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Targeting the Endothelium

ABSTRACT
The endothelium is an active organ with paracrine-endocrine capabilities that directs a multitude of physiological actions 
both locally and remotely. Cardiac arrest and resuscitation is a model of whole body ischemia reperfusion injury, inter-
ventions that have their basis in cytoprotection, reduction of the inflammatory cascade, fibrinolysis and improvement of 
microvasculature blood flow target the endothelium. This presentation will review pharmacologic, cell targeted therapies 
and periodic acceleration (pGz) interventions that have the endothelium in part as the target organ.  The clinical potential 
of such interventions as preconditioning, conditioning and postconditioning strategies associated with cardiac arrest will 
be defined.
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Introduction
The vascular endothelium is composed 
on 1-6 x1013 cells and covers an area 
of 1-7m2 in humans. It is uniquely loca-
lized to be a sensor and an effecter. 
Its location on the luminal surface of 
every blood vessel and the heart allows 
these cells to respond to humoral fac-
tors and blood flow. The interaction of 
the endothelium with its neighbouring 
cells (vascular smooth muscle cells 
as well as cardiomyocytes) allows for 
the regulation of a host of functions. 
Prominent among those functions are 
vasomotor tone, local and systemic 
coagulation profiles, and inflammation. 
Endothelial regulation of critical fun-
ctions and interactions with almost all 
organs of the body attest to its impor-
tance in homeostasis. (1) 
The endothelial cell (EC) responds 
to local blood flow patterns. Laminar 
shear stress is the undisturbed tangen-
tial flow which runs across the upper 
surface of the EC and pulsatile shear 

stress is the stress generated perpendi-
cular to the EC surface with each heart 
beat. The EC response to both laminar 
and pulsatile shear has been assessed 
in several publications. Both increased 
laminar shear stress and pulsatile shear 
stress elicit EC production of vasoac-
tive substances such as endothelial 
derived nitric oxide (eNO), endothelial 
derived hyperpolarizing factor (EDHF), 
prostaglandins, adrenomedullin and 
tissue plasminogen activator (tPA). 
(2-7) Marked decrease of laminar shear 
stress and turbulent flow produces an 
EC response that increases endothe-
lin-1 (a potent vasoconstrictor) and tips 
the balance of pro-coagulant / anti-coa-
gulant to favour the former. (8-9) 
Nitric Oxide (NO) is generated by NO 
synthases (NOS) which catalyze the 
conversion of l-arginine to NO and 
l-citrulline. It is important to differenti-
ate the three nitric oxide synthase iso-
forms and their functional aspects. The 
endothelial derived nitric oxide syntha-
se (eNOS) is constitutively expressed, 
calcium calmodulin dependent, and 
causes release of eNO in nanomolar 
quantities into the circulation. The rele-
ase of NO occurs intermittently in these 
small amounts. eNO is a potent vasodi-

lator as well as an important intracellular 
signalling molecule that  can regulate 
sarcoplasmic reticulum calcium influx 
and decrease mitochondrial oxygen 
consumption. (10-13) Additionally, 
eNO has anti-inflammatory properties 
through suppression of nuclear factor 
kappa beta (NF-��) activity. The latter 
orchestrates the inflammatory cascade. 
(14,15) Inducible nitric oxide synthase 
(iNOS) mostly present in macrophages 
and neutrophils produces continuous 
release of iNO in micromolar quantities 
over protracted time periods in respon-
se to inflammatory cytokines.  Large 
quantities of nitric oxide induce severe 
vasodilatation and are in part responsi-
ble for intractable hypotension during 
sepsis. Neuronal nitric oxide synthase 
(nNOS) constitutionally releases small 
quantities of  NO and is found in cen-
tral and peripheral neuronal tissue as 
well as cardiomyocytes. The function 
of nNO remains under investigation but 
in the heart it regulates chronotropicity 
and may play a protective role in the 
myocardial response to injury. (16-21)

Endothelium and Ischemia 
Reperfusion Injury 
Ischemia reperfusion (I/R) injury occurs 



18 www.signavitae.com

after partial or total cessation of blood 
flow to an organ followed by restoration 
of blood flow. The inflammatory and oxi-
dative stress cascade elicited by these 
events is extensive and in large part 
the endothelium is a key player during 
and after I/R. Endothelial activation by 
leukocytes during reperfusion induces 
a pro-coagulant, pro-inflammatory and 
pro-oxidant status that ultimately leads 
to endothelial dysfunction and inabili-
ty to regulate local blood flow to vital 
organs. The greatest effects of I/R injury 
to the endothelium takes place at the 
microvasculature level.

Cardiac Arrest and Resus-
citation a Model of Whole 
Body Ischemia Reperfusi-
on Injury
Cardiac arrest and resuscitation has 
been shown by our laboratory and 
others to be a model of whole body 
I/R injury. (22-24) Depending upon the 
etiology of cardiac arrest, there is a peri-
od of no flow (ventricular fibrillation or 
asystole) or low flow (asphyxial cardi-
ac arrest or hemorrhage) followed by 
a period of partial restoration of flow 
(chest compression, fluid/blood admi-
nistration), and if successful restoration 
of the intrinsic heart beat and blood flow. 
These events are similar to those that 
which occur during focal ischemia in 
heart, brain and other organs. The dura-
tion of each phase is variable and the 
extent and severity of the injury related in 
large part to the initial two phases (span 
of time in cardiac arrest or low blood 
flow and the response to resuscitation).
Analogous to focal I/R injury, there are 
interventions that promote an innate 
protective organ response which when 
initiated can reduce or ameliorate the 
injury. Interventions performed prior 
to focal ischemia or cardiac arrests 
are termed preconditioning strategies 
(24-25) while those initiated during the 
ischemia or resuscitation phase are 
termed conditioning or per-conditio-
ning. (26-28) Interventions performed 
after restoration of organ blood flow 
are termed postconditioning strategies. 
(29-33)  The latter can be performed 
immediately upon restoration of blood 

flow (early postconditioning) or minutes 
or hours after restoration of blood flow 
(delayed postconditioning). (34) 
Preconditioning strategies to reduce 
injury from focal I/R, e.g., acute myo-
cardial infarction, have been thorou-
ghly investigated but rarely put into 
practice due to the inability to predict 
when such event might occur. Howe-
ver, for pre-planned I/R such as cardiac 
bypass surgery, preconditioning with 
anaesthetics is currently clinically utili-
zed. Deciphering the biochemical and 
cellular mechanisms of protection has 
been important in understanding phar-
macologic protective strategies. The 
outcomes from postconditioning stra-
tegies depend upon the intervention 
used. (35-41) Following the successful 
outcome of CPR, delayed postcon-
ditioning has the potential for clinical 
application. (27,28) 

The Endothelium during 
Cardiac Arrest and Resus-
citation
Evidence that the endothelium plays 
an important role during and after car-
diac arrest comes from both animal 
models and clinical studies. In animal 
models of cardiac arrest, impaired 
microcirculation, endothelial leakage, 
(42) and elevated serum levels of TNF-� 
and intracellular adhesion molecule-1 
(ICAM-1) occur. (43-45) Studies of 
human survivors and non-survivors of 
cardiac arrest reveal  increased levels of 
endothelin-1,(46) pro-coagulant activiti-
es, soluble endothelial adhesion mole-
cules, complement, leukocyte endothe-
lial interaction, (47-48) soluble selectins, 
von Willebrand factor and evidence of a 
systemic inflammatory response. (49-
50) These findings and others have led 
to the hypothesis that postresuscitation 
syndrome may be analogous to a ’sep-
sis-like syndrome’. (51-53)

Methods for Stimulating 
and Interacting with the 
Endothelium

Pharmacologic
Interventions
Pharmacologic interventions that indu-

ce endothelial production of eNO such 
as statins and type V phosphodieste-
rase inhibitors, (54-58) those which 
decrease or block endothelial leuko-
cyte interactions (peroxisome proli-
ferator-activated receptor beta/delta 
(PPAR-ß), (59-61) and thrombolysis 
(tissue plasminogen activator) (62-63) 
have been explored in myocardial I/R 
injury and cardiac arrest with variable 
results. These pharmacologic interven-
tions for preconditioning and postcon-
ditioning have limited success in part 
due to the poor distribution of these 
compounds in pharmacological signi-
ficant activity to the microvasculature, 
the largest and most adversely affected 
region during I/R. Erythropoietin (EPO) 
is a cytoprotective molecule which in 
addition to having well known hema-
topoietic effects also has non-erythro-
poietic effects. (64-66) EPO enhances 
eNO production by phosphorylation 
and activation of eNOS in the endothe-
lium. (67) Additionally, EPO mobilizes 
endothelial progenitor cells, which are 
important in endothelial repair after I/R. 
(68,69) EPO has been used in animal 
models of both focal myocardial I/R 
and cardiac arrest during resuscitation 
as a conditioning strategy as well as 
in pre- and postconditioning. Animal 
studies have shown that cardio and 
neuro protection occur when EPO is 
administered for preconditioning strate-
gy or administered during resuscitation 
from cardiac arrest as well as redu-
ced prevalence of arrhythmias when 
given prior to focal I/R. (67,70-75) EPO 
administered during cardiac arrest and 
resuscitation in early human trials appe-
ars encouraging. (76-77) 

Gene Interventions
Endothelium targeted gene therapies 
for several cardiovascular diseases are 
being explored in animal models. Ove-
rexpression of specific targets such 
as eNOS, antioxidants, inhibitors of 
cell adhesion molecules and NF-�� 
form the basis for such therapies. (78-
79) Inhibition of NF-�� activity via gene 
decoy before coronary ligation reduces 
infarct size by inhibiting pro-inflamma-
tory and cell adhesion molecule expre-
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ssion. (80) Such therapies will require 
both preclinical and clinical confirmati-
on but their contribution to elucidating 
protective endothelial mechanisms is 
important.

Mechanical Intervention
Periodic Acceleration (pGz) is the appli-
cation of repetitive sinusoidal motion 
of the body in a head to foot direction. 
It is imparted with a motion platform 
that passively sets the whole body into 
motion (http://www.floridaheart.org/
pgzmotion/). (81-85) Our laboratory 
has shown that pGz increases pulsati-
le shear stress on the vascular endot-
helium that increases release of eNO, 
prostaglandins, tissue plasminogen 
activator (t-PA), and adrenomedullin 
into the circulation. These substances 
are cardio-, neuro and cytoprotective. 
(85-89) Pulsatile shear stress induced 
by pGz elicits a genomic response of 
up-regulation of eNOS in EC as well as 
nNOS in EC and cardiomyocytes. (7,87) 
Using models of whole body ische-
mia reperfusion injury such as cardiac 
arrest, our laboratory has shown that 
pGz initiated one hour prior to cardiac 
arrest (preconditioning) decreases post 
resuscitation myocardial stunning and 
arrhythmias, and reduces biochemi-

cal indices of myocardial tissue injury 
and inflammation. (24) pGz serves as a 
delayed postconditioning strategy after 
asphyxial cardiac arrest that diminishes 
myocardial stunning, tissue damage 
and inflammation. (90) In another appli-
cation of pGz, Martinez et al utilized 
postconditioning in a rodent model 
of ischemic stroke. This significantly 
decreased cerebral infarct size com-
pared to control animals who did not 
receive pGz. (91) The per-conditioning 
or conditioning potential of pGz has 
also been investigated. pGz when used 
as a method of resuscitation from ven-
tricular fibrillation or asphyxial cardiac 
arrest  decreased myocardial stunning, 
ameliorates reperfusion injury to a 
much greater extent than closed chest 
cardiac massage. Further, pGz treated 
survivors had excellent neurological 
outcomes. (16, 92-95) 
In contrast to pharmacologic strategies 
where drug distribution may be impai-
red in poorly perfused areas, pulsatile 
shear stress during pGz is independent 
of perfusion limitations and acts on 
the entire vasculature. Thus, it allows 
wide availability of endothelial derived 
cytoprotective substances. The inve-
stigations that have cited in this paper 
have been conducted in large animal 

models of cardiac arrest and confir-
matory studies in humans with cardiac 
arrest are sorely needed. pGz is a safe 
non-invasive intervention which is well 
tolerated  in healthy humans and dise-
ased  patients. (96-100)  Also, pGz 
has the potential as complementary to 
pharmacologic or other interventions to 
improve microvasculature blood flow. 
This should aid in better distribution of 
drug availability. (82,97)

Conclusions
The endothelium and in particular the 
microvasculature is adversely affected 
by I/R injury. Therapeutic interventions 
targeted to the endothelium which can 
ameliorate or reverse such injury are 
vitally important. Pharmacologic, gene 
based therapies and whole body perio-
dic acceleration (pGz) have their basis 
in stimulating eNOS for its vasodilator, 
anti inflammatory, and antioxidant pro-
perties  Getting the right therapy/signal 
to the right place (microvasculature) at 
the right time (pre, per, post conditio-
ning) will require tailoring the therapy to 
the specific I/R event. Understanding 
endothelial biology during ischemia 
reperfusion injury has potential to tran-
slate into successful life-saving, thera-
peutic strategies.
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