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ON A FAMILY OF QUARTIC EQUATIONS AND A

DIOPHANTINE PROBLEM OF MARTIN GARDNER

P. G. Walsh

University of Ottawa, Canada

Abstract. Wilhelm Ljunggren proved many fundamental theorems
on equations of the form aX2 − bY 4 = δ, where δ ∈ {±1, 2,±4}. Recently,
these results have been improved using a number of methods. Remarkably,
the equation aX2 − bY 4 = −2 remains elusive, as there have been no
results in the literature which are comparable to results proved for the
other values of δ. In this paper we give a sharp estimate for the number
of integer solutions in the particular case that a = 1 and b is of a certain
form. As a consequence of this result, we give an elementary solution to a
Diophantine problem due to Martin Gardner which was previously solved
by Charles Grinstead using Baker’s theory.

1. Introduction

Ljunggren [6, 7] proved a number of fundamental theorems on Diophan-
tine equations of the form aX2 − bY 4 = c, with c ∈ {±1, 2,±4}. Noticeably
absent from this list is the value c = −2. Therefore, it seems worthwhile to
pursue the Diophantine equation

(1.1) aX2 − bY 4 = −2.

In so doing, we necessarily restrict our attention to the case that a and b are
odd integers for which ab is nonsquare, and for which the quadratic equation
aX2 − bY 2 = −2 is solvable in odd integers X,Y .

All positive integer solutions to the equation aX2 − bY 2 = −2 arise from
a minimal solution as follows. Assume that (X,Y ) = (T, U) is the smallest
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positive integer solution to aX2 − bY 2 = −2, and let

α =
T
√
a+ U

√
b√

2
.

For i ≥ 1 and odd, define sequences {Ti}, {Ui} by

αi =
Ti
√
a+ Ui

√
b√

2
.

Then all positive integer solutions to aX2 − bY 2 = −2 are given by (X,Y ) =
(Ti, Ui).

The following is the main result of this note, and to this author’s knowl-
edge, it represents the only result known on equation (1.1). We will see that a
special case of this result yields an elementary solution to a problem of Martin
Gardner [2], which was later solved by Grinstead [3] using Baker’s method.

Theorem 1.1. Assume that d ≡ 0 (mod 3) is a positive nonsquare inte-
ger for which the equation X2 − dY 2 = −2 is solvable in odd integers X,Y ,
and assume further that the minimal solution (X,Y ) = (T, U) satisfies the
property that 3 does not divide U . Then for any odd positive integer A, for
which the Legendre symbol ((2d/3)/p) = −1 for all primes p dividing A, and
D = 9A2d, the equation

(1.2) X2 −DY 4 = −2

has at most one solution in positive integers X,Y .

The proof will make use of Ljunggren’s theorem on X2 − 2Y 4 = −1 in
[5] (see also [8]), and also a result of Chen and Voutier in [1] on the equation
X2 − DY 4 = −1. In particular, Ljunggren showed that the only positive
integer solutions to X2 − 2Y 4 = −1 are (X,Y ) = (1, 1), (239, 13), while for
D > 2, Chen and Voutier proved that there is at most one positive integer
solution to X2 −DY 4 = −1.

2. Proof

Let (x, y) denote a positive integer solution to (1.2). Then there is an
odd positive k for which Uk = 3Ay2. By the assumptions that d is divisible
by 3 and U is not, it follows from the binomial theorem that 3 divides k, say
k = 3l. By the divisibility properties of terms in the sequence {Ui} (see [4]),
it follows that Ul = A1w

2 for some integer A1 dividing A, and some positive
integer w. The identity

U3l = Ul(2U
2
l d− 3)

is readily verified from the equation

T3l + U3l

√
d√

2
=

(
Tl + Ul

√
d√

2

)3

.
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From this we deduce that there is a positive integer z for which

2U2
l d− 3 = 3(A/A1)z

2,

which can be rewritten as

(2d/3)A2
1w

4 −A2z
2 = 1,

where A2 = A/A1. The assumption on the prime factors of A implies that
A2 = 1, and hence that A1 = A. Therefore, the above equation can be
rewritten as

(2.1) (2d/3)A2w4 − z2 = 1.

In the case that A = 1 and d = 3 (i.e. D = 27), Ljunggren’s theorem implies
that either (z, w) = (1, 1), or (z, w) = (239, 13). The latter pair of integers
does not lead to a solution to X2 − 27Y 4 = −2, while the pair (z, w) = (1, 1)
leads to the solution (X,Y ) = (5, 1). We therefore see that the complete
solution to the quartic equationX2−27Y 4 = −2 is an elementary consequence
of Ljunggren’s theorem on X2 − 2Y 4 = −1.

In the case that A > 1 or d > 3, the result of Chen and Voutier implies
that equation (2.1) has at most one solution in positive integers z, w, from
which it immediately follows that there is at most one positive integer solution
to equation (1.2).

Remark 2.1. We first remark that the bound of one solution in The-
orem 1.1 is best possible. In particular, if D = 9(m2 + 2) for a positive
integer m not divisible by 3, then D satisfies the hypotheses of Theorem 1.1,
with A = 1 and d = m2 + 2. If m is chosen to be a positive integer arising
from a solution to 3n2 − 2m2 = 1 (of which there are infinitely many), then
(X,Y ) = (2m3 + 3m,n) satisfy X2 −DY 4 = −2.

3. A Diophantine problem of Martin Gardner

Martin Gardner [2] posed the problem of determining all those positive
integers which are simultaneously triangular, square, and centered hexagonal.
In other words, find all positive integer solutions to the system

k2 + k = 2m2, 3n2 − 3n+ 1 = m2.

By the transformation (and relabelling) x = 2k + 1, y = m, z = 2n− 1, this
system can evidently be rewritten as

(3.1) x2 − 8y2 = 1, 4y2 − 3z2 = 1.

The system of simultaneous Pell equations in (3.1) was completely solved by
Grinstead in [3], wherein he proved that the only solution in positive integers is
(x, y, z) = (3, 1, 1). The proof however uses deep results from Transcendance
Theory in order to obtain a bound for the size of solutions, and then a very
clever modular argument to show that any solution other than the known one
must be extraordinarily large.
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By subtracting the second equation in (3.1) from the first, we see that

x2 − 12y2 + 3z2 = 0.

Furthermore, as 3 evidently divides x, putting x1 = x/3, we obtain

4y2 − z2 = 3x2
1,

which can be rewritten as

(2y − z)(2y + z) = 3x2
1.

The two factors on the left are coprime, and so there are odd positive integers
u and v, with x1 = uv, for which

2y ± z = 3u2, 2y ∓ z = v2.

Therefore, y = (v2 + 3u2)/4, and since x = 3x1 = 3uv, substituting x, y into
the first equation in (3.1), and simplifying, gives

v4 − 12u2v2 + 9u4 = −2.

By completing the square, this equation can be rewritten as

(v2 − 6u2)2 − 27u4 = −2.

The remarks contained in the proof of Theorem 1.1 show that u = v = 1,
which lead to the unique solution (x, y, z) = (3, 1, 1) to equation (3.1), and
hence the unique solution (k,m, n) = (1, 1, 1) to Gardner’s problem.

We emphasize here that the particular case of Theorem 1.1 required to
solve Gardner’s problem is a consequence of Ljunggren’s theorem only, and
not the aforementioned result of Chen and Voutier. Therefore, as Ljunggren’s
proof was of an elementary nature, the above proof provides an elementary
solution to Gardner’s problem.
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