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Protecting mitochondrial 
bioenergetic function

ABSTRACT
Reversal of cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues 
that have been ischemic for variables periods of time. However, reperfusion concomitantly activates a myriad of pathogenic 
mechanisms causing what is known as “reperfusion injury.” At the center of reperfusion injury are mitochondria, playing a 
critical role as effectors and targets of injury. Mitochondrial injury compromises oxidative phosphorylation and the ability to 
regenerate Adenosine-5'-triphosphate (ATP); i.e., bioenergetic function. Thus targeting mitochondria to protect bioenergetic 
function may represent a novel concept in resuscitation with the potential for altering clinical practice. We have identified 
sodium-hydrogen exchanger isoform-1 (NHE)-1 inhibition and erythropoietin as attractive candidate drugs for this purpose 
and demonstrated corresponding functional and clinical benefits. Further work on the subject may pave the way for further 
scientific discover focused on greater understating of underlying cell mechanisms, identification of additional and perhaps 
more potent strategies, and develop means for effective drug delivery.
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Introduction
The working heart is a highly metabolic 
organ that under normal resting condi-
tions extracts nearly 70% of the oxygen 
supplied by the coronary circulation 
(1,2) representing close to 10% of the 
total body oxygen consumption. How-
ever, the heart has minimal capability for 
extracting additional oxygen such that 
increases in metabolic demands can 
only be met by autoregulatory increases 
in coronary blood flow through vasodi-
lation of the coronary circuit. (3) Con-

sequently, a severe energy imbalance 
develops when cardiac arrest occurs 
and coronary blood flow ceases. The 
severe energy imbalance continues 
during the ensuing resuscitation effort 
when current closed-chest resuscita-
tion techniques are used because of 
the very limited capability for generating 
systemic and coronary blood flow. (4)
Moreover, with reperfusion during 
resuscitation, multiple pathogenic 
mechanisms - collectively known as 
“reperfusion injury” – are activated and 
further contribute to myocardial injury. 
Main contributors to reperfusion injury 
are mitochondrial Ca2+ overload (5,6) 
and generation of reactive oxygen spe-
cies (ROS). (7)
Various functional myocardial abnormal-
ities develop consequent to ischemia 

and reperfusion during cardiac arrest 
and resuscitation that exert effects det-
rimental to cardiac resuscitation. These 
abnormalities can be grouped into 
those that manifest during the resus-
citation effort and those that manifest 
after the return of spontaneous circula-
tion. The former include reductions in 
left ventricular myocardial distensibility 
and increased resistance to electrical 
defibrillation; the latter include reper-
fusion arrhythmias and post-resuscita-
tion myocardial dysfunction.
Work from our laboratory supports the 
concept that interventions able to pro-
tect mitochondrial bioenergetic func-
tion can prevent reductions in left ven-
tricular myocardial distensibility during 
cardiopulmonary resuscitation (CPR), 
facilitate return of spontaneous circu-
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lation, ameliorate post-resuscitation 
myocardial dysfunction and ultimately 
improve resuscitation and survival with 
intact neurological function.

Left Ventricular 
Myocardial Distensibility
In this article we summarize evidence in 
support that preservation of mitochon-
drial bioenergetic function can prevent 
reductions in left ventricular myocardial 
distensibility and facilitate successful 
resuscitation and survival.
Salient features: Studies in various ani-
mal models of ventricular fibrillation (VF) 
and resuscitation have shown progres-
sive thickening of left ventricular wall 
accompanied by parallel reductions in 
left ventricular cavity without changes 
in intracavitary pressures during the 
resuscitation effort. (8,9) Reductions in 
left ventricular myocardial distensibility 
is likely a manifestation of myocardial 
reperfusion injury that presents with the 
following salient features: i) onset and 
progression during chest compression, 
(8,9) ii) modest ATP depletion (10) iii) 
mechanism likely to represent energy 
deficit compounded by cytosolic and 
mitochondrial Ca2+ overload preclud-
ing complete relaxation of individual 
cardiomyocytes, iv) decreased disten-
sibility leading to diastolic dysfunction 
upon return of spontaneous circulation, 
(11) and v) largely a reversible phenom-
enom. (12)
Hemodynamic consequences: As 
blood returns to the heart during the 
relaxation phase of chest compression, 
distensible ventricles are important 
to properly accommodate the return-
ing blood and establish an adequate 
preload for the subsequent compres-
sion. The larger the distensibility, the 
larger the preload, and the larger the 
amount of blood that can be ejected by 
chest compression. This mechanism 
is akin to the Frank-Starling Law of the 
beating heart and presumes that blood 
is ejected from the left ventricle into the 
aorta during chest compression.
Progressive decreases in left ventricular 
myocardial distensibility during chest 
compression contribute to progressive 
decline in the hemodynamic efficacy of 

closed-chest resuscitation. Studies in a 
porcine model of VF have shown that 
the severity of this phenomenon is pro-
portional to the duration of untreated 
VF. (8)
In humans, Takino and Okada (13) 
reported on 59 adult patients who suf-
fered non-traumatic out-of-hospital car-
diac arrest and underwent open-chest 
direct manual cardiac compression in 
the emergency department after fail-
ure of closed-chest resuscitation. A 
“firm” myocardium was noticed dur-
ing manual cardiac compression in 36 
cases affecting predominantly the left 
ventricle. In the remaining 23 cases 
the hearts were “soft.” They also noted 
that some hearts became “firm” during 
compression.
The presence of a “firm” myocardium 
was associated with reduced hemo-
dynamic efficacy of cardiac compres-
sion as evidenced by a lower end-tidal 
CO2 tension (PETCO2) - which is a well 
documented surrogate measurement 
of systemic and regional blood flow 
during cardiac resuscitation. (4,14-16) 
Hearts with “very firm” myocardium 
never regained spontaneous contrac-
tions. Hearts with “less firm” myocar-
dium showed some, albeit insufficient, 
spontaneous contractions. Hearts with 
“soft” myocardium regained contrac-
tions and were able to generate a 
peripheral pulse in most instances.
Two lines of research support the fea-
sibility of targeting mitochondrial bioen-
ergetic function for resuscitation from 
cardiac arrest. One line relates to work 
using sodium-hydrogen exchanger iso-
form-1 (NHE-1) inhibitors in various 
animal models of cardiac arrest by our 
group over a period of approximately 10 
years.n (9,10,17-23) The other relates 
to more recent work using erythropoi-
etin in a rat model of cardiac arrest (24) 
and in a small clinical study in patients 
suffering out-of-hospital cardiac arrest 
in collaboration with Dr. Štefek Grmec, 
MD, PhD and coworkers. (25) Both 
lines of research support the rationale 
and feasibility of using either an NHE-1 
inhibitor or erythropoietin for preserva-
tion of left ventricular myocardial dis-
tensibility during cardiac resuscitation.

NHE-1 Inhibitors
The initial findings suggesting that 
NHE-1 inhibition could attenuate reduc-
tions in left ventricular myocardial dis-
tensibility during resuscitation and also 
prevent post-resuscitation diastolic 
dysfunction were made in an isolated 
(Langendorff) rat model of VF and sim-
ulated resuscitation (17,18) establish-
ing the rational for subsequent stud-
ies in intact rat and intact pig models 
of VF and resuscitation. Findings in 
a pig model of VF and closed-chest 
resuscitation corroborated capability 
of NHE-1 inhibition to preserve left ven-
tricular myocardial distensibility during 
closed-chest resuscitation evidenced 
by preservation of wall thickness and 
cavity size. Preservation of left ventricu-
lar myocardial distensibility enabled the 
generation of higher coronary perfusion 
pressures leading to higher resuscit-
ability rates. (9)
Subsequent studies were conduct-
ed in an intact rat model of VF and 
closed-chest resuscitation designed 
to measure "using fluorescent micro-
spheres" the effects of NHE-1 inhibition 
on systemic and organ blood flow as 
a function of compression depth. (21) 
We had reasoned that if left ventricular 
myocardial distensibility - and therefore 
preload - could be preserved by NHE-1 
inhibition, then higher forward blood 
flows could be generated for a given 
compression depth; thus, shifting the 
relationship between flow and com-
pression depth to the left. The studies 
indeed confirmed that NHE-1 inhibition 
allowed attaining comparable levels of 
systemic and organ blood flow with sig-
nificantly less depth of chest compres-
sion. These studies also suggested 
that higher coronary perfusion pres-
sures could be generated when admin-
istering a vasopressor agent given the 
larger blood flow generated for a given 
compression depth. This was the case 
when the NHE-1 inhibitor cariporide 
was combined with epinephrine in a 
pig model (22) and when combined 
with epinephrine or vasopressin in a rat 
model. (20)
An open-chest pig model of electrically-
induced VF and extracorporeal circula-
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tion was subsequently developed to 
study the myocardial energy effects of 
inhibiting NHE-1 under conditions of 
controlled coronary perfusion pressure. 
Myocardial tissue measurements indi-
cated that NHE-1 inhibition preserved 
mitochondrial bioenergetic function 
during the interval of simulated resus-
citation. This effect was supported by: 
i) higher creatine phosphate to crea-
tine ratio, ii) higher ATP/ (Adenosine-
5’-diphosphate) ADP ratio, iii) lesser 
increases in adenosine, and iv) amel-
ioration of myocardial lactate increases 
suggesting a shift away from anaerobic 
metabolism consequent to preserva-
tion of mitochondrial bioenergetic func-
tion.

Erythropoietin 
Erythropoietin was studied in a rat 
model of VF and closed-chest resusci-
tation. (24) Erythropoietin given coinci-
dent with the beginning of chest com-
pression after 10 minutes of untreated 
VF promoted hemodynamically more 
effective chest compression such that 
the coronary perfusion pressure to 

compression depth ratio averaged dur-
ing the interval of chest compression 
was 25% higher than in control rats. 
Post-resuscitation, rats that received 
erythropoietin had less post-resuscita-
tion myocardial dysfunction.
A subsequent clinical study in the city 
of Maribor, (25) Slovenia supported 
the potential benefits of erythropoietin 
for clinical resuscitation. Erythropoietin 
(90,000 IU of beta-epoetin) was given 
to 24 victims of out-of-hospital cardiac 
arrest and the effects compared pro-
spectively with victims that received 
0.9% NaCl (concurrent controls = 30) 
and retrospectively with a victims from 
a preceding interval treated with similar 
protocol (matched controls = 48). By 
univariate analysis, administration of 
erythropoietin - when compared with 
concurrent controls - was associated 
with higher rates of intensive care unit 
(ICU) admission, return of spontaneous 
circulation (ROSC), 24-hour survival, 
and survival to hospital discharge and - 
when compared with matched controls 
- it was associated with higher rates of 
ICU admission, ROSC, and 24-hour 

survival. After adjustment by pretreat-
ment covariates, comparison with con-
current controls reduced the odds ratio 
but retained statistical significance for 
ICU admission and ROSC whereas 
comparison with matched controls 
increased the odds ratio demonstrating 
statistical significance for all four out-
comes. To assess whether the benefi-
cial effects on resuscitation outcomes 
could have been linked to beneficial 
effects on left ventricular myocardial 
distensibility - as suggested by our pre-
ceding study in rats (24) - we examine 
the effects on PETCO2 "a good sur-
rogate measurement of forward blood 
flow during chest compression" dem-
onstrating that victims who received 
erythropoietin had significantly higher 
PETCO2 during chest compression.
Accordingly, these clinical observa-
tions - though based on a small sample 
size - were consistent with the hypoth-
esis that erythropoietin - by preserv-
ing myocardial distensibility - leads to 
hemodynamically more effective chest 
compression resulting in higher resus-
citation and survival rates.
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