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REAL RAMIFICATION POINTS AND REAL WEIERSTRASS

POINTS OF REAL PROJECTIVE CURVES

E. Ballico

University of Trento, Italy

Abstract. Here we construct real smooth projective curves with
prescribed genus, gonality and topological type or with a real Weierstrass
point with prescribed first positive non-gap.

1. Introduction

For any smooth and connected projective curve X of genus g ≥ 0 defined
over R let X(R) denote its set of real points and n(X) the number of the
connected components of X(R). Hence X(R) is the disjoint union of n(X)
circles. Set a(X) = 1 if X(C)\X(R) is connected and a(X) = 0 if X(C)\X(R)
is not connected, i.e. if X(C)\X(R) has two connected components. The
topological pair (X(C), X(R)) is uniquely determined by the triple of integers
(g, n(X), a(X)) and such a triple of integers (g, n, a) is associated to some
smooth real genus g curve if and only if either a = 0, n ≡ g + 1 (mod 2)
and 1 ≤ n ≤ g + 1, or a = 1 and 0 ≤ n ≤ g ([5, Proposition 3.1]). Let
X be a smooth and connected projective curve of genus g ≥ 2. A point
P ∈ X is a Weierstrass point if and only if h0(X,OX (gP )) ≥ 2, i.e. (Riemann-
Roch) if and only if h1(X,OX(gP )) > 0. The first integer t ≥ 2 such that
h0(X,OX(tP )) = 2 is called the first non-gap of P . The gonality gon(X)
of X is the minimal integer b > 0 such that there is a degree b morphism
X → P1. It is known that 2 ≤ gon(X) ≤ b(g + 3)/2c, that the general
genus g curve has gonality b(g+ 3)/2c, and that for every integer k such that
2 ≤ k < b(g + 3)/2c the set of all k-gonal curves of genus g is parametrized
one-to-one by an irreducible algebraic variety of dimension 2g + 2k − 5 ([1,
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p. 346]). Here we prove the following results, the case a = 1 of Theorem 1.1
being previously known ([2, Theorem 0.1]).

Theorem 1.1. Fix integers g, k, a, n such that g ≥ 2k+ 3 ≥ 9, a ∈ {0, 1}
and either a = 1 and 0 ≤ n ≤ g, or a = 0, 1 ≤ n ≤ g + 1 and n ≡ g + 1
(mod 2). If n = 0 assume k is even. Then there exists a smooth projective
k-gonal curve X of genus g defined over R with n(X) = n, a(X) = a and
such that there is a degree k pencil on X is defined over R.

Remark 1.2. The case g ≥ 5 and k = b(g+ 3)/2c, i.e. the case of curves
with general Brill-Noether theory for pencils, was proved by S. Chaudary ([3]).

Theorem 1.3. Fix integers g, k, a, n such that g ≥ 2k+ 3 ≥ 9, a ∈ {0, 1}
and either a = 1 and 1 ≤ n ≤ g or a = 0 and n = g + 1. Then there exist a
smooth projective k-gonal curve X of genus g defined over R with n(X) = n,
a(X) = a, and P ∈ X(R) such that k is the first positive non-gap of P and
|kP | is a degree k pencil on X.

Fix a smooth genus g curve such that there is a degree k morphism f :
X → P1 with a total ramification point, P . Hence OX(kP ) ≥ 2. Hence if
k < g, then P is a Weierstrass point of X . This observation explains why
Theorems 1.1 and 1.3 are also existence theorems for real Weierstrass points.

2. The proofs

Proposition 2.1. Fix a topological type (g, n, a) for smooth real curves
such that n 6= 0. Then there exist smooth curves A,B defined over R and
of topological type (g, n, a), degree 3 morphisms f : A → P1 and h : B →
P1 defined over R and P ∈ A(R), Q ∈ B(C)\B(R) such that P is a total
ramification point of f and Q is a total ramification point of h. When g =
1 we may also find a real degree 3 morphism τ : A → P1 with one real
total ramification point and two non-real complex conjugate total ramification
points. In the case g ≥ 2 and n = g + 1 (and hence a = 0) we may even find
a real curve of that topological type with a degree 3 real morphism with three
total real ramification points and another one with one real total ramification
point and two complex conjugate total ramification points.

Proof. We divide the proof into five steps.
(i) First assume g = 0. Hence n = 1 and a = 0. Take P, P ′ ∈ P1(R),

P 6= P ′, Q ∈ P1(C)\P1(R). Take as f the morphism induced by the linear
system spanned by the effective divisors 3P and 3P ′ and as h the morphism
induced by the linear system spanned by the effective divisors 3Q and 3Q̄. In
this way we even get two total ramification points.

(ii) Now assume g = 1. If n = 1, then a = 1. If n = 2, then a = 0.
Fix any real smooth genus 1 curve Z such that Z(R) 6= ∅ and any degree
3 real embedding of Z into a plane. Any smooth real degree 3 plane curve
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has three real flexes and six non-real flexes (case n = 1) or five real flexes
and four non-real flexes (case n = 2). Use the morphism induced by the
linear system spanned by the triple of two of these flexes to obtain f and
h. To obtain the morphism τ of the “Furthermore” part take a degree 3
cyclic covering of P1 either ramified (and hence totally ramified) over three
real points, or ramified (and hence totally ramified) over a real point and two
non-real complex conjugate points.

(iii) Now assume g ≥ 2 and n = g+ 1. Hence a = 0. We first construct
A,P, P ′ and f . Let (Ai, Pi, P

′
i , fi), i = 1, . . . , g, be solutions for the case g = 1

and n = 2. Let E be the genus g stable curve of compact type constructed
in the following way. E has g irreducible components and we will call them
Z1, . . . , Zg because they are isomorphic to the previously chosen smooth genus
one curves. We will identify all the points Pi, P

′
i with the corresponding points

of E. E has g − 1 singular points O1, . . . , Og−1. Notice that P1 and P ′
g are

smooth points of E, while all other points Pi, P
′
i are singular points of E. We

have Zi ∩Zj 6= ∅ if and only if |i− j| ≤ 1. E is obtained from these data just
gluing the point P ′

i of Zi to the point Pi+1 of Zi+1, 1 ≤ i ≤ g−1. Let T denote
the genus 0 nodal connected curve with g irreducible components Ei ∼= P1,
1 ≤ i ≤ g, and g − 1 singular points Oi, 1 ≤ i ≤ g − 1, with Oi = Ei ∩ Ei+1,
1 ≤ i ≤ g − 1. We identify (over R) Ei ∼= P1 with the target of fi. In this
way the set of all fi’s induces a degree 3 admissible cover φ : E → E ([6, §4])
with P1 and P ′

g as total ramification points contained in Ereg . We prescribe
that each Oi is obtained gluing together a real point of Ei with a real point
of Ei+1. In this way E gets a real structure compatible with φ. We get f
smoothing (E, φ), but keeping P1 and P ′

g as total ramification points (see [3,
Chapter 2] for real smoothings of admissible coverings). To construct h we
take the same construction, except that for Z1 and Zg we use τ1 : A1 → P1

and τg : Ag → P1 with P ′
1 and Pg a real total ramification point, while P1 and

P ′
g are non-real total ramification points. For the last assertion of Proposition

2.1 we take two of the curves Zi with three real total ramification points.
(iv) Now assume g ≥ 2, a = 0 and n < g+ 1. Hence q := (g+ 1− n)/2

is a positive integer. To get h we make the following construction. Take a
solution (B,Q′, h′) for the topological type (n−1, n, 0) and the non-real total
ramification point Q′. Let U be any smooth complex genus q curve equipped
with a degree 3 morphism u : U → P1 with two distinct total ramification
points W,W ′. Let Ū denote the complex conjugate curve of U ; if U is seen
as a Riemann surface with local charts, then Ū is the same topological man-
ifold with, as gluing data for the same atlas, the complex conjugation of the
gluing data of U ; if U is seen as the zero-locus of some homogeneous complex
polynomials in some projective space, then Ū is the zero-locus in the same
projective space of the complex conjugate polynomials, i.e. of the polynomials
obtained taking the complex conjugate of all coefficients; if U is seen as an
abstract algebraic scheme in the sense of Groethendieck or as a variety in the
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very old set-up of Weil, then Ū is obtained from U applying the action of the
Galois group of the field extension C/R. Any of these equivalent descriptions
gives the existence of a unique W̄ ∈ Ū(C) corresponding to W and a unique
W̄ ′ ∈ Ū(C) corresponding to W ′. Furthermore, u induces a degree 3 mor-
phism ū : Ū → P1 such that W̄ and W̄ ′ are total ramification points of ū. Let
Γ be the genus g nodal curve of compact type constructed in the following
way. Γ has three irreducible components, respectively isomorphic to B (over
R), to U and to Ū , and two singular points O, Ō, with O obtained gluing
together the point W ′ of U with the point Q′ of B and Ō obtained gluing
together the point Q̄′ of B with the point W̄ of Ū . With these gluings the
curve Γ has a real structure such that U and Ū are exchanged by the complex
conjugation and hence Γ(R) = B(R). Thus Γ(R) is the disjoint union of n
circles. It is easy to check that Γ(C)\Γ(R) has two connected components.
Taking as target a genus 0 nodal curves with three irreducible components
and using h′, u, ū we get an admissible cover whose general smoothing gives
a solution for h for the topological type (g, n, 0): the non-real total ramifica-
tion point comes from W ∈ Γ. Now we show the existence of f,A, P . We
start with a real smooth curve A′ of type (n− 1, n, 0) equipped with a degree
3 real morphism f ′ : A′ → P1 with one real total ramification point and
two complex conjugate complex ramification points. We use the two complex
conjugate ramification points to add two genus q tails as in the proof of the
existence of h.

(v) Now we assume g ≥ 2 and a = 1. By assumption we have 1 ≤ n ≤ g.
We fix g smooth real genus one curves Ai, 1 ≤ i ≤ g, such that for all i there is
a degree 3 real morphism fi : Ai → P1 with two real total ramification points
Pi, P

′
i . If n(Ai) = 2, i.e. if a(Ai) = 1, we also assume that the points Pi and

P ′
i are in different connected components of Ai(R). We assume n(Ai) = 1

for 1 ≤ i ≤ g + 1 − n and n(Ai) = 2 for all i > g + 1 − n (if any). Let E
be the unique curve of compact type defined over R with arithmetic genus g
built in the following way. E has g irreducible components Bi, 1 ≤ i ≤ g,
each of them defined over R. We assume the existence of a real isomorphism
ui : Ai → Bi and we set Qi := ui(Pi), Q

′
i := ui(P

′
i ). We assume Bi ∩ Bj 6= ∅

if and only if |i − j| ≤ 1. For all 1 ≤ i ≤ g − 1 the only point of Bi ∩ Bi+1

is the point Q′
i ∈ Bi , which is identified (glued) to the point Qi+1 ∈ Bi+1.

Since for all 1 ≤ i ≤ g − 1 the point P ′
i is a total ramification point of fi and

Pi+1 is a total ramification point of fi+1, the g degree 3 coverings f1, . . . , fg
define a degree 3 admissible covering φ of E. Both E and φ are defined over
R. Notice that E(R) has n connected components. Since a(B1) = 1, the open
set E(C)\E(R) is connected. Notice that Q1 and Q′

g are total ramification
points. To conclude the proof we take a real smoothing of the admissible
covering φ.
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Proof of Theorem 1.1. If a(X) = 1 the result is [2, Theorem 0.1],
except for the uniqueness part. The uniqueness part is true because it is
true outside a proper closed subset (for the Zariski topology) of the variety
parametrizing all smooth complex k-gonal curves of genus g. Hence we will
only check the case a = 0.

(a) Here we will check the case n = g + 1. Let Y be a smooth hyperel-
liptic curve of genus g defined over R with n(Y ) = g+1 and a(Y ) = 0; we also
assume that the hyperelliptic involution is the only non-trivial holomorphic
automorphism of Y . The curve Y obviously exists and it corresponds to the
case in which all 2g+ 2 ramification points of the hyperelliptic pencil are real
([5, §6]) and not too special. The assumption on Aut(Y ) implies that Y has
a unique real structure. Let ∆(Y ) be the local moduli space of Y . The germ
∆(Y ) is a smooth 3g − 3 dimensional germ of a complex space around the
point [Y ] representing Y . The complex conjugation σ acts on ∆(Y ). Since
Y (R) 6= ∅ and near [Y ] all complex curves have at most one complex struc-
ture, the set of real curves near Y is parametrized by the fix point set ∆(Y )σ

of σ. Since ∆(Y ) is smooth, every connected component of ∆(Y )σ is a real
3g − 3 dimensional differential manifold. Since [Y ] ∈ ∆(Y )σ , we see that the
image of ∆(Y )σ in the moduli space Mg is a Zariski dense subset of the mod-
uli space Mg containing the element [[Y ]] representing Y . Let M◦

g denote
the open subset of Mg parametrizing all smooth curves without non-trivial
automorphism. The variety M◦

g is smooth. Since each C ∈ M◦
g has no holo-

morphic involution, each C ∈ M◦
g has at most one real structure. There is an

anti-holomorphic involution σ on M◦
g whose fixed locus M◦

g(R) is the set of all
C ∈ M◦

g with a real structure. Hence every connected component of M◦
g(R)

is a (3g − 3)-dimensional differentiable manifold. Set M◦
g;k := {C ∈ M◦

g : C

is k-gonal}. M◦
g;k 6= ∅ because 3 ≤ k ≤ (g − 3)/2. Furthermore, M◦

g;k is

smooth, irreducible and of dimension 2g + 2k − 5. The closure Γ(k) of M◦
g;k

in Mg contains the hyperelliptic locus. Hence in ∆(Y ) there is an irreducible
σ-invariant 2g+ 2k− 5 complex space with [Y ] in its closure and parametriz-
ing k-gonal curves. Hence [Y ] is in the closure in ∆(Y )σ of a family of real
k-gonal curves, each of them with the real topological type of Y , concluding
the proof of the case n = g + 1.

(b) Here we will check the case a = 0, 1 ≤ n ≤ g − 1 and n ≡ g + 1
(mod 2). Just use the previous proof starting from the case k = 3 (proved in
Proposition 2.1) instead of the hyperelliptic case lifted from [5, §6].

Proof of Theorem 1.3. We modify the proof of Proposition 2.1 taking
degree k morphisms (and their total ramification points) instead of degree 3
morphisms. In the case g = 0 we just write k instead of 3. First assume a = 0.
If k ≥ 4, there are real genus 1 smooth curves with two total real ramification
points, but by Riemann-Hurwitz formula there is no genus 1 smooth curve
with a degree k morphism with three or more total ramification points. The
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proof of the case n = g + 1 of Proposition 2.1 works verbatim when k ≥ 4,
and this is the reason of our restriction in the case a = 0 of Theorem 1.3. If
a = 1 part (v) of the proof of Proposition 2.1 works verbatim.
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