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Abstract. The aim of the present note is to establish two extensions
of some transcendence criteria for real numbers given by their continued
fraction expansions. We adopt the following point of view: rather than
giving sufficient conditions ensuring the transcendence of a given number
α, we take a pair (α, α′) of real numbers, and we prove that, under some
condition, at least one of them is transcendental.

1. Introduction and results

Very little is known on the continued fraction expansion of any algebraic
real number of degree at least three. It is likely that the sequence of its partial
quotients is unbounded, but we seem to be still very far away from a proof.
Recently, a small step was made in this direction by means of several new
transcendence criteria for continued fractions [1, 2, 3]. They illustrate the
fact that if the sequence of partial quotients of a real irrational number α
has some special combinatorial property, for example if long blocks of partial
quotients repeat unusually close to the beginning, then α must be either
transcendental, or quadratic.

The purpose of the present note is to establish two extensions of some of
our criteria. We adopt a slightly different point of view: rather than giving
sufficient conditions ensuring the transcendence of a given number α, we take a
pair (α, α′) of real numbers, and we aim at proving that, under some condition,
at least one of them is transcendental. Clearly, if one knows in advance that
one of them is algebraic, or if we consider the pair (α, α), this plainly gives
a transcendence criterion. Like in [1, 2, 3], the proofs rest on the Schmidt
subspace theorem.
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To state our results, it is convenient to use the terminology from combi-
natorics on words.

Let A be a countable set. The length of a wordW on the alphabet A, that
is, the number of letters composing W , is denoted by |W |. The mirror image
or the reversal of W := a1 . . . am is the word W := am . . . a1. In particular,
W is a palindrome if and only if W = W .

Let a = (a`)`≥1 and a′ = (a′`)`≥1 be sequences of elements from A, that
we identify with the infinite words a1a2 . . . and a′1a

′
2 . . ., respectively. We say

that the pair (a, a′) satisfies Condition (∗) if there exists a sequence of finite
words (Vn)n≥1 such that:

(i) for every n ≥ 1, the word Vn is a prefix of the word a;
(ii) for every n ≥ 1, the word V n is a prefix of the word a′;
(iii) the sequence (|Vn|)n≥1 is increasing.

Theorem 1.1. Let a and a′ be sequences of positive integers satisfying
Condition (∗). Set

α = [0; a1, a2, . . .], α′ = [0; a′1, a
′
2, . . .].

Then, either one (at least) of α and α′ is transcendental, or both are in the
same real quadratic field.

We stress that there is no assumption on the growth of the sequences a

and a′.
We point out two immediate consequences of Theorem 1.1.

Corollary 1.2. Let (Wj)j≥0 be an arbitrary sequence of finite words
on the alphabet Z≥1. Set X0 = W0 and Xj = Xj−1WjXj−1 for any j ≥ 1.

Then, the sequences (Xj)j≥0 and (Xj)j≥0 converge. Denote their limits by
a = (a`)`≥1 and a′ = (a′`)`≥1, respectively, and set

α = [0; a1, a2, . . .], α′ = [0; a′1, a
′
2, . . .].

Then at least one among α and α′ is transcendental, or both are in the same
real quadratic field.

Applying Theorem 1.1 with a = a′, we recover [3, Theorem 1], stated
below.

Corollary 1.3. Let a = (a`)`≥1 be a sequence of positive integers. If
the word a begins in arbitrarily long palindromes, then the real number α :=
[0; a1, a2, . . . , a`, . . .] is either quadratic or transcendental.

Our next statement deals with a wider class of continued fractions. Keep
the above notation. We say that the pair (a, a′) satisfies Condition (∗∗) if
there exist two sequences of finite words (Un)n≥1 and (Vn)n≥1 such that:

(i) for every n ≥ 1, the word Vn is a prefix of the word a;
(ii) for every n ≥ 1, the word UnV n is a prefix of the word a′;
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(iii) the sequence (|Un|/|Vn|)n≥1 is bounded from above;
(iv) the sequence (|Vn|)n≥1 is increasing.

Theorem 1.4. Let a and a′ be sequences of positive integers satisfying
Condition (∗∗). Set

α = [0; a1, a2, . . .], α′ = [0; a′1, a
′
2, . . .].

Denote by (p`/q`)`≥1 the sequence of convergents to α′. If the sequence

(q
1/`
` )`≥1 is bounded, then either one (at least) of α and α′ is transcendental,

or both are in the same real quadratic field.

Applying Theorem 1.4 with a = a′, we recover [3, Theorem 2]. Applying
Theorem 1.4 with a purely periodic sequence a, we can derive [2, Theorem
3.2], a particular case of which is stated below.

Corollary 1.5. Let (a`)`≥1 be a bounded sequence of positive integers.
Assume that there are positive integers b1, . . . , bm and sequences (nk)k≥1 and
(λk)k≥1 of positive integers with

ank+j+hm = bj for 1 ≤ j ≤ m and 0 ≤ h ≤ λk − 1,

and nk+1 > nk + λkm for every k ≥ 1. If

lim sup
k→+∞

λk
nk

> 0,

then the real number [0; a1, a2, . . .] is either quadratic, or transcendental.

To get Corollary 1.5, we apply Theorem 1.4 with a being the purely
periodic sequence of period bm, . . . , b1.

Theorem 1.4 describes a way to perturb the continued fraction expansion
of an algebraic number to get a transcendental number.

2. Proofs

The proofs of our theorems rest on the Schmidt subspace theorem, recalled
below.

Theorem A (W. M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm
be linearly independent linear forms in x = (x1, . . . , xm) with real algebraic
coefficients. Let ε be a positive real number. Then, the set of solutions x =
(x1, . . . , xm) in Zm to the inequality

|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof. See e.g. [5] or [6].

We also need three lemmas. Except for the last assertion of Lemma 2.2,
we omit the proofs, since they can be found in Perron’s book [4].



226 B. ADAMCZEWSKI AND Y. BUGEAUD

Lemma 2.1. Let α = [0; a1, a2, . . .] be a real number with convergents
(p`/q`)`≥1. Then, for any ` ≥ 2, we have

q`−1

q`
= [0; a`, a`−1, . . . , a1].

Lemma 2.2. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be real numbers.
Assume that there exists a positive integer n such that ai = bi for any i =
1, . . . , n. We then have |α − β| ≤ q−2

n , where qn denotes the denominator of
the n-th convergent to α. Furthermore, if an+1 6= bn+1, then we have

|α− β| ≥ 1

6(bn+1 + 2)2 max{bn+2, bn+3}q2n
·

Proof. We content ourselves to establish the last assertion. Set α′ =
[an+1; an+2, . . .] and β′ = [bn+1; bn+2, . . .]. If an+1 > bn+1, then we have

(1) α′ − β′ ≥ 1 − [0; 1, bn+3 + 1] =
1

bn+3 + 2
·

If an+1 < bn+1, then we have

(2) β′ − α′ ≥ [0; bn+2 + 1] =
1

bn+2 + 1
·

Denote by (p`/q`)`≥1 the sequence of convergents to α. Then, the theory of
continued fractions gives that

α =
pnα

′ + pn−1

qnα′ + qn−1
and β =

pnβ
′ + pn−1

qnβ′ + qn−1
,

since, by assumption, the first n-th partial quotients of α and β are the same.
We thus obtain

|α− β| =

∣∣∣∣
pnα

′ + pn−1

qnα′ + qn−1
− pnβ

′ + pn−1

qnβ′ + qn−1

∣∣∣∣ =
∣∣∣∣

α′ − β′

(qnα′ + qn−1)(qnβ′ + qn−1)

∣∣∣∣

≥
∣∣∣∣

α′ − β′

(an+1 + 2)(bn+1 + 2)q2n

∣∣∣∣ .

If an+1 ≥ 2(bn+1 + 1), this yields

|α− β| ≥ 1

3(bn+1 + 2)q2n
·

Otherwise, we get from (1) and (2) that

|α− β| ≥ 1

6(bn+1 + 2)2 max{bn+2, bn+3}q2n
·

This concludes the proof of the lemma.

For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the de-
nominator of the rational number [0; a1, . . . , am]. It is commonly called a
continuant.
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Lemma 2.3. Let m ≥ 2 be an integer. For any positive integers a1, . . . , am
and any integer k with 1 ≤ k ≤ m− 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1)

and

Kk(a1, . . . , ak)Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak)Km−k(ak+1, . . . , am).

Furthermore, we have

Km(a1, . . . , am) ≥ Km(1, . . . , 1) ≥ 2m/2.

Throughout the rest of the paper, if W denotes the finite word w1 . . . wm
on the alphabet Z≥1, then [0;W ] denotes the rational number [0;w1, . . . , wm]
and Km(W ) denotes the denominator of [0;W ].

We begin with establishing Theorem 1.1.

Proof of Theorem 1.1. We assume that α and α′ are algebraic num-
bers. For n ≥ 1, set sn = |Vn|. Denote by (p`/q`)`≥1 the sequence of conver-
gents to α′. By assumption, we have

psn

qsn

= [0;V n],

and we infer from Lemma 2.1 that
qsn−1

qsn

= [0;Vn].

Consequently, we have

(3) |qsn
α− qsn−1| < q−1

sn
,

and

(4) lim
n→+∞

qsn−1

qsn

= α.

Furthermore, we clearly have

(5) |qsn
α′ − psn

| < q−1
sn

and |qsn−1α
′ − psn−1| < q−1

sn
.

Consider now the three linearly independent linear forms with algebraic coef-
ficients:

L1(X1, X2, X3) = α′X1 −X3,

L2(X1, X2, X3) = αX1 −X2,

L3(X1, X2, X3) = X2.

Evaluating them on the triple (qsn
, qsn−1, psn

), it follows from (3) and (5) that
∏

1≤j≤3

|Lj(qsn
, qsn−1, psn

)| ≤ q−1
sn
.
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By Theorem A, there exist a non-zero integer triple (x1, x2, x3) and an infinite
set of distinct positive integers N1 such that

(6) x1qsn
+ x2qsn−1 + x3psn

= 0,

for every n in N1. By dividing (6) by qsn
and letting n tend to infinity along

N1, it follows from (4) that

(7) x1 + x2α+ x3α
′ = 0.

We further consider the three linearly independent linear forms with algebraic
coefficients:

L4(X1, X2, X3) = α′X2 −X3,

L5(X1, X2, X3) = αX1 −X2,

L6(X1, X2, X3) = X2.

Evaluating them on the triple (qsn
, qsn−1, psn−1), it follows from (3) and (5)

that ∏

4≤j≤6

|Lj(qsn
, qsn−1, psn−1)| ≤ q−1

sn
.

By Theorem A, there exist a non-zero integer triple (y1, y2, y3) and an
infinite set of distinct positive integers N2 such that

(8) y1qsn
+ y2qsn−1 + y3psn−1 = 0,

for every n in N2. By dividing (8) by qsn
and letting n tend to infinity along

N2, it follows from (4) that

(9) y1 + y2α+ y3αα
′ = 0.

Observe that x3 is non-zero since α is irrational. Consequently, it follows
from (7) and (9) that

(10) y1 + y2α− y3α

(
x1 + x2α

x3

)
= 0.

Since x2y3 is non-zero, (10) implies that α is a quadratic real number, and
we infer from (9) that α′ lies in the same quadratic field as α. This concludes
the proof of Theorem 1.1.

We now establish Theorem 1.4.

Proof of Theorem 1.4. Keep the notation from the statement of the
theorem, and denote by (Un)n≥1 and (Vn)n≥1 the sequences occurring in
Condition (∗∗). Modifying them if necessary, we may assume that, besides
(i) to (iv), they also satisfy

(v) the sequence (|Un|)n≥1 is increasing;
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(vi) for any n ≥ 2, if cn denotes the last letter of Un, then Vncn is not a
prefix of the word a.

Indeed, if this would not be possible to modify (Un)n≥1 and (Vn)n≥1

accordingly, then an application of Theorem 1.1 would yield that either one
(at least) of α and α′ is transcendental, or both are in the same real quadratic
field.

Assume that α and α′ are algebraic numbers. For n ≥ 1, set rn = |Un|
and sn = |Vn|. Recall that (p`/q`)`≥1 denotes the sequence of convergents to
α′.

By assumption, we have

prn+sn

qrn+sn

= [0;UnV n],

and we infer from Lemma 2.1 that
qrn+sn−1

qrn+sn

= [0;VnUn].

It follows from Lemma 2.2 that

(11) |qrn+sn
α− qrn+sn−1| < qrn+sn

Ksn
(Vn)−2.

This shows in particular that

(12) lim
n→+∞

qrn+sn−1

qrn+sn

= α.

Furthermore, we clearly have

(13) |qrn+sn
α′−prn+sn

| < q−1
rn+sn

and |qrn+sn−1α
′−prn+sn−1| < q−1

rn+sn
.

Consider now the four linearly independent linear forms with algebraic
coefficients:

L7(X1, X2, X3, X4) = α′X1 −X3,

L8(X1, X2, X3, X4) = α′X2 −X4,

L9(X1, X2, X3, X4) = αX1 −X2,

L10(X1, X2, X3, X4) = X2.

Evaluating them on the quadruple (qrn+sn
, qrn+sn−1, prn+sn

, prn+sn−1), it fol-
lows from (11) and (13) that

Π :=
∏

7≤j≤10

|Lj(qrn+sn
, qrn+sn−1, prn+sn

, prn+sn−1)| ≤ Ksn
(Vn)−2.

By assumption, there is M > 1 such that q` ≤ M ` and r` ≤ Ms` for
every ` ≥ 1. This and Lemma 2.3 imply that, for n ≥ 2, we have

Ksn
(Vn) ≥ 2sn/2 ≥ 2sn/4 · 2sn/(4M) ≥ 2(rn+sn)/(4M) ≥ qηrn+sn

,
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with η = (log 2)/(4M logM). Thus, Π ≤ q−2η
rn+sn

, and, by Theorem A, there
exist a non-zero integer quadruple (z1, z2, z3, z4) and an infinite set of distinct
positive integers N3 such that

(14) z1qrn+sn
+ z2qrn+sn−1 + z3prn+sn

+ z4prn+sn−1 = 0,

for every n in N3. By dividing (14) by qrn+sn
and letting n tend to infinity

along N3, it follows from (12) that

(15) z1 + z2α+ z3α
′ + z4αα

′ = 0.

We get from (15) that

α = −z1 + z3α
′

z2 + z4α′
,

and we observe that, for n in N3, we have

(16)

∣∣∣∣α− qrn+sn−1

qrn+sn

∣∣∣∣ =
∣∣∣∣
z1 + z3α

′

z2 + z4α′
− z1 + z3prn+sn

/qrn+sn

z2 + z4prn+sn−1/qrn+sn−1

∣∣∣∣

� 1

q2rn+sn

� (Krn
(Un)Ksn

(Vn))−2,

by (13) and Lemma 2.3. Here and below, the numerical constant implied by
� is independent on n. Let cn, c

′
n and c′′n be the last three letters of Un, and

define the word U ′
n by Un = U ′

nc
′′
nc

′
ncn. We infer from (vi) and lemmas 2.2

and 2.3 that

(17)

∣∣∣∣α− qrn+sn−1

qrn+sn

∣∣∣∣� Ksn+3(Vncnc
′
nc

′′
n)−2.

Then, Lemma 2.3 and the combination of (16) and (17) yield that

(18)

Ksn
(Vn) ×K3(c

′′
nc

′
ncn) �Ksn+3(Vncnc

′
nc

′′
n)

�Ksn
(Vn) ×Krn

(Un)

�Ksn
(Vn) ×Krn−3(U

′
n) ×K3(c

′′
nc

′
ncn).

However, our assumption (v) implies that Krn−3(U
′
n) tends to infinity with

n. This contradicts (18) and finishes the proof of the theorem.
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