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SOME RATIONAL DIOPHANTINE SEXTUPLES

Philip Gibbs

Basildon, England

Abstract. A famous problem posed by Diophantus was to find sets
of distinct positive rational numbers such that the product of any two
is one less than a rational square. Some sets of six such numbers are
presented and the computational algorithm used to find them is described.
A classification of quadruples and quintuples with examples and statistics
is also given.

1. Historical introduction

In the third century AD, Diophantus of Alexandria studied various prob-
lems of indeterminate equations with rational or integer solutions. One of
these was to find sets of distinct positive rational numbers such that the
product of any two is one less than a rational square [14].

He found examples of four such numbers, e.g.
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,

33

16
,
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4
,
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16
.

When Fermat revisited the Diophantine problems in the seventeenth century,
he became more interested in integer solutions and found:

1, 3, 8, 120

(see [11]). It was proved in 1969 by Baker and Davenport [3] that a fifth
positive integer cannot be added to this set (see [6, 10, 12] for generalizations),
and no Diophantine quintuple of integers has been found. In 2004, Dujella
[8] proved that there does not exist a Diophantine sextuple, and there are
only finitely many Diophantine quintuples. However, Euler discovered that a
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fifth rational number can be added to give the following rational Diophantine
quintuple:

1, 3, 8, 120,
777480

8288641
(see [4]).

Rational sextuples with two equal elements have been found previously
[1], but the following example is the first full rational Diophantine sextuple
with distinct elements:
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,

1235

48
,

180873

16
.

Some more are given below.

2. Definition and terminology

A Diophantine m-tuple is a set of m different positive integers such that
the product of any two is one less than a square. In particular, we talk about
Diophantine triples, quadruples, quintuples and sextuples for m = 3, 4, 5 and
6. We also say that a set of m positive integers has the property of Diophantus
of order n, written D(n), if the product of any two elements plus n is a square.

A rational Diophantine m-tuple is a set of m different positive rational
numbers such that the product of any two is one less than a rational square.
Finding a rational Diophantine m-tuple with a common denominator of l is
equivalent to finding an integer set with the propertyD(l2), since the elements
of the rationalm-tuple can be multiplied by l2 to give such a set, and inversely.

For brevity we will sometimes omit the words “Diophantine” and “ratio-
nal”, when the context removes any ambiguity.

3. Rational Diophantine quadruples

In 1979 it was demonstrated by Arkin, Hoggatt and Straus [2] that ev-
ery Diophantine triple {a, b, c} can be extended to a Diophantine quadruple
{a, b, c, d} by taking

d = a+ b+ c+ 2abc+ 2rst,

where

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

This gives

ad+ 1 = (at+ rs)2, bd+ 1 = (bs+ rt)2, cd+ 1 = (cr + st)2.

An alternative extension formula is

d = a+ b+ c+ 2abc− 2rst,

but this value may fail to extend the triple to a Diophantine quadruple because
it can be zero or, in the rational case, a repeat of one of the first three numbers.
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We will refer to this as AHS-extension. It can be used to extend Dio-
phantine triples in integers or rational numbers. Diophantine quadruples
constructed in this way satisfy an equation

(a+ b− c− d)2 = 4(ab+ 1)(cd+ 1)

(see [13]). This equation is invariant under permutations of a, b, c and d. We
will say that a Diophantine quadruple or rational Diophantine quadruple is
regular if it satisfies this equation and irregular otherwise. It is also useful to
define a regular Diophantine triple as one which satisfies this equation with
d = 0.

All known Diophantine quadruples are regular and it has been conjectured
that there are no irregular Diophantine quadruples [2, 13] (this is known to be
true for polynomials with integer coefficients [9]). If this is correct, then there
are no Diophantine quintuples. However, there are infinitely many irregular
rational Diophantine quadruples. The smallest is

1

4
, 5,

33

4
,

105

4
.

Many of these irregular quadruples are examples of another common type for
which two of the sub-triples are regular, i.e. {a, b, c, d} is an irregular rational
Diophantine quadruple, while {a, b, c} and {a, b, d} are regular Diophantine
triples. These are known as semi-regular rational Diophantine quadruples.
There are only finitely many of these for any given common denominator l
and they can be readily found.

If a = A/l, b = B/l, c = C/l and d = D/l, then we can assume that

C = A+B − 2
√
AB + l2,

D = A+B + 2
√
AB + l2,

CD = X2 − l2,

which implies

C +D = 2(A+B), CD = (A−B)2 − 4l2,

and

(X −A+B)(X +A−B) = 3l2.

Since l is given, we can readily list all factorizations of 3l2 into two factors rs
of the same parity and then take

X =
r + s

2
,

A−B =
r − s

2
,

CD =
(r − s)2

4
− 4l2.
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Now form all possible factorizations of the right hand side of this last equation
into two factors of the same parity to give C and D. The rest of the equations
can now be solved to give the corresponding values of A and B. The result
is an irregular rational Diophantine quadruple unless any of the numbers are
not positive or not different.

Not all irregular rational Diophantine quadruples are semi-regular. An
example of a quadruple containing only one regular sub-triple is

2

7
,

36

7
,

60

7
, 588.

The simplest example of an irregular quadruple containing no regular sub-
triples is

1

12
,

13

3
,

385

4
,

2464

3
.

4. Rational Diophantine quintuples

In 1997 Dujella showed that AHS-extension can be generalized to extend
quadruples to rational quintuples [5]. If {a, b, c, d} is a Diophantine quadruple
in positive integers or rational numbers, quintuples {a, b, c, d, e} are given by

e =
(
(abcd+ 1)(a+ b+ c+ d) + 2abc+ 2abd+ 2bcd+ 2acd

+ 2
√

(ab+ 1)(ac+ 1)(ad+ 1)(bc+ 1)(bd+ 1)(cd+ 1)
)
/(abcd− 1)2,

or

e =
(
(abcd+ 1)(a+ b+ c+ d) + 2abc+ 2abd+ 2bcd+ 2acd

− 2
√

(ab+ 1)(ac+ 1)(ad+ 1)(bc+ 1)(bd+ 1)(cd+ 1)
)
/(abcd− 1)2.

If {a, b, c, d} is a regular quadruple, the second formula gives zero. In other cir-
cumstances it might be negative or a repeat of a number from the quadruple.
It is also possible for the first formula to fail by giving a repeat of a number
already present in the quadruple. For example, this regular quadruple can
not be extended to a quintuple using the extension formula:

7

20
,

3

5
,

32

5
,

75

4
.

However, the extension does work in a wide class of cases (see [5]).
We will refer to this as Dujella extension. Quintuples constructed in

this way are regular and others are irregular (see [7] for characterizations
of regular quadruples and quintuples in terms of elliptic curves). Regular
rational Diophantine quintuples satisfy the equation

(abcde+ 2abc+ a+ b+ c− d− e)2 = 4(ab+ 1)(ac+ 1)(bc+ 1)(de+ 1).
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Further knowledge of quintuples comes from a computational search. The
lowest known common denominator is 16 in these two examples:

5

16
,

21

16
, 4,

285

16
, 420,

1

16
,

33

16
,

105

16
, 20, 1140.

Both of these are irregular quintuples but contain two regular quadruples.
These are semi-regular quintuples. In general, we will say that quintuples
are semi-regular when they are irregular and every element is contained in a
regular sub-triple or regular sub-quadruple.

The smallest denominator regular quintuples are

1

5
,

21

20
,

69

20
,

25

4
,

96

5
,

7

20
,

3

5
,

63

20
,

32

5
,

75

4
.

Both of these also contain a regular quadruple. The smallest regular quintuple
containing no regular quadruples is

3

28
,

19

28
,

20

7
,

195

28
, 588,

and we know of only one example of a regular quintuple with two regular
quadruples, which is

3

104
,

209

312
,

448

39
,

39

2
,

2093

24
.

Finding quintuples with less regularity is also difficult. This example is an
irregular quintuple with only one regular quadruple:

21

40
,

21

10
,

25

8
,

429

40
,

128

5
,

while the first example of an irregular quintuple with no regular quadruples
is

11

192
,

35

192
,

155

27
,

512

27
,

180873

16
.

The classification of quintuples by their regularity and their number of
regular quadruples is complete with these six cases. It is not possible to have
quintuples containing three or more regular quadruples. As an indication of
the frequency of each case, we have classified and counted cases for the first
688 examples which my numerical search produced. The results are displayed
in Table 1. Notice that about half are semi-regular quintuples with two regular
quadruples. This result was also apparent in other runs of the search program.
The quintuples can be further classified according to the number of regular
triples they contain and how they overlap. This reveals that even most of the
irregular quintuples with only one regular quadruple are semi-regular. Only
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Table 1. Classification of quintuples by their regularity.

# of regular quadruples regular cases irregular cases
0 168 2
1 49 127
2 1 341

about five to six percent of quintuples found in the brute force search were
neither regular nor semi-regular.

It is also worth remarking that none of the quintuples had a common
denominator which is prime and we only found one case where the common
denominator is twice a prime, i.e.

6

43
,

285

86
,

505

86
,

3696

43
, 6880.

5. Computational algorithms

We have combined two basic computational algorithms. The first is a
brute force search. Pairs of numbers A and B are generated with A < B.
The product AB is factorized into two factors r and s of the same parity to
give

X =
r + s

2
,

l =
|r − s|

2
,

AB + l2 = X2.

Next, a search for a third number C is conducted such that

AC + l2 = Y 2,

BC + l2 = Z2.

This search can be done simply by brute force or more rapidly using com-
plex continued fraction and factorization algorithms for solving the Pellian
equation

BY 2 −AZ2 = l2(B −A).

Once a list of solutions for C have been found it is straight forward to compare
them in pairs to find Diophantine quadruples, quintuples and sextuples with
common denominator l. This brute force algorithm was sufficient to find the
first sextuple using an overnight search on a 90MHz Pentium PC.

Six more sextuples were found by extending quintuples. We used two
methods of extension which both worked in each case. The first method
was a brute force attempt to extend quintuples by searching through rational
numbers of the form F l/k2 and simply checking against all the elements of
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the quintuple to see if the extension made a sextuple. The second method was
to apply Dujella extension to all sub-quadruples contained in the quintuple
and check to see whether the new number also worked against the one which
was left out.

Application of AHS-extension and Dujella extension is the second basic
computational algorithm which we have tried. It is reasonable to try to extend
progressively quadruples, quintuples and sextuples using these methods. So
far this has not provided any sextuples which the brute force algorithm did
not also find.

6. Rational Diophantine sextuples

There is no equation for regular sextuples which generalizes the definition
of regular triples, quadruples and quintuples. However, it is interesting to
examine the rational Diophantine sextuples which we have found to see which
regular quintuples, quadruples and triples they contain. The Table 2 shows
the results.

Table 2. Rational sextuples and their regularity structure.

a b c d e f
11/192 35/192 155/27 512/27 1235/48 180873/16

(a b c d f) (a b d e) (c d e f)
17/448 265/448 2145/448 252 23460/7 2352/7921

(a b d e f) (b c d e)
9/44 91/132 60/11 44/3 1265/12 4420/3993

(a b d e f) (a b c d) (a c d e) (a b c f)
3/80 55/16 28/5 1683/80 1680 2220/6889

(a c d e f) (a b c d) (b c d e) (a b c)
47/60 287/240 225/64 1463/60 512/15 225/1156

(a b d e f) (a b c d) (a d e)
27/1856 2065/5568 116/3 23693/192 12880/87 21420/229709

(a c d e f) (a b d e)
21/352 237/352 280/33 1573/96 4680/11 398090/236883

(a b c e f) (a b c d) (b c d e)

In all cases, the sextuple contains a regular quintuple and at least one
regular quadruple. In several cases there is also a semi-regular quintuple with
two regular quadruples. Indeed, all the sextuples are rich in regular sub-tuples.
They are also all semi-regular when we define this to mean that all elements
are contained in a regular sub-triple, sub-quadruple or sub-quintuple. On the
other hand, each sextuple also contains an irregular sub-quintuple with no
regular sub-triples or sub-quadruples. This might be more surprising since
such quintuples were very rarely found in the brute force search.
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7. Further work

It will be interesting to continue the search for more sextuples. Perhaps
a rational Diophantine septuple can be found using the algorithms described
here.

Further progress may be made by analyzing some of the semi-regular
quintuple cases. In particular, the common case of quintuples with two regular
sub-quadruples might be soluble, in the sense that all examples for a given
common denominator can be found efficiently.

Some of the new questions raised by this work which remain to be an-
swered include:

• Are there any rational Diophantine septuples?
• Are there finitely many quintuples with a given common denominator?
• Are there any quintuples with a prime common denominator?
• Are there as many quintuples containing two regular quadruples as

there are others (when placed in sequence given some natural order-
ing)?
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