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THE NON-EXTENSIBILITY OF D(4k)-TRIPLES

{1, 4k(k − 1), 4k2 + 1} WITH |k| PRIME

Yasutsugu Fujita

Tohoku University, Japan

Abstract. For a nonzero integer n, a set of m distinct positive inte-
gers {a1, . . . , am} is called a D(n)-m-tuple if aiaj + n is a perfect square
for each i, j with 1 ≤ i < j ≤ m. Let k be an integer with |k| prime. Then
we show that the D(4k)-triple {1, 4k(k − 1), 4k2 + 1} cannot be extended
to a D(4k)-quadruple.

1. Introduction

Diophantus raised the problem of finding four (positive rational) numbers
a1, a2, a3, a4 such that aiaj + 1 is a square of a rational number for each i, j
with 1 ≤ i < j ≤ 4 and gave a solution {1/16, 33/16, 68/16, 105/16}. The first
example of such a set containing only positive integers was found by Fermat:
{1, 3, 8, 120}. Replacing “+1” by “+n” leads to the following definition.

Definition 1.1. Let n be a nonzero integer. A set of m distinct positive
integers {a1, . . . , am} is called a D(n)-m-tuple (or a Diophantine m-tuple with
the property D(n), or a Pn-set of size m) if aiaj + n is a perfect square for
each i, j with 1 ≤ i < j ≤ m.

In the case of n = 1, it has been known that any D(1)-triple can be
extended to a D(1)-quadruple ([2]), while the folklore conjecture says that
there does not exist a D(1)-quintuple. There are several results supporting
the validity of this conjecture ([3, 6, 10, 12, 17, 22]), and it has been almost
completely settled. More precisely, there does not exist a D(1)-sextuple and
there exist only finitely many D(1)-quintuples ([12]). The case of n = 4 can
be treated in a similar way to that of n = 1 ([18, 21]).

2000 Mathematics Subject Classification. 11D09, 11D45.
Key words and phrases. Simultaneous Pell equations, Diophantine tuples.

205



206 Y. FUJITA

Define

Mn := sup {|S| : S has the property D(n)} .
Considering congruences modulo 4, one may easily find that Mn = 3 if n ≡ 2
(mod 4) ([4, 24, 28]). On the other hand, Dujella showed that if n 6≡ 2
(mod 4) and if n 6∈ S := {−4,−3,−1, 3, 5, 8, 12, 20}, then Mn ≥ 4 ([5]), and
conjectured the following.

Conjecture 1.2 ([7]). If n ∈ S, then we have Mn = 3.

In the case of n = −1, there are several results supporting the validity
of this conjecture ([1, 9, 14, 15, 19, 20]), and it has been almost completely
settled. More precisely, there does not exist a D(−1)-quintuple ([15]) and
there exist only finitely many D(−1)-quadruples ([14]). Suppose now that
there exists a D(−4)-quadruple {a1, a2, a3, a4}. Then it induces a D(−1)-
quadruple {a′1, a′2, a′3, a′4} such that ai = 2a′i for each i ([5, Remark 3]); hence,
if Conjecture 1.2 is true for n = −1, then the same is true for n = −4.

As for general n, Dujella first gave an upper bound, depending only on
n, for Mn ([11]) and then improved it to obtain the following ([13]):

if |n| ≤ 400, then Mn ≤ 31;
if |n| > 400, then Mn < 15.476 log |n|.

Moreover, in case |n| is prime, Dujella and Luca gave an absolute upper bound
for Mn: Mn < 3 · 2168 ([16]).

We are interested in the extensibility of D(n)-triples for large n with n 6≡ 2
(mod 4). Brown showed that if {a1, a2, a3, a4} is a D(n)-quadruple with n ≡ 5
(mod 8), then ai ≡ 2 (mod 4) for each i ([4]). For example, the D(5)-triple
{L2k+1, L2k+3, L2k+5}, where k ≥ 1 and Lm denotes the m-th Lucas number,
cannot be extended to a D(5)-quadruple ([25]). By enhancing the results
of Mootha and Berzsenyi [27], Dujella examined in detail possible types of
D(n)-quadruples and D(n)-quintuples modulo 4 ([8]). In general, unless an
argument using congruences modulo 4, 8 or 16 works, for large n it seems to
be more difficult to find a D(n)-triple {a, b, c} which cannot be extended to a
D(n)-quadruple than to find a large set with the property D(n) (e.g., Gibbs
found a D(255104784)-sextuple {3267, 11011, 17680, 87120, 234256, 1683715};
see [23]). The difficulty of finding such a triple comes from the necessity of
finding the fundamental solutions of each of the Pell equations

ay2 − bx2 = 1, az2 − cx2 = 1, bz2 − cy2 = 1.(1.1)

In this paper, we will give a D(n)-triple which cannot be extended to a D(n)-
quadruple, for each of infinitely many n’s with n ≡ 0 (mod 4); this is the first
non-trivial complete non-extensibility result for large n.

We now consider the D(4k)-triple {1, 4k(k− 1), 4k2 + 1} with k 6= 0, 1 an
integer. Then the fundamental solutions of (1.1) are easily found, since each
of ab, ac and bc is of Richaud-Degert type ([29, Section 3.2]). Moreover, in
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case |k| is prime, we can completely determine the fundamental solutions of
the Pell equation

z2 − (4k2 + 1)x2 = −16k3

(Proposition 2.4), which is the key to show our main theorem, that is:

Theorem 1.3. Let k be an integer with |k| prime. Then the D(4k)-triple
{1, 4k(k − 1), 4k2 + 1} cannot be extended to a D(4k)-quadruple.

Note that this theorem contains the examples {1, 8, 17}, {1, 24, 37},
{1, 80, 101} supporting the validity of Conjecture 1.2 for n = 8, 12, 20. We
will divide the proof of Theorem 1.3 into four cases:

k < −2, k = −2, k > 2, k = 2.

In fact, we will show that certain simultaneous Pell equations have no solu-
tions in each case of the above k’s (propositions 3.3, 3.4, 3.6 and 3.7), except
for the case of k = 2; in this case, we will show that the system of equa-
tions has only the trivial solutions (x, y, z) = (±3,±2,±5). This implies the
non-extensibility of the D(8)-triple {1, 8, 17} (Remark 3.8). Theorem 1.3 im-
mediately follows from these four propositions.

Remark 1.4. Professor Andrej Dujella told us that if k is an integer such
that k ≡ 3 (mod 4), then one may easily prove the non-extensibility of the
D(4k)-triple {1, 4k(k− 1), 4k2 + 1}; hence, the main result is only interesting
in the case where k = ±2 or k = 4l + 1 (l ∈ Z) with |k| prime. Indeed, each
of the elements of the triple is congruent to 1, 8 or 5 modulo 16, while 4k is
congruent to 12 modulo 16. This immediately leads to the non-existence of
the fourth element, by noting that a square of an integer is congruent to 0, 1,
4 or 9 modulo 16. We would like to express our sincere thanks to Professor
Dujella for pointing out this remark.

2. The key proposition

Assume that {1, 4k(k− 1), 4k2 + 1, d} is a D(4k)-quadruple with k 6= 0, 1
an integer. Then there exist integers x, y, z such that

d+ 4k = x2, 4k(k − 1)d+ 4k = 4y2, (4k2 + 1)d+ 4k = z2.

Eliminating d, we obtain the simultaneous Pell equations

y2 − k(k − 1)x2 = −k(4k2 − 4k − 1),(2.1)

z2 − (4k2 + 1)x2 = −16k3,(2.2)

k(k − 1)z2 − (4k2 + 1)y2 = −k(4k + 1).(2.3)

In this section, we will determine the fundamental solutions of the Pell
equation (2.2) in case |k| is an odd prime, which is crucial for the proof of
Theorem 1.3. For this purpose, we need the following lemmas.
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Lemma 2.1 ([31, Theorem 22, p. 209]). Let N 6= 0 and D > 0 be integers
with D not a square. If (X0, Y0) is a primitive solution of the Pell equation

X2 −DY 2 = N,(2.4)

then there exists an integer j such that

X0 ≡ jY0 (mod N) and j2 ≡ D (mod N).(2.5)

Here, a solution (X0, Y0) is called primitive if gcd(X0, Y0) = 1. We say
that a solution (X0, Y0) of (1.1) belongs to an integer j if (2.5) holds. Note
that the primitive solutions belonging to the same integer (modulo N) are in
the same class ([31, Theorem 23, p. 209]).

Lemma 2.2 ([31, Theorem 25, p. 212]). Let N and D be as in Lemma 2.1.
Let j be an integer such that j2 ≡ D (mod N) and put M := (j2 − D)/N .
The Pell equation (2.4) has a positive solution belonging to ±j if and only if
the Pell equation

T 2 −DU2 = M

has a positive solution (T0, U0) belonging to ±j.
Lemma 2.3. Let N and K be integers with 1 < |N | ≤ K. Then the Pell

equation

Z2 − (K2 + 1)X2 = N

has no primitive solution.

Proof. Let Pn/Qn be the n-th convergent of
√
K2 + 1. Then it is well

known that the continued fraction expansion of
√
K2 + 1 is [K, 2K] and that

P 2
n − (K2 + 1)Q2

n = (−1)n for all n ≥ 1,(2.6)

which contradicts the assumption 1 < |N | ≤ K and the fact that in case |N | <√
K2 + 1, the primitive solutions are obtained from the partial quotients ([31,

Theorem 20, p. 204]). This completes the proof of Lemma 2.3.

Now we are ready to prove our key tool which is the following proposition.

Proposition 2.4. Let k be an integer with |k| an odd prime. Then the
Pell equation (2.2) has exactly four classes of solutions to which the following
(fundamental) solutions belong, respectively:

(z, x) = (±2k(2k − 1), 2|k|), (±2(2k2 + k + 1), 2|k + 1|).
Remark 2.5. Let {1, 4k2 + 1, c} be a D(4k)-triple. The former solutions

(z, x) = (±2k(2k − 1), 2|k|) correspond to c = 4k(k − 1), which leads us to
consider the D(4k)-triple {1, 4k(k − 1), 4k2 + 1}.
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Proof. Finding the solutions of the equation (2.2) is equivalent to finding
the primitive solutions of those six Pell equations given by dividing both sides
of (2.2) by the squares of divisors of 4k.

(i) Dividing (2.2) by 16k2, we have

Z2 − (4k2 + 1)X2 = −k.(2.7)

It follows from Lemma 2.3 that the Pell equation (2.7) has no (primitive)
solution.

(ii) Dividing (2.2) by 4k2, we have

Z2 − (4k2 + 1)X2 = −4k.(2.8)

By Lemma 2.1, a primitive solution (Z0, X0) of (2.8) belongs to an integer j
such that

Z0 ≡ jX0 (mod 4k) and j2 ≡ 4k2 + 1 ≡ 1 (mod 4k).

Since |k| is an odd prime, the latter relation implies that j ≡ ±1 (mod 2k);
hence we have

j ≡ ±1 or ± (2k − 1) (mod 4k).

Suppose that j ≡ ±1 (mod 4k). By Lemma 2.2, if (2.8) has a positive
solution belonging to j, then the equation

(Z ′)2 − (4k2 + 1)(X ′)2 = k

must have a (primitive) solution, which contradicts Lemma 2.3.
Hence, the primitive solutions of (2.8) must belong to ±(2k − 1). The

equation (2.8) certainly has primitive solutions (Z,X) = (±(2k − 1), 1) be-
longing to ±(2k− 1), respectively. Therefore, (2.8) has exactly two classes of
solutions. The above solutions correspond to the solutions

(z, x) = (±2|k|(2k − 1), 2|k|)
of (2.8), respectively.

(iii) Dividing (2.2) by k2, we have

Z2 − (4k2 + 1)X2 = −16k.(2.9)

By Lemma 2.1, a primitive solution (Z0, X0) of (2.9) belongs to an integer j
such that

Z0 ≡ jX0 (mod 16k) and j2 ≡ 4k2 + 1 (mod 16k).

The latter relation implies that j2 ≡ 5 (mod 16), which is impossible. There-
fore, the equation (2.9) has no primitive solution.

(iv) Dividing (2.2) by 16, we have

Z2 − (4k2 + 1)X2 = −k3.(2.10)
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By Lemma 2.1, a primitive solution (Z0, X0) of (2.10) belongs to an integer j
such that

Z0 ≡ jX0 (mod k3) and j2 ≡ 4k2 + 1 (mod k3).

The latter relation implies that j ≡ ±1 (mod k2); hence we have j ≡ αk2 ± 1
(mod k3) for some integer α. It follows that (αk2 ± 1)2 ≡ 4k2 + 1 (mod k3),
which implies that α ≡ ±2 (mod k). Hence we obtain

j ≡ ±(2k2 + 1) (mod k3).

The equation (2.10) certainly has primitive solutions (Z,X) = (±(k2 + (k +
1)/2), |k + 1|/2) belonging to ±(2k2 + 1), respectively. Therefore, (2.10) has
exactly two classes of solutions. The above solutions correspond to the solu-
tions

(z, x) = (±2(2k2 + k + 1), 2|k + 1|)
of (2.2), respectively.

(v) Dividing (2.2) by 4, we have

Z2 − (4k2 + 1)X2 = −4k3.(2.11)

By Lemma 2.1, a primitive solution (Z0, X0) of (2.11) belongs to an integer j
such that

Z0 ≡ jX0 (mod 4k3) and j2 ≡ 4k2 + 1 (mod 4k3).

The latter relation implies that j ≡ ±1 (mod 2k2); hence we have j ≡ 2αk2±1
(mod 4k3) for some integer α. It follows that (2αk2±1)2 ≡ 4k2+1 (mod 4k3),
which implies that α ≡ ±1 (mod k). Hence we have

j ≡ ±(2k2 + 1) or ± (2k3 − 2k2 − 1) (mod 4k3).

Suppose that j ≡ ±(2k2 + 1) (mod 4k3). Lemma 2.2 implies that if the
equation (2.11) has a positive solution belonging to j, then the equation

(Z ′)2 − (4k2 + 1)(X ′)2 = −k
must have a (primitive) solution, which contradicts Lemma 2.3.

Suppose that j ≡ ±(2k3 − 2k2 − 1) (mod 4k3). Lemma 2.2 implies that if
the equation (2.11) has a positive solution belonging to j, then the equation

(Z ′)2 − (4k2 + 1)(X ′)2 = −k3 + 2k2 − k + 1(2.12)

also has a positive solution belonging to j ≡ ±(2k2 − 2k + 1) (mod (k3 −
2k2 + k − 1)). Lemma 2.2 again implies that if (2.12) has a positive solution
belonging to j, then the equation

(Z ′′)2 − (4k2 + 1)(X ′′)2 = −4k(2.13)

also has a positive solution belonging to j ≡ ±1 (mod 4k). If we repeat this
process once again, we will find that the equation

(Z ′′′)2 − (4k2 + 1)(X ′′′)2 = k
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must have a (primitive) solution, which contradicts Lemma 2.3. Consequently,
the equation (2.11) has no primitive solution.

(vi) Finally, we consider the equation (2.2) itself. By Lemma 2.1, a prim-
itive solution (z0, x0) of (2.2) belongs to an integer such that

z0 ≡ jx0 (mod 16k3) and j2 ≡ 4k2 + 1 (mod 16k3).

The latter relation implies that j2 ≡ 5 (mod 16), which is impossible. There-
fore, the equation (2.2) has no primitive solution. This completes the proof
of the proposition.

3. Proof of Theorem 1.3

In this section, we will show that the simultaneous Pell equations (2.1),
(2.2), (2.3) have no solutions in case |k| is prime, except for the case of k =
2 (in this case, we will show that they have only the solutions (x, y, z) =
(±3,±2,±5)), from which Theorem 1.3 will follow immediately.

Lemma 3.1. Let k be an integer with |k| ≥ 2. Let (y, x), (z, x) and (z, y)
be positive solutions of (2.1), (2.2) and (2.3), respectively. Then there exist
non-negative integers l,m, n and (fundamental) solutions (y0, x0), (z1, x1),
(z2, y2) of (2.1), (2.2), (2.3) respectively such that

y + x
√
k(k − 1) = (y0 + x0

√
k(k − 1))(|2k − 1| + 2

√
k(k − 1))l,(3.1)

z + x
√

4k2 + 1 = (z1 + x1

√
4k2 + 1)(8k2 + 1 + 4|k|

√
4k2 + 1)m,(3.2)

z
√
k(k − 1) + y

√
4k2 + 1 = (z2

√
k(k − 1) + y2

√
4k2 + 1)(3.3)

×(|8k3 − 8k2 + 2k − 1| + 2|2k − 1|
√
k(k − 1)(4k2 + 1))n,

where in case k ≤ −2 we may take

|x0| < −2k;(3.4)

in case k ≥ 2 we may take

|z2| ≤
√

(4k2 + 1)(4k + 1) < 4.4k
√
k.(3.5)

Proof. Note that by [30, Theorem 105],

(y, x) = (|2k − 1|, 2), (z, x) = (8k2 + 1, 4|k|),
(z, y) = (|8k3 − 8k2 + 2k − 1|, 2|2k − 1|)

are the fundamental solutions of the Pell equations

y2 − k(k − 1)x2 = 1, z2 − (4k2 + 1)x2 = 1, z2 − k(k − 1)(4k2 + 1)y2 = 1,

respectively. Hence, there exist an integer m ≥ 0 and a solution (z1, x1) of
(2.2) such that (3.2) holds.

Suppose that k ≤ −2. Then [30, Theorem 108] implies that in each class
of solutions there exists a solution (y′0, x

′
0) of (2.1) such that 0 ≤ x′0 < −2k
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and with |y′0| minimal (in the class of solutions). For any positive solution
(y, x) of (2.1), the minimality of |y′0| allows us to write

y + x
√
k(k − 1) = ±(y′0 + x′0

√
k(k − 1))(−2k + 1 + 2

√
k(k − 1))l

for some integer l ≥ 0 and some sign. Putting y0 = ±y′0 and x0 = ±x′0, we see
that (3.1) holds with (3.4). We may prove the statement for (3.3) and (3.5)
in the same way as above, using [30, Theorem 108a] instead of [30, Theorem
108]. This completes the proof of Lemma 3.1.

We first consider the case of k ≤ −2. By (3.1) and (3.2), we may write
x = pl, where

p0 = x0, p1 = (−2k + 1)x0 + 2y0, pl+2 = 2(−2k + 1)pl+1 − pl,

and x = qm, where

q0 = x1, q1 = (8k2 + 1)x1 − 4kz1, qm+2 = 2(8k2 + 1)qm+1 − qm.

From these recursive sequences, we easily see by induction the following. Note
that if k is square-free, then y0 ≡ 0 (mod k), since (y0, x0) is a solution of (2.1).

Lemma 3.2. Let k ≤ −2 be a square-free integer. Then we have pl ≡ x0

(mod 2k) for all l and qm ≡ x1 (mod 2k) for all m.

Proposition 3.3. Let −k > 0 be an odd prime. Then the simultaneous
Pell equations (2.1) and (2.2) have no solutions.

Proof. It suffices to show that pl 6= qm for all l,m. Suppose that pl = qm
for some l,m. Lemma 3.2 implies that x0 ≡ x1 (mod 2k). Since Proposition
2.4 implies that x1 = ±2k or ±2(k + 1), it follows from (3.4) that x0 = 0,
±2 or ±2(k + 1). If x0 = 0, then y2

0 = −k(4k2 − 4k − 1) ≡ k (mod k2),
which contradicts the assumption that −k is prime. If x0 = ±2, then y2

0 =
−k(2k − 1)(2k − 3), which is also a contradiction. If x0 = ±2(k + 1), then

y2
0 = k(k − 1) · 4(k + 1)2 − k(4k2 − 4k − 1) = 4k4 − 3k ≡ −3k (mod k2),

which means that k = −3. Hence we must have

y2
0 = 4 · 81 + 9 = 9 · 37,

which is impossible. This completes the proof of Proposition 3.3.

Assume that k = −2, and consider the equations (2.1) and (2.3):

y2 − 6x2 = 46,(3.6)

6z2 − 17y2 = −14.(3.7)

Proposition 3.4. The simultaneous Pell equations (3.6) and (3.7) have
no solutions.
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Proof. From [30, Theorem 108a] it follows that the positive solutions of
(3.7) are given by

z
√

6 + y
√

17 = (±3
√

6 + 2
√

17)(101 + 10
√

102)n.

Hence, by (3.1) and the last formula we may write y = αl, where

α0 = 10, α1 = 50 ± 36, αl+2 = 10αl+1 − αl,

and y = βn, where

β0 = 2, β1 = 202± 180, βn+2 = 202βn+1 − βn.

This gives a contradiction, since by induction it follows that αl ≡ 0,±1
(mod 5) and βn ≡ 2 (mod 5). This completes the proof of Proposition 3.4.

Secondly, we consider the case of k ≥ 2. By (3.2) and (3.3), we may write
z = vm, where

v0 = z1, v1 = (8k2 + 1)z1 + 4k(4k2 + 1)x1, vm+2 = 2(8k2 + 1)vm+1 − vm,

and z = wn, where

w0 = z2, w1 = (8k3 − 8k2 + 2k − 1)z2 + 2(2k − 1)(4k2 + 1)y2,

wn+2 = 2(8k3 − 8k2 + 2k − 1)wn+1 − wn.

From these recursive sequences, we easily see by induction the following.

Lemma 3.5. Let k ≥ 2 be an integer. Then we have vm ≡ (−1)mz1
(mod 2(4k2 + 1)) for all m and wn ≡ z2 (mod 2(4k2 + 1)) for all n.

Proposition 3.6. Let k > 0 be an odd prime. Then the simultaneous
Pell equations (2.2) and (2.3) have no solutions.

Proof. It suffices to show that vm 6= wn for all m,n. Suppose that
vm = wn for some m,n. Since Proposition 2.4 implies that |z1| = 2k(2k − 1)
or 2(2k2 + k + 1), it follows from (3.5) that

|z1 ± z2| ≤ |z1| + |z2| < 2(2k2 + k + 1) + 4.4k
√
k

= 4k2

(
1 +

1.1√
k

+
1

2k
+

1

2k2

)

< 8k2 < 2(4k2 + 1);

hence from Lemma 3.5 we obtain |z1| = |z2|. However, we know that

|z1| ≥ 2k(2k − 1) = 4k2

(
1 − 1

2k

)
≥ 10

3
k2 > 5k

√
k > |z2|,

which is a contradiction. This completes the proof of Proposition 3.6.
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Assume that k = 2, and consider the equations (2.2) and (2.3):

z2 − 17x2 = −128,(3.8)

2z2 − 17y2 = −18.(3.9)

Proposition 3.7. The simultaneous Pell equations (3.8) and (3.9) have
no solutions except (x, y, z) = (±3,±2,±5).

Remark 3.8. The solutions (x, y, z) = (±3,±2,±5) correspond to d = 1,
where d is as at the beginning of Section 2. Hence, Proposition 3.7 implies
that the D(8)-triple {1, 8, 17} cannot be extended to a D(8)-quadruple.

Proof. One can prove this proposition using the standard method due
to Baker and Davenport ([3]). By lemmas 3.1 and 3.5, the positive solutions
of (3.8) and (3.9) are given by

z + x
√

17 = (±5 + 3
√

17)(33 + 8
√

17)m,

z
√

2 + y
√

17 = (±5 + 2
√

17)(35 + 6
√

34)n,

respectively. Hence, we may write z = vm, where

v0 = ±5, v1 = 408± 165, vm+2 = 66vm+1 − vm,

and z = wn, where

w0 = ±5, w1 = 204± 175, wn+2 = 70wn+1 − wn.

We can transform the equation vm = wn into an inequality for a linear form in
three logarithms of algebraic numbers. Then, applying Baker’s theory, e.g.,
a theorem of Matveev ([26]), we obtain m < 2 · 1015. Thus, the reduction
method due to Dujella and Pethő ([17, Lemma 5a)]), based on the Baker-
Davenport lemma ([3]), completes the proof of Proposition 3.7. In fact, in the
first step of reduction we obtain m ≤ 4; in the second step we obtain m ≤ 1,
which is a contradiction.
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