figure 1).

V(N,O,3,DHa) =
0

0 494 19 83. exp .



 


 (22)

V(P,O,3,DHa) =
0

0 554 5 05. exp .



 


 (23)

Case 2, it will be shown, differs in that the first point

no longer lies on the x-axis – and so all the data are rais-

ed or lowered so that the first point lies at (1,0). V1 is no

longer a zero but is the y value of the first point before

the normalization. In Case 3, once again the original

point is at (1,0), so in order to revert to Case 1 the data

are simply reflected through the x axis by multiplying

each y value by –1. The vector represents the flipping of

the data by carrying an asterisk on the value of V2.
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V(X,Y,(N+1),p) =

p

x x xn n

( )

* ( )– * ( ) * exp *–

X

XY XY 1 D









 (24)

where p represents the datum for DHa (or any other pro-

perty) of X. (It is tempting to use the imaginary indicator

i instead of the asterisk, but in later derivations this

choice would create considerable confusion.) Case 4 is a

blend of Cases 2 and 3 because the data need to be nor-

malized as well as reflected through the origin.

Error Notation

The exponential notation in Equations (20) and (21)

conforms to an approximate rule for error propagation,

which states that when quantities are multiplied or divid-

ed, then the percent errors are added to obtain the per-

cent error of the product or quotient. With one minor

proviso, this rule makes it possible to write:

(|xi – xi*|) expDxi* × (|xj – xj*|) expDxj* =

(|xi – xi*| × |xj – xj*|) exp(Dxi*+Dxj*) (25)

where the Dxi* and Dxj* are percent errors. The proviso

is that in division the exponents are still added.

Transformation Matrices

Now consider transformations from one vector to another.

Any set of data, archived in a vector U, can be trans-

formed into another set for a different series, property,

and phase – the only limitation being if one series has a

different N than the other. Vector indices can also be

transformed – with no limitation. Suppose that two dif-

ferent series, with central atoms X and X', and with N

ligands Y and N' ligands Y', have different properties p

and p'. Then the matrix that leads from vector index V to

V' is M{V[X,Y,(N+1),p)]→V' [X',Y',(N'+1),p']}. If both

properties conform to Case 1, then the determination of

the 2 × 2 transformation matrix is made trivial by spe-

cifying it to be diagonal. A less simple situation is when

the matrix transforms an index conforming to Case 2 to

another index conforming to Case 1. An example is when

the vector index for the series beginning with N2O3 [Eq.

(44), below] is transformed into the vector index for the

series with central atom P [Eq. (39), below], the property

in both cases being DHa:

a a

a a

11 12

21 22

1590 79 0 0377

0 288 7 29



 


× 



– . exp .

. exp .
 


 = 


 




0

0 554 513. exp .

(26)

Setting the matrix elements a11 = 1 (as usual) and

a21 = 0 gives:

(–1591 exp0.0377) + a12(0.554 exp5.13) = 0 (27)

a22(0.288 exp7.29) = 0.554 exp5.13 (28)

Thus the transformation matrix is:

M[V(N2O3,O,3,DHa) → V(P,O,3),DHa] =

1 2743 514

0 0 572 12 06

exp .

. exp .



 


 (29)

If the matrix were to transform an index conforming

to Case 4 to another conforming to Case 1, then the vec-

tor left-multiplied in Equation (26) would have an aster-

isk on the magnitude in V2; consequently, a22 in Eqs.

(28) and (29) would have asterisks. If the matrix trans-

forms an index corresponding to Case 2 to another index

corresponding to Case 3, then the vector on the right

hand side of Eq. (26) will have an asterisk on the magni-

tude of V2; therefore, a12 and a22 in Eqs. (27) to (29)

would have asterisks. If the matrix transforms an index

fitting Case 4 to another index fitting Case 3, then the V2

of both vectors will have an asterisk and hence a12 will

have one asterisks and a22 will have two. This last in-

stance shows the confusion that would result if, as men-

tioned under Eq. (24), reflections through the x axis

were flagged by the use of imaginary numbers.

There are additional situations were neither vector

belongs to Case 1 or 3. We provide a symbolic example:

a a

a a

11 12

21 22

1

2



 


× 


 


 = 









U

U

U

U
1

2
'

'

(30)

Setting the matrix elements a11 = 1 and a21 = 0 as

before gives:

a12 = (U1
' – U1) / U2 (31)

a22 = (U2
' / U2) (32)

If in this example only U2 has an asterisk (Case 2 to

Case 4), then both a12 and a22 in Eqs. (31) and (32) will

be starred; if only U2' has an asterisk (Case 4 to Case 2)

then only a22 will have one; and if both vectors have an

asterisk (Case 4 to Case 4), then a12 would have one

asterisk and a22 will have two.

Missing Points

It may easily happen that a molecule in the series is mis-

sing. In that case, the derivations given above differ. To

illustrate the difference with a specific example, we take

the special case where data are known for X, XY2, and

XY3 but not for XY. Eq. (2) must be changed to provide

an initial step of two units rather than one:

2(x*(XY3) – x*(XY2)) = x*(XY2) – 1 (33)
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When this is supplemented by Eq. (9), a new series

of equations follows: Eq. (10) disappears and Eqs. (11)

and (12) are replaced by:

x*(XY2) = 1 + 4/13(|D(XY2)| / 1000) +

6/13(|D(XY3)| / 1000) (34)

x*(XY3) = 1 + 6/13(|D(XY2)| / 1000) +

9/13(|D(XY3)| / 1000) (35)

Note that in Equation (34) one would expect a term

2/13(|D(XY)| / 1000) to follow the »1«, but it does not

appear because of the absence of data for XY. A similar

comment applies to Eq. (35).

RESULTS

Case 1: X at (1,0) and Subsequent Points with

Negative Ordinates

The data24 for DHa of (gaseous) nitrogen and phosphorus

oxides are plotted in Figure 1. The data-archive vectors

are:

U(N,O,3,DHa) =

0

626 84 0 2

927 384 0 6

– . .

– . .

±
±

















(36)

U(P,O,3,DHa) =

0

590 2

108713 6

–

– .

±
±

















(37)

The errors for DHa are given24 by letters, which

mean the following (in kJ/mol): A, ≤ 0.1; B, ≤ 0.3; C, ≤
1; D, ≤ 3; E, ≤ 10; F, ≤ 30; and G, > 30. We chose to

encompass these measures quantitatively as follows: A:

0.1; B: 0.2; C: 0.6; D: 2; E: 6; F: 20; G: 60 (in kJ/mol).

A transformation from one of these data sets to the other

can be accomplished easily with a diagonal matrix.

Since both series have the same number of species, the

transformation will be complete.

The vector indices are from Eqs. (7) and (8):

V(N,O,3,DHa) =
0

0 494 19 99. exp .



 


 (38)

V(P,O,3,DHa) =
0

0 554 513. exp .



 


 (39)

The zeros in V1 signify that DHa for gaseous metal

atoms are by definition zero. The exponents in V2 are

the average of the absolute differences between x* and

xo, for NO and NO2 and for PO and PO2, expressed as

percent of the abscissa differences (x*(XY2) – x*(XY)),

being equal to (x*(XY) – 1).

Now we take up group-2 halides. It is not necessary

to show graphs for all the 20 series, as they resemble the

two series shown in Figure 1. The slight non-linearity of

the points has a negative curvature, suggesting that the

metal atom seeks fulfillment in the octet rule by adding

(in these series) the second halide. Figures 2 and 3 give
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61271

6575

0

6921

6385

0

20772

20300

0

6595

20220

0

61036

6455

0

6783

6320

0

20669

20250

0

20521

20190

0

61121

6530

0

6902

6400

0

6687

6318

0

6651

6270

0

61098

6540

0

6886

6405

0

6784

6335

0

6644

6271

0

61131

6580

0

6906

6440

0

817

370

0

6679

6302
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Figure 2. Archive vectors for DHa data of alkali-earth halogens.
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Figure 3. Vector indices for DHa data of alkali-earth halogens.



the archive vectors U and the vector indices V for the

whole set. Figure 4 shows that V2 are periodic for both

the central and ligand atoms; secondary periodicities are

manifested by the different slopes going from left to

right and by the differences in ordinates of the »curves.«

Figures 2 and 3 may be thought of as graphs containing

single-column matrices, and are thus the converse of the

graphical matrices of Nikoli}, Mili~evi}, and Trinajsti}.25

A matrix may be constructed to transform any one

of these vector indices into any other. The one closest to

being a unit matrix is:

M{[V(Mg,Cl,3,DHa(kJ/mol)]→V(Ca,Br,3,DHa(kJ/mol)]}

=
1 0

0 100265 0 232. exp .



 


 (40)

M[(Sr,I,3 → Ca,I,3),DHa] and M[(Sr,Br,3 → Ca,Br,3),DHa]

are almost as close. The one farthest from being a unit

matrix is:

M{[V(Mg,I,3,DHa(kJ/mol)] → V[Br,F,3,DHa(kJ/mol)]} =

1 0

0 2 532 0 580. exp .



 


 (41)

Figures 5 and 6 give vectors U and V for group-3

halides; this set includes the trihalides and therefore

requires the use of Eqs. (10) to (12). Data for gallium

and indium bromides and iodides are not available in Ref.

24. Figure 6 gives the vector indices V and Figure 7

shows the periodicities in V2.

Graphs of raw data for transition-metal oxides are

shown in the lower portion of Figure 4 of Ref. 7. Some

of the original data are unavailable,26 so the points have

been digitized and the vector indices can be made avail-

able on request. They increase monotonically for group-4

to group-8 central atoms of periods 4 to 6. The curva-

tures are slightly positive as the number of oxygens in-

creases, due to ligand-ligand repulsion.7

At this point, we demonstrate that another molecular

property, DH f
o (298.15 K), can be treated using the methods

from this paper. Uranium atoms exist in the crystalline
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phase at STP, so their DH f
o (298.15 K)27 is zero and the

series belongs to Case 1. This property of crystalline

uranium oxides is plotted in Figure 8. It is clear that

there is serious departure from linearity. It would be un-

wise to define a vector index and even worse to forecast

the missing datum for UO by using the otherwise suit-

able Eqs. (34) and (35).

Case 2: X at (1,y) and Subsequent Points with

Negative Ordinates

From here onward we no longer call upon related sets of

molecular series but take up isolated series as needed to

introduce variations of the fundamental theory and to il-

lustrate its usefulness for different properties.

First we introduce a variation of the theory: the cen-

tral »atom« A is allowed to become a molecule, so even

if this »atom« is in the gas phase, its DHa is not zero and

any such series belongs to Case 2. Take the molecule

P4O6, for instance (Figure 9). It has an adamantane

structure with a phosphorus atom at each »vertex« and

an oxygen atom in each »edge«.28 From one to four oxy-

gen atoms may be bonded to its vertices, giving the se-

ries P4O6 to P4O10.

U(P4O6,O,5,DHa) =

– .

– .

– .

– .

– .

4326 26 60

49487 20

5510 5 20

60633 20

66001 6

±
±
±
±
±























(42)

The vector index is

V(P4O6,O,5,DHa) =
– .

. exp .

4326 26 20

0 292 5 06

±

 


 (43)

A similar instance is N2O3. It has the form ONONO.28

One and then two additional oxygen atoms can be bond-

ed to the nitrogen atoms to form a series of three spe-

cies24 ending in N2O5. The archive vector is:

U(N2O3,O,3,DHa) =

– . .

– .

– .

1590 79 0 6

190837 2

2152 67 2

±
±
±

















(44)

These data are shown in Figure 10, which resembles

Figure 9. The fitted points x* show less scatter than the

original points x; this situation will prevail except when

the normalized data lie to the left of the trend-line for the

standard atom and ligands.

The vector index for the data in Eq. (44) is:

V(N2O3,O,3,DHa) =
– . .

. exp .

1590 79 0 6

0 288 7 29

±

 


 (45)

We return to DH f
o (298.15 K) again. Data for this

property of gaseous group-2 halides are given in the

JANAF tables.29 The molecules are in the gaseous
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Figure 7. Same as Figure 4, except for showing the variation of
V2 magnitudes for DHa data of halides of group-3 atoms.
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phase, just as for DHa, but now the reference phases of

the central and ligand species are metal atoms and ga-

seous dimers, so the gas phase atom datum is not zero.

Figure 11 shows a representative plot of points for the

original, normalized, and fitted data for calcium halides.

Figures 12 and 13 show the vector sets U and V. Figure

14 shows the trends visible among V2 of the vector in-

dices; the enthalpies of formation show periodicity in the

vertical ordering of the curves and secondary periodicity

in their vertical spacings. The DH f
o (298.15 K) have less

clear manifestation of periodicity than DHa.

We introduce another variation of the fundamental

theory, the substitution of ligands in a central molecule.

The example will be liquid chlorobenzenes; the data for

them are described by:

U[C6H6,H→Cl,4,DHf
o(298.15 K)] =

491

111

191 16

631

.

.

– . .

– .

±



















(46)

where H→Cl indicates the substitution, V3 is the average

of two of the three possible values for dichlorobenzene,

and V4 is just one of the three possible values for trichlo-
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Figure 10. Same as Figure 8, except for N2O3 to N2O5.

–1600

–1200

–800

–400

0

400

0 1 2 3 4

x and x*

H
fo

–
1

/
k
J

m
o

l
D

Figure 11. Same as Figure 8, except for DHf
o (298.15 K) data of

calcium chlorides.

2.401.796

89.169

5320

5.102.360

6.127.60

5320

7.163.229

8.411.120

5320

5.3364

8.41170

5320

1.376.726

4.881.236

8.01.147

1.246.392

425.43

8.01.147

5.109.302

8.413.35

8.01.147

5.1025.160

8.4161.24

8.01.147

85.784

8272

8.08.177

45.471

136.104

8.08.177

4.89.384

8.414.49

8.08.177

172.258

8404.5

8.08.177

2.409.766

4.854.294

7.1164

3.621.473

4.885.123

7.1164

6.121.407

421.89

7.1164

3.689.274

7.8349.30

7.1164

Ligand atom

F Cl Br I

Central atom

Be

Mg

Ca

Sr

Figure 12. Archive vectors for DHf
o (298.15 K) data of boron-group

halogens.

7.40exp0.544

320

14.81exp0.324

320

17.31exp0.26

320

13.59exp0.184

320

7.44exp0.426

1.147

18.90exp0.254

1.147

12.04exp0.216

1.147

12.93exp0.147

1.147

8.530.468exp

8.177

14.06exp0.272

8.177

6.98exp0.235

8.177

5.73exp0.166

8.177

0.86exp0.464

164

5.77exp0.312

164

6.81exp0.279

164

7.01exp0.214

164

Ligand atom

Central atom

F Cl Br I

Be

Mg

Ca

Sr

Figure 13. Vector indices for DHf
o (298.15 K) data of boron-group

halogens.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Be Mg Ca Sr

Central atom

V
e

c
to

r
in

d
e

x
lo

w
e

r
e

le
m

e
n

t

Figure 14. Same as Figure 4, except for showing the variation of
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robenzene. The graph of these data resembles Figure 11.

Using Eqs. (13) to (16) we find:

V[C6H6,H→Cl,4,DHf
o(298.15 K)] =

491

0 368 6 30

.

. exp .



 


 (47)

Heats of combustion28 for nitroalkanes are the final

example of Case 2. The vector index is:

V[CH3N2,H2,5,DHc
o(kJ/mol)] =

– .

. exp .

709 6

0 653 0 358



 


 (48)

where the very small errors of the tabulated data (0.056

% maximum) are ignored.

Case 4: X at (1,y) and Subsequent Points with

Positive Ordinates

No data have been found and analyzed for Case 3, so we

turn to Case 4. Uranium compounds are again employed

to introduce a new property. The total entropy So
298 of

crystalline uranium oxides are plotted in Figure 15, as

tabulated,27 and as normalized and reflected through the

x axis. Figure 16 shows the data fitted to line A to AL2.

The greatly expanded horizontal scale brings out a mild

non-linearity of the fitted data that is not at all visible in

Figure 15.

The archive vector and vector indices for So (298 K)

of solid U, UO2, and UO3.are:

U[U,O,4,So(298.15 K)] =

50 2

77

961

.

.

.

N. A



















(49)

V[U,O,4,So(298.15 K)] =
50 2

01047 7 45

.

. * exp .



 


 (50)

Kovats’ retention index (RI) values for gas-phase

diallyl mono, di, tri, and tetrasulfides, as measured by

Kubec et al.30 are shown in Figure 17. The vectors are:

U[C6H10S,S,4,RI(30m/0.25mm/0.25mm,N2,40C@3min,

4K/min,240C@10min)] =

861

1079

1297

1538



















(51)

V[C6H10S,S,4,RI(30m/0.25mm/0.25mm,N2,40C@3min,

4K/min,240C@10min)] =

861

0 223 344. exp .



 


 (52)
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and reflected data for S° (298 K) of solid U, UO2, and UO3.

–50

–40

–30

–20

–10

0

10

0.98 1 1.02 1.04 1.06

x*

S
o

–
1

–
1

/
k
J

m
o

l
K

2
9

8
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fitted in the least-squares fashion to the line of A, AL, and AL2 and
that both the x and y axes have been rescaled.
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Figure 17. Kovats’ gas-chromatography retention index (RI) for a
non-polar column (30m/0.25mm/0.25 mm, N2) with temperature
ramp (40C@3min, 4K/min 240C@10min) measurements on diallyl
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Ray and colleagues31 studied the hydrophobicity (log

P) of the barbiturates.

U(C10H14N2O3,14→16→18,3,log P) =

115

165

215

.

.

.

















(53)

The data, if plotted, resemble Figure 15 except that

they are precisely linear. Hence, the error in V2 is exact-

ly zero:

V(C10H14N2O3,14 → 16 → 18,3,log P) =

115

0 0005 0 000

.

. * exp .



 


 (54)

The well-known boiling points of methylbenzenes32

are seen rather dramatically in Figure 18 and the vector

index is:

V(C6H6,H→CH3,7,BP) =
80

0 303 2 39. * exp .



 


 (55)

Generality of Matrix Transformation

We conclude by illustrating how powerful the matrix trans-

formation process is. It can transform vector indices for

very different series of molecules. The species, the di-

mensionalities, the properties, and the phases can be quite

different. (The same holds for tabulated data except that

the dimensionalities are restricted to the smaller one.) We

show the matrix that transforms Eq. (48), for the heats of

combustion of some liquid fuels, into Eq. (39), for the heats

of atomization of gaseous phosphorus and two of its

oxides. Determination of this matrix follows Eqs. (26) to

(28).

M{[V(CH3N2,H2,5,DHc
o(kJ/mol)]→

V[N,O,3,DHa(kJ/mol)]} =

1 1281 513

0 0 848 5 49

exp .

. * exp .



 


 (56)

DISCUSSION

In the Results, Case 2, missing data for NON and NONO

were interpolated (to the left beyond the starting point of

the series, N2O3) along the line AL3 to A, after fitting

known points to that line showed that they had very little

scatter. In the same section, Case 4, there is a missing

data point in the series U to UO3, so Eqs. (34) and (35)

must be used to find the difference between the abscis-

sae for adjacent molecules. This difference, applied with

the line A to AL3, can be used to find the abscissa (xo)

and then the ordinate for UO; the result is a prediction of

about (–15 + 50.2) kJ/mol K. Figure 19 shows that this

forecast is not a good one. The abscissa difference, ap-

plied with the quadratic trend line through the points in

Figure 19, gives a better value of (–12 + 50.2) kJ/mol K.

(Caveat: the absence of data for solid UO suggests that it

may not exist under normal conditions.) Other forecasts

for data obtained in this way are given in Ref. 33. It might

be possible to define a quadratic vector index (with three

elements) for these and other seriously non-linear data

and to compare them for evidences of periodicity.

It is interesting that the study of molecular simila-

rity, while now using very sophisticated methods,34 once

had a simple approach somewhat parallel to the one in

this paper. Karapet’yantz35 found many closely linear

relationships between data values for series of molecules

plotted against data values for other series of atoms or

molecules. Examples are the standard entropy of group-

14 tetrachlorides vs. the standard entropy of group-14 te-

trabromides, and the enthalpy of the following reaction

for group-2 metals E(II)
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Figure 19. Same as Figure 16 except that a quadratic fit to the
data has been used to make a very approximate forecast for UO.



E(II)(OH)2 (s) + CO2 (g)→E(II)(CO3) (s) + H2O (l)(57)

vs. the enthalpy of a similar reaction for group-1 metals

E(I)

E(I)2OH (s) + CO2 (g)→E(I)2CO3 (s) + H2O (l) (58)

Many of his plots show the effects of periodicity.

NOTE ADDED IN PROOF

Dr. Henry Kuhlman has pointed out that there are alter-

natives to the inverse least squares derivation given in

this paper. One is to plot the data on the x axis and the

number of molecular atoms on the y axis, and then to use

suitable software to do a least squares fit with the y in-

tercept locked at 1.0. The other is to use the number of

added or substituted species n as a temporary indepen-

dent variable and to do a software fit that passes through

the origin.
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Vektorski indeks osjetljiv na periodi~nost za male molekule

Ray Hefferlin i Ken Luk

U beskrajnom molekularnom prostoru postoje mnoge serije molekula tipa X, XYn, …, XYN, gdje je N neki

broj izme|u broja 3 i nekoga broja ne{to manjega od 10. Podatci za svojstva i faze tih molekula su aproksi-

mativno lienarni obzirom na n. Autori su razvili vektorski prikaz tabuliranih podataka u seriji i vektorski indeks

za opis serije. Zapo~eli su s X kao metalnim atomom i sa svojstvom toplina atomizacije i pokazali su da vek-

torski indeks iskazuje periodi~nost. Nakon toga su razmatrali slu~ajeve kada je X molekula, a svojstva su en-

talpija nastajanja, entropija, indeks retencije, hidrofobi~nost i vreli{te. Vektorski indeks je dvo-dimenzionalni

vektor, ~iji gornji element prikazuje svojstvo atoma ili molekule X, a donji element prikazuje razliku izme|u

bilo koja dva ~lana serije nakon {to su podatci pode{eni pomo}u metode najmanjih kvadrata prema standardnoj,

i linearnoj obzirom na n, seriji A, AL, …, ALn, ALN. Matrice mogu transformirati vektore podataka bilo koje

serije u bilo koju drugu seriju istih dimenzija. Matrice mogu tako|er transformirati vektorski indeks za bilo

koje podatke o svojstvima neke aproksimativno linearne serije u bilo kojoj fazi u vektorski indeks za bilo koju

drugu aproksimativno linearnu seriju.
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