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SHORT PROOFS OF SOME BASIC CHARACTERIZATION
THEOREMS OF FINITE p-GROUP THEORY

YAKOV BERKOVICH
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ABSTRACT. We offer short proofs of such basic results of finite p-group
theory as theorems of Blackburn, Huppert, Ito-Ohara, Janko, Taussky.
All proofs of those theorems are based on the following result: If G is a
nonabelian metacyclic p-group and R is a proper G-invariant subgroup of
G’, then G/R is not metacyclic. In the second part we use Blackburn’s
theory of p-groups of maximal class. Here we prove that a p-group G is of
maximal class if and only if Q35(G) = (z € G | o(z) = p?) is of maximal
class. We also show that a noncyclic p-group G of exponent > p contains
two distinct maximal cyclic subgroups A and B of orders > p such that
|AN B| = p, unless p = 2 and G is dihedral.

1°. This note is a continuation of the author’s previous papers [Berl,
Ber2, Ber4].

Only finite p-groups, where p is a prime, are considered. The same
notation as in [Berl] is used. The nth member of the lower central se-
ries of G is denoted by K, (G). Given a p-group G and a natural num-
ber n, set U,(G) = (@ | 2 € G), Q(G) = (x € G | o(x) < p"),
0,(G) = (& € G| ox) = p"), TX(G) = U1 (B:1(Q)), p!D) = |G : 2(G)],
where ®(G) is the Frattini subgroup of G. Next, G’ is the derived subgroup
and Z(G) is the center of G. A group G of order p™ is of mazximal class if
m > 2 and cl(G) = m — 1. A group G is metacyclic if it contains a normal
cyclic subgroup C' such that G/C' is cyclic. A group G is said to be minimal
nonabelian if it is nonabelian but all its proper subgroups are abelian. A p-
group G is reqularif, for z,y € G, thereis z € (x,y)’ such that (zy)? = aPyPzP.
A p-group G is absolutely regular if |G/U1(G)| < pP. A p-group G is powerful
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[LM] provided G’ < U, (G), where €3 = 2 and ¢, = 1 for p > 2. By ¢, (G) we
denote the number of cyclic subgroups of order p™ in G.

In Section 2° we show that some basic results of p-group theory are easy
consequences of Theorem 2. In Section 3° we use [Berl, Theorem 5.1] (=
Lemma 1(d)), a variant of Blackburn’s result [Ber3, Theorem 9.7], charac-
terizing p-groups of maximal class. The following results of this note are
new: Supplement 2 to Corollary 11, Corollary 14, theorems 22, 24, 25, 27, 30,
Supplements 1 and 2 to Theorem 22 and Remark 18.

In Lemma 1 we gathered some known results. All of them are proved in
[Ber3].

LEMMA 1. Let G be a nonabelian p-group.

(a) (Tuan) If G has an abelian subgroup of index p, then |G| = p|G'||Z(G)|.

(b) (Mann)! If M, N are two distinct maximal subgroups of G, then |G'| <
pIMIN.

(c) (Blackburn) If G/Ky,+1(G) is of mazimal class, then G is also of maz-
1mal class.

(d) (Berkovich) Suppose that G contains the unique subgroup L of index
pPTL. If G/L is of mazimal class, then G is also of marimal class
(obviously, this is also true in the case |G : L| > pPT1).

(e) (Hall) If cl(G) < p or exp(G) = p, then G is regular.

(f) (Hall) If G is regular, then exp(Qn(G)) < p" and |Q,(G)| =
G/UBn(G)].

(g) (Blackburn) If G is of maximal class and order < pP*!, then exp(G) <
p?. If |G| < pP, then |G : Q1(G)| < p. If|G| = pPTL, then G is irregular
and |G/U1(G)| = pP.

(h) (Blackburn) A p-group G of maximal class has an absolutely reqular
subgroup Gy of index p, and exp(G1) = exp(G). In particular, if G is
of order > pP*1, it has no normal subgroup of order p? and exponent
p since, for each n > 1, G has at most one normal subgroup of index
p". If |G| > pP, then |Q1(G1)| = pP~t. Next, all elements of the set
G — G4 have orders < p>.

(i) (Berkovich) If G has a nonabelian subgroup B of order p® such that
Cq(B) < B, then G is of mazimal class.

(j) (Lubotzky-Mann) If G is powerful and X is a mazimal cyclic subgroup
of G, then X £ ®(G).

(k) (Berkovich) If N is a two-generator G-invariant subgroup of ®(G),
then N is metacyclic.

(1) (Blackburn) If G is of mazimal class and order > pP*1, then exactly p
mazimal subgroups of G are of mazimal class, the (p + 1)-th mazimal
subgroup G1, the fundamental subgroup of G, is absolutely regular.

L This result is also contained in Kazarin’s Ph.D. thesis (unpublished).
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(m) (Berkovich) If H < G and Ng(H) is of mazimal class, then G is also
of mazimal class.

(n) (Berkovich) Let G be irregular but not of mazimal class. If U < G,
|U| < pP and exp(U) = p, then there is in G a normal subgroup V' of
order p? and exponent p such that U < V.

(o) (Blackburn) If G is irregular of mazimal class and a normal subgroup
V of G is of order pP~!, then exp(G/V) = % -exp(QG).

(p) (Blackburn) If an irregular group G has an absolutely regular mazimal
subgroup H, then either G is of maximal class or G = HQ1(G), where
12(G)| = p?.

(q) (Blackburn) If an irregular group G has no normal subgroup of order
pP and exponent p, it is of maximal class.

(r) (Hall’s regularity criterion) Absolutely regular p-groups are reqular.

(s) (Berkovich) If G is a p-group of mazimal class and order > pP*!, then
c2(G) = pP~? (mod pP1).

(t) (Berkovich) If a p-group G is neither absolutely regular nor of maximal
class, then c3(G) =0 (mod pP~1).

(u) (Berkovich) Let G be not of mazximal class. Then the number of sub-
groups of mazimal class and index p in G is divisible by p>.

(v) (Berkovich) If G is neither absolutely regular nor of mazimal class,
then the number of subgroups of order p? and exponent p is G is = 1
(mod p).

(w) (Blackburn) If Q2(G) is metacyclic, then G is also metacyclic.

2°. Blackburn [Blal, Theorem 2.3] has proved that a p-group G is meta-
cyclic if and only if G/K3(G)®(G’) is metacyclic. This result is an important
source of characterizations of metacyclic p-groups. Here we prove this asser-
tion in slightly another, but equivalent form (Theorem 2). The main point
of this section is to deduce from that theorem some basic results of p-group
theory. Besides, our proof of Theorem 2 is essentially simpler than the Philip
Hall’s proof presented in [Blal].

We prove Blackburn’s result in the following form.

THEOREM 2. The following conditions for a nonabelian p-group G are
equivalent:

(a) G is metacyclic.
(b) The quotient group G/R is metacyclic for some G-invariant subgroup
R of index p in G'.2

REMARK 3. If there is a G-invariant subgroup R < G’ such that G/R is
metacyclic, then G is also metacyclic. Indeed, take R < Ry < G’, where Ry is

2Since d(G) = 2, R is characteristic in G, by Lemma 7(b).
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G-invariant of index p in G’; then G/R; is also metacyclic as an epimorphic
image of G/R, whence G is metacyclic (Theorem 2).3

Theorem 2 and Remark 3, in view of K3(G)®(G’') < G’, imply the original
Blackburn’s result:

COROLLARY 4 ([Blal, Theorem 2.3]). If a p-group G is such that
G/K3(G)P(G") is metacyclic, then G is also metacyclic.

The following lemma is a useful criterion for a p-group to be minimal
nonabelian.

LEMMA 5 ([BJ1, Lemma 65.2(a)]). If a p-group G is such that d(G) = 2,
G' <Z(G) and exp(G') = p, then G is minimal nonabelian.

PRroOF. It follows from exp(G’) = p that G is nonabelian. For =,y € G,
we have 1 = [z,y]P = [z,y?] so y? € Z(G) whence ®(G) = G'U1(G) < Z(G)
and ®(G) = Z(G) since |G : Z(G)| > p. If M < G is maximal, then |M :
Z(G)| = p so M is abelian. We are done. O

LEMMA 6 ([Red]). If G is a nonmetacyclic minimal nonabelian p-group,
then

G={(a,b| a?" =b" =P =1,
(%)

[a,b] = ¢, [a,c] = [b,¢] =1,m >n).

Here G' = (c) is a mazimal cyclic subgroup of G, Z(G) = ®(G) = (a?,b?,c)
has index p* in G, Q1(G) = (a?” ", b?" ", ¢) is elementary abelian of order
p3, U1(G) = (aP,bP) and |G/G1(G)| = p* if and only if p > 2.

PROOF. If a,b € G are not permutable, then G = (a,b). If A/ B are
distinct maximal subgroups of G, then AN B = Z(G) and G/Z(G) is abelian
of type (p,p) so ®(G) = Z(G). We have |G'| = %|G : Z(G)| = p (Lemma 1(a)).
Let G/G' = (U/G’) x (V/G'), where both factors are cyclic of orders p™, p™,
respectively, m > n; then U and V are noncyclic (G is not metacyclic!) so
01 (G) = Q1 (U)Q1(V) is elementary abelian of order p* (indeed, Q1 (G)/G’ =
01(G/G")). Assume that G < L < G, where L is cyclic of order p?. We
have m + n > 2. Then G/G' = (C/G") x (D/G"), where L < C and C/G’
is cyclic, by [BZ, Theorem 1.16]. It follows from G’ = ®(L) < ®(C) that
1 =d(C/G") = d(C) so C is cyclic. Since G/C is cyclic, G is metacyclic,
contrary to the hypothesis. All remaining assertions are obvious. o

It follows from Lemma 6 that a minimal nonabelian p-group G is not
metacyclic if and only if G’ is a maximal cyclic subgroup of G.

3In our case, R is determined uniquely since G'/K3(G) is cyclic and K3(G) < Ry;
see Lemma 7, below.
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LEMMA 7. (a) If a p-group G is two-generator of class 2, then G’ is
cyclic.

(b) [Blal, Lemma 2.2] If G is a nonabelian two-generator p-group, then
G'/K5(G) is cyclic.

PROOF. (a) Since cl(G) = 2, then [zy,wv] = [z,u][z,v][y,u][y,v] for
xz,y,u,v € G. Let G = (a,b) and w,z € G. Expressing w,z in terms of
a and b and using the above identity, we see that the commutator [w, 2] is a
power of [a,b] so G’ = ([a,b]).

(b) The statement (b) follows from (a): G/Ks3(G) is two-generator of
class 2. O

REMARK 8. Let G be a nonmetacyclic minimal nonabelian 2-group given
by (). We claim that if G = AB, where A and B are cyclic, then n = 1.
Assume that this is false. Set G = G/(a*,b*); then G is of order 2° and
exponent 4 so it is not a product of two cyclic subgroups (of order < 4). This
is a contradiction since G = AB. Let, in addition, m > n = 1. We claim that
G is indeed a product of two cyclic subgroups. Set A = (a). Then G/U;(A)
is dihedral of order 8. Let U/U1(A) < G/U1(A) be cyclic of order 4. If By
is a cyclic subgroup which covers U/U1(A), then, by the product formula,
G = ABy, as want to be shown.

REMARK 9. Let G be a nonabelian two-generator p-group. It follows from
Lemma 6 and Theorem 2 that if R is a G-invariant subgroup of index p in G’,
then G is metacyclic if and only if G’/R is not a maximal cyclic subgroup of
G/R. In particular, we obtain the following theorem from [IO]: The derived
subgroup G’ of a 2-group G = AB (A and B are cyclic) is contained properly
in a cyclic subgroup of G if and only if G is metacyclic.

REMARK 10. If G is a nonmetacyclic p-group, then it contains a char-
acteristic subgroup R such that G/R is one of the following groups: (i) el-
ementary abelian of order > p?, (ii) nonabelian of order p* and exponent
p, (ili) a 2-group, given in (x), with m = n = 2, (iv) a 2-group, given in
(%), with m = 2, n = 1. (Obviously, groups (i)-(iii) are not products of two
cyclic subgroups.) Let us prove this. If d(G) > 2, we have case (i) with
R = ®(G). Next assume that d(G) = 2. If p > 2, we have case (ii) with
R = K3(G)®(G")U1(G) = K3(G)U1(G) (Theorem 2 and Lemmas 5-7). If
p = 2, we have cases (iii) or (iv) with R = K3(G)®(G')U2(G) (Corollary 4
and Lemma 6).*

It follows from Remark 10 that, if a 2-group G and all its character-

istic maximal subgroups are two-generator, then G is either metacyclic or
G/K3(G)P(G")U2(G) is a group (iii) of Remark 10 (the second group has no

4The group (iv) is a product of two cyclic subgroups; see the footnote to the proof of
Corollary 17.
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characteristic maximal subgroups at all). In particular, a 2-group G is meta-
cyclic if and only if G and all its maximal subgroups are two-generator. This
also follows from

COROLLARY 11 ([Blal]). Suppose that a nonabelian p-group G and all its
maximal subgroups are two-generator. Then G is either metacyclic or p > 2
and K3(G) = U1(Q) has index p* in G (in the last case, |G : G'| = p?).

PROOF. Suppose that G is not metacyclic. In cases (iii) and (iv) of
Remark 10, G has a maximal subgroup that is not generated by two elements
so p > 2. By Lemma 6, G has no nonmetacyclic epimorphic image which
is minimal nonabelian of order > p3. The group G also has no epimorphic
image of order > p3 and exponent p so |G/U1(G)| = p3. Assume that |G :
G’'| > p%. Let R be a G-invariant subgroup of index p in G’. Then G/R
is a nonmetacyclic minimal nonabelian group (Theorem 2 and Lemma 5)
of order > p?, contrary to what has just been said. Thus, |G : G'| = p*.
Then G/K3(G) is minimal nonabelian since its center G'/K3(G) has index
p?; moreover, that quotient group is nonmetacyclic (Remark 3). In that
case, by the above, |G/K3(G)| = p* = |G/U1(G)| so K3(G) = U1(G) since
51(G) < Ks(G). 0

COROLLARY 12 (Taussky). Let G be a nonabelian 2-group. If |G : G'| =
4, then G is of mazimal class.

PROOF. Let R be a G-invariant subgroup of index 2 in G’. Then G/R is
nonabelian of order 8 so metacyclic; then G is metacyclic (Theorem 2) so G
has a normal cyclic subgroup U < G such that G/U is cyclic. Since G' < U,
we get |G : U| = 2, and the result follows from description of 2-groups with
cyclic subgroup of index 2. O

COROLLARY 13 (Huppert [Hup]). Let G be a p-group, p > 2, and let
|G/01(G)| < p?. Then G is metacyclic.

PROOF. Assuming that G is not metacyclic, we must consider cases (i)
and (ii) of Remark 10. We have there |G/U1(G)| > p?, a contradiction. O

SUPPLEMENT 1 TO COROLLARY 11. Let G be a p-group.
(a) G is metacyclic if and only if G/U*(G) is metacyclic.
(b) [Berl, Theorem 3.4] G is metacyclic if and only if G/U2(G) is meta-
cyclic.
PROOF. (b) = (a) since Uz(G) < U*(G) (indeed, exp(G/U%(G)) < p?).
If G is not metacyclic, then G/U%(G) is not metacyclic (Remark 10), proving
(b). O

SUPPLEMENT 2 TO COROLLARY 11. Suppose that a nonabelian p-group
G and all its characteristic subgroups of index 1%|G : G'| are two-generator.
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Then either G is metacyclic or p > 2 and G /K3(G) is of order p3 and expo-
nent p. If, in addition, a nonmetacyclic p-group G and all its characteristic
subgroups are two-generator, then K3(G) = U1(G).

PrROOF. By Lemma 7(b), a G-invariant subgroup R of index p in G’
is characteristic in G. Suppose that G is nonmetacyclic; then G/R is also
nonmetacyclic (Theorem 2) and minimal nonabelian (Lemma 5). Assume
that |G/R| > p3. Then H/R = Q;(G/R) is elementary abelian of order
p? (Lemma 6), d(H) > 2, |G/H| = p%|G/G’| and H is characteristic in G,
contrary to the hypothesis. Thus, |G/R| = p? so |G/G'| = %|G/R| = p?; then
p > 2 since G/R is nonmetacyclic (Corollary 12). It follows that G/K3(G)
is minimal nonabelian so |G'/K3(G)| = p (Lemma 6); then R = K3(G) and
exp(G/R) = p since G/R is not metacyclic (Corollary 11).

Now suppose, in addition, that all characteristic subgroups of a nonmeta-
cyclic p-group G are two-generator. Set G = G /U (G). Assume that |G| > p?.
Let G be of order p*; then it contains an abelian subgroup A of index p and
d(A) > d(A) = 3 so, by hypothesis, A is not characteristic in G. Then G has
another abelian maximal subgroup B. We have ANB = Z(G) so G is minimal
nonabelian since d(G) = 2. But a minimal nonabelian group of exponent p
has order p? (Lemma 6), a contradiction. Now let |G| > p*. Then d(G") = 2,
by hypothesis, so |G’| = p? since exp(G’) = p (Lemma 1(k)). In that case,
|G| = |G : G'||G'| = p*, contrary to the assumption. Thus, |G/U1(G)| = p?
so K3(GQ) = U1(G) since K3(G) < U1(G) and |G/K3(G)| = p3. a

In particular, if a 2-group G and all its characteristic subgroups of index
%|G : G'| are two-generator, then G is metacyclic, and this implies Corol-
lary 12.

In the proof of Theorem 2 we use only Lemma 7(b) which is independent
of all other previously proved results.

PROOF OF THEOREM 2. It suffices to show that (b) = (a). Since G/R
is metacyclic, it has a normal cyclic subgroup U/R such that G/U is cyclic.
Assume that U is noncyclic. Then U has a G-invariant subgroup 7" such that
U/T is abelian of type (p,p). Set G = G/T. In that case, R £ T since
U = U/T cannot be an epimorphic image of the cyclic group U/R; then
G' £ T so G is nonabelian. Next, G/G' is noncyclic so G’ < U and |G'| = p
since |U| = p?. Tt follows from G’ = G'T/T = G'/(G'NT) that G'NT = R,
by Lemma 7(b). Then R = G'NT < T, a contradiction.’ a

If a p-group G is nonmetacyclic but all its proper epimorphic images are
metacyclic, then either G is of order p® and exponent p or G is as given in (x)

5Isaacs proved the following equivalent of Theorem 2. Let G be a p-group and let
Z < G’ be G-invariant of order p. If G/Z is metacyclic, then G is metacyclic; see [Ber5,
Lemma 11].



246 Y. BERKOVICH

with m = 2 and n = 1. Indeed, the result is trivial for abelian G. Now let G
be nonabelian. Let R be a G-invariant subgroup of index p in G’; then G/R
is not metacyclic (Theorem 2) so R = {1}, and we get |G'| = p. By Lemma 5,
G is minimal nonabelian. Now the assertion follows from Lemma 6.

COROLLARY 14. Suppose that a nonabelian and nonmetacyclic p-group G
and all its mazimal subgroups are two-generator, p > 2 and |G| =p™, m > 3;
then cl(G) > 2. Set K = K4(G) and G = G/K. Then one of the following
holds:

(a) Q is of order p*. In particular, if p = 3, then G is of mazimal class.
(b) |G| = p°, all mazimal subgroups of G are minimal nonabelian (see

[BJ2, Theorem 5.5] for defining relations of G).

ProOF. By Corollary 11, K3(G) = U1(G) has index p* in G so that
cl(G) > 2 since m > 3 and |G : G| = p?, d(G) = 2. Then Z(G) = K3(G)/K
has index p? in G since cl(G) = 3. Let M < G be maximal; then |M : Z(G)| =
1—1)|GY : Z(Q)| = p? and, since d(M) = 2, it follows that M is either abelian
or minimal nonabelian. In view of Lemma 6, G has a nonabelian maximal
subgroup, say M. By Lemma 1(a), G has at most one abelian maximal
subgroup.

Suppose that G has an abelian maximal subgroup, say A. Then |G’| <
p|M'A’'| = p? (Lemma 1(b)) so |G| = |G’||G : G'| = p*, and we get cl(G) = 3.
In particular, if p = 3, then G is of maximal class (Lemma 1(c)). Thus, G is
as stated in part (a).

Now suppose that all maximal subgroups of G' are minimal nonabelian;
then |G| > p*. If U,V are distinct maximal subgroups of G, then |G’| <
p|lU'V'| = p3 so |G| = p? since p° < |G| = |G : G'||G'| < p°. O

Blackburn found indices of the lower central series of groups of Corol-
lary 14 for p > 3 (the case p = 3 is open); see [Bla2].
Our arguments in Corollary 15 and Remark 16 are based on [Jan2].

COROLLARY 15 (Janko [Jan2]). If every mazimal cyclic subgroup of a
noncyclic p-group G is contained in a unique mazimal subgroup of G, then G
is metacyclic.

PROOF. Let N be a proper normal subgroup of G and let U/N < G/N be
maximal cyclic. Then U = AN for a cyclic A. Let B > A be a maximal cyclic
subgroup of G; then BN N = ANN and U/N = BN/N so |A| = |B]| and
A = B, i.e., Ais amaximal cyclic subgroup of G. Assume that K/N, M/N are
distinct maximal subgroups of G/N containing U/N. Then A <U < KNM,
contrary to the hypothesis. Thus, the hypothesis is inherited by epimorphic
images.

Let A < G be maximal cyclic. Then A®(G)/®(G) is contained in a unique
maximal subgroup of G/®(G) so A®(G) is maximal in G, and we conclude
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that d(G) = 2. Assume that G is nonmetacyclic. Let R be a G-invariant
subgroup of index p in G’. Then G = G/R is nonmetacyclic (Theorem 2) and
minimal nonabelian (Lemma 5) so G’ is maximal cyclic in G (Lemma 6). Since
G/G' is abelian of rank 2, G’ is contained in 1+ p > 1 maximal subgroups of
G, contrary to the previous paragraph. O

REMARK 16. Obviously, metacyclic p-groups are powerful for p > 2. Let
us show (this is Janko’s result as well) that G of Corollary 15 is also powerful
for p = 2, unless G is of maximal class. Assume that G is not of maximal class.
Then |G/G'| > 4 (Corollary 12) so W = G/U2(G) cannot be nonabelian of
order 8. It suffices to show that T is abelian. Assume that this is false. Then
W = {(a,b| a* =b* = 1,a® = a~!) is the unique nonabelian metacyclic group
of order 2* and exponent 4 (Corollary 15). In that case, W/({a?b?) is ordinary
quaternion so has two distinct maximal subgroups U/(a?b?) and V/{a?b?).
Since (a?b?) is a maximal cyclic subgroup of W, we get a contradiction. Thus,
G is powerful. Then, by Lemma 1(j), if X < G is maximal cyclic, then X
is not contained in ®(G) (Lemma 1(j)) so X®(G) is the unique maximal
subgroup of G containing X since d(G) = 2. Thus, G satisfies the hypothesis
of Corollary 15 if and only if it is powerful and metacyclic.

It follows from Corollary 13 that a p-group G = AB, where A and B are
cyclic, is metacyclic if p > 2. This is not true for p = 2, however, we have

COROLLARY 17 (Ito-Ohara [IO]). If a nonmetacyclic 2-group G = AB
is a product of two cyclic subgroups A and B, then G/G' is of type (2™,2),
m > 1.

PROOF. Let R be a G-invariant subgroup of index 2 in G’. Then G =
G/R is nonmetacyclic (Theorem 2) and minimal nonabelian (Lemma 5) as in
(%). Since G = AB, we get n = 1 (Remark 8). Next, m > 1 (Corollary 12).

o

REMARK 18. Suppose that a nonmetacyclic 2-group G = AB is a product
of two cyclic subgroups A and B. Since ANB = ®(A)NP(B), we get (G) =
®(A)®(B), by the product formula, so ®(G) is metacyclic (Lemma 1(k)). It
follows that all subgroups of G are three-generator. By Corollary 11, G has a
maximal subgroup M with d(M) = 3. We claim that M is the unique maximal
subgroup of G which is not generated by two elements. Indeed, let U,V be
maximal subgroups of G, containing A, B, respectively; then U # V. By the
modular law, U = A(UNB) and V = B(V N A) so d(U) = 2 = d(V) since
G in nonmetacyclic. Since the set of maximal subgroups of G is {M,U,V},
our claim follows. In particular, M is characteristic in G. Set G = G/U2(G);
then G = AB so |A| = 4 = |B| since G is of exponent 4 (in fact, G is a group
(iv) of Remark 10).5

6The author and Janko [J5] have proved independently that subgroups U and V are
metacyclic; see the proof of Supplement to Corollary 17 due to the author.
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Suppose that X is a 2-group such that d(X) = 2, exp(X) > 2 and ®(X) is
metacyclic. We claim that | X/U2(X)| < 2%. Assume that this is false. Clearly,
U2(X) < 01(2(X)) < ©(X) and |2(X)/T2(X)| < [9(X)/Ta(2(X))| < 2%
To obtain a contradiction, one may assume that Us(X) = {1}, i.e., exp(X) =
4. Then 23 < |®(X)| < 2* since ®(X) is metacyclic of exponent < 4. By
Burnside, ®(X) cannot be nonabelian of order 8 so it is either abelian of type
(4,2), or abelian of type (4,4), or ®(X) = (a,b | a* = b? = 1,a® = a71).
In any case, every generating system of ®(X) must contain an element of
order 4. Tt follows from ®(X) = U1(X) that X has an element of order 8, a
contradiction since exp(X) = 4.

SUPPLEMENT TO COROLLARY 17. Let G = AB be a nonmetacyclic 2-
group, where A and B are cyclic and let G/G’ be abelian of type (2™,2),
m > 1 (see Corollary 17). Then the set T'y = {U,V, M} is the set of mazimal
subgroups of G, where A < U, B <V, the subgroups U,V are metacyclic but
not of maximal class and d(M) = 3.

PRrROOF. By Remark 18, ®(G)(= U1(G)) is metacyclic but not cyclic since
G has no cyclic subgroup of index 2.

Since d(G) = 2 and G is not minimal nonabelian, we get Z(G) < ®(G).

Assume that U is of maximal class. Since G is nonmetacyclic, it is not
of maximal class. Then, by [Berl, Theorem 7.4(a)], we get d(G) = 3, a
contradiction. Similarly, V' is also not of maximal class.

Let us prove, for example, that U is metacyclic. Assume that this is
false. Then U/U2(U) is nonmetacyclic, by Blackburn’s result [Berl, Theorem
3.4]; in particular, |U/Uo(U)| > 2* and G/U2(U) is nonmetacyclic. Since
d(U) = 2 and ®(U) is metacyclic, we get |U/U(U)| = 2% (see the paragraph
preceding the supplement). We have U2(U) < G and U2(U) < ®(M) (other-
wise, all maximal subgroups of two-generator nonmetacyclic group G/U2(U)
are two-generator, contrary to [Berl, Theorem 3.3]). We conclude that
d(M/B2(U)) = 3. Next, G/G2(U) = (AU2(U)/B2(U))(BUG2(U)/0B2(V)),
where both factors are cyclic. Therefore, to get a contradiction, one may
assume that Ug(U) = {1}. In that case, |G| =25 U = (z,y | 2* = b*> = 22 =
1,z = [z,y],[z,2] = [y,2] = 1) is minimal nonabelian. Since U is not meta-
cyclic and two-generator, it has no normal cyclic subgroup of order 4. Since
G = AB is of order 2° and exponent < 8, one of the factors A, B, namely
B (since |A] < exp(U) = 4) has order 8, by the product formula. Then
exp(V) =8 and |V : B| = 2. It follows from ®(V) = U;(B) that U1(B) <« G.
But U1(B) = ®(B) < ®(G) < U, and the cyclic subgroup U;(B) of order 4
is normal in G so in U, contrary to what has been said already. Thus, U is
metacyclic. Similarly, V' is metacyclic. o

REMARK 19. Let G be a metacyclic 2-group with ¢;(G) > 3. Assume
that G is not of maximal class. Then G has a normal abelian subgroup R of
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type (2,2). Let © € G — R be an involution. Then D = (z,R) = Ds. By
Lemma 1(i), DCq(D) is nonmetacyclic, a contradiction. It follows that then
G is either dihedral or semidihedral”. If, in addition, G is nonabelian and
satisfies Q1 (G) = G, then it is dihedral.

REMARK 20. Suppose that a metacyclic 2-group G of exponent > 23
satisfies Q5(G) = G. Then G is either generalized quaternion or G/Q4(G) is
dihedral with ©;(G) < Z(G). Obviously, G is nonabelian. If G is of maximal
class, it is generalized quaternion. Next assume that G is not of maximal
class. Then G has a normal four-subgroup R (Lemma 1(q)) and R = Q4(G)
(Remark 19). If U < G is cyclic of order 4, then UNR = Q4 (U) so |RU/R| = 2.
It follows that Q4 (G/R) = G/R so G/R is dihedral, by Remark 19. We claim
that if G is metacyclic and G/R is dihedral (R = ©4(G) is a four-subgroup),
then R < Z(G). Indeed, let U/ (G) < G/ (G) be of order 2; then U
is abelian (Remark 19). Since all such U centralize Q;(G) and generate G,
M(R) <7(G).3

REMARK 21. Let G be a 2-group. Suppose that H = Q5(G) is metacyclic
of exponent > 23. Then one of the following holds: (a) G is of maximal class
(in that case, H = G), (b) G is metacyclic with dihedral G/Q;(G) (then
H = G and O4(G) < Z(G)) or semidihedral (then |G/H| = 2). Indeed, by
Lemma 1(w), G is metacyclic. By Remark 20, H is one of groups (a), (b). If
H is of maximal class, then c3(G) = c2(H) =1 (mod 4) so G is of maximal
class, by Lemma 1(p) and 1(q). Now let H be not of maximal class and let
R < H be G-invariant of type (2,2). We have Q,(H/R) = H/R so H/R is
dihedral and R < Z(H) (remarks 19, 20).

If G is a nonmetacyclic 2-group of order 2" and m > n > 4, then the
number of normal subgroups D of G such that G/D is metacyclic of order 2™,
is even [Ber5].

3°. In this section, most proofs are based on properties of p-groups of
maximal class and counting theorems.

Let G be a p-group of exponent p¢ > p?, p > 2, and let 1 < k < e.
Suppose that H < G is metacyclic of exponent p* such that whenever H < L,
then exp(L) > p®. Then G is also metacyclic. This is a consequence of
Corollary 13 and the following

THEOREM 22. Let G be a p-group of exponent p® > p? and let 1 < k < e.
Suppose that U is a mazimal member of the set of subgroups of G having
exponent pk.

(a) If U is absolutely regular then G is also absolutely regular, U = Q(G)
and the subgroup U is not of mazximal class.

"The above argument also shows that if G has a nonabelian subgroup of order 8, it is
of maximal class.
8Janko (see [BJ1, §86]) has classified the 2-groups G with metacyclic 23(G).
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(b) If U is irregular of mazimal class, then G is also of maximal class.

Proor. If G is absolutely regular, then U is also absolutely regular. If
G is a 2-group of maximal class, then U is also of maximal class (and order
2k+1)_

Let G be of maximal class, p > 2 and let U be absolutely regular. Then
G is irregular since e > 2 (Lemma 1(g)). Denote by G the absolutely regular
subgroup of index p in G; then exp(G1) = exp(G) = p® > p* (Lemma 1(h)).
Assume that U < Gy. Then U = Qi (G1) < Gj since k < e, hence U < G.
Since |G : U| > p, then all elements of the set (G/U) — (G1/U) have the
same order p [Ber3, Theorem 13.19], so there exists H/U < G/U such that
H £ Gy and |H : U| = p. Then H is of maximal class [Ber3, Theorem
13.19] so exp(H) = exp(U) (Lemma 1(h)), contrary to the choice of U. Now
suppose that U £ G1. We get k = 2 (otherwise, U = Q;(U) < Qi (G) < Gy,
by Lemma 1(h)). Assume that Q;(G1) € U. Let R < Q;(G1) be a minimal
G-invariant subgroup such that R £ U. In that case, |[UR : R| = p. By
Lemma 1(f), 1(h) and 1(p), exp(UR) = exp(U), contrary to the choice of U.
Thus, Q1(G1) < U so |U| > pP (Lemma 1(h)); moreover, by [Ber3, Theorem
13.19], |U| = p?. Let U < H < G, where |H : U| = p. Then H is of maximal
class [Ber3, Theorem 13.19] and order pP*™! so exp(H) = p* = exp(U) and
U < H, contrary to the choice of U. Thus, if G is irregular of maximal class,
then U must be also irregular of maximal class and Qx(G1) has index p in U.

In what follows we may assume that G is not of maximal class.

Next we proceed by induction on |G|.

(i) Let G be noncyclic and regular; then U is absolutely regular. Then U =
2% (G) (Lemma 1(f)) so Q1(G) = Q1 (U) and p? > |U/G1(U)| = |91(U)] =
I (G)] = |G/U1(G)|, whence G is absolutely regular; in that case, p > 2.
Assume that, in addition, U is of maximal class. Then |U : Q1(U)| = p
(Lemma 1(g)) so |21(G/Q21(G))| = p. It follows that G/Q4(G) is cyclic (of
order > p). Let D be a G-invariant subgroup of index p? in Q;(U) = Q1(G),
and set C = Cg(Q1(U)/D); then C/D is abelian and U < C so U/D is
abelian of order p?, and we conclude that U is not of maximal class, contrary
to the assumption. Thus, U is not of maximal class.

In what follows we assume that G is irregular.

(ii) Let U be absolutely regular; then |Q1(U)| = |U/U1(U)| < pP. We
write R = Q1(U) and N = Ng(R); then U < N.

Assume that N = G. Then, by Lemma 1(n), there is in G a normal
subgroup S of order p|Q; (U)| and exponent p such that R < S. Set H =US.
Then H/S = U/R is of exponent p¥~1 so, since U < H, we get exp(H) = p*,
contrary to the choice of U.

Now let N < G. Then N is absolutely regular, by induction and
Lemma 1(m). In that case, U = Qi(N) so R = Q1(N) is characteristic
in N whence N = G, contrary to the assumption.



FINITE p-GROUP THEORY 251

(iii) In what follows we assume that U is irregular of maximal class. Set
V = Q(®U)) and N = Ng(V). If N < G, then, by induction, N is of
maximal class so G is also of maximal class (Lemma 1(m)), contrary to the
assumption. Now let N = G. Then, as in (ii), G has a normal subgroup R of
order p? and exponent p such that V < R. Set H = UR; then H/R =2 U/V
is of exponent p*~!. This is a contradiction since exp(H) = p* = exp(U) and
U<H. O

SUPPLEMENT 1 TO THEOREM 22. Let G be a p-group of exponent p® >
p, 1 <k<e Set H=Q(G).

(a) If H is absolutely regular, then G is either absolutely regular or irreg-
ular of mazimal class.
(b) If H is of maximal class, then G is also of mazimal class.

PROOF. We proceed by induction on |G|. One may assume that H < G.

(a) Suppose that H is absolutely regular. Set R = Q4 (H); then R<G.

Assume that G is neither absolutely regular nor of maximal class. Then G
contains a normal subgroup S of order p|R| and exponent p such that R < S
(Lemma 1(n)). Set U = HS. Assume that U is of maximal class. Then
|S| = |H| = %|U| (Lemma 1(h)), |HS| = p*!, exp(HS) = p? so k = 2 and
H(= Q3(Q)) is the unique maximal subgroup of HS of exponent p?. In that
case, ca(G) = co(H) # 0 (mod pP~1) so G is either absolutely regular or of
maximal class (Lemma 1(s) and 1(t)), contrary to the assumption. The proof
of (a) is complete.

(b) Suppose that H is irregular of maximal class.

Assume that |[H| > pP*1. Then c2(G) = ca(H) = pP~2 (mod pP~1), so G
is of maximal class (Lemma 1(s) and 1(t)), a contradiction.

It remains to consider the possibility |H| = pP*!; then exp(H) = p?
(Lemma 1(g)) so k = 2. In that case, c2(H) = c2(G) = 0 (mod pP1)
(Lemma 1(t)) so Q1(H) is of order p? and exponent p. Let H < A < G
and |A : H| = p. By [Ber3, Theorem 13.21], one may assume that A is not of
maximal class. By [Berl, Theorem 7.4(c)], A contains exactly p + 1 regular
subgroups T4, ..., Tp4+1 of index p which are not absolutely regular. It follows
that exp(7T;) = p for all i (otherwise, T; = Q3(T;) < Q3(G) = H, which is not
the case). Then T; N H = Qy(H). It follows that 4 (H) is contained in p + 2
pairwise distinct subgroups H,T1,...,Tp4+1 of index p in A, a contradiction
since A/Q(H) is of order p2. O

SUPPLEMENT 2 TO THEOREM 22. Let H be a metacyclic subgroup of ex-
ponent 2% of a 2-group G. Suppose that H is mazimal among subgroups of
exponent 2F in G. Then G has no H-invariant elementary abelian subgroup
of order 8 (see [Janl]).
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PROOF. Assume that G has an H-invariant elementary abelian subgroup
E of order 8. To get a contradiction, one may assume, without loss of gen-
erality, that G = HE; then E<G. Set L = HN E; then |L| < 4 and L is
normal in G.

Let L = {1}. If Ly < ENZ(G) is of order 2, then H < H x Ly and
exp(H x Lg) = 2F, contrary to the choice of H.

Let L be of order 4. Then G/L = (E/L) x (H/L) is of exponent 2¥~! so
exp(G) = 2%, contrary to the choice of H.

Now let |L| = 2. In view of Theorem 22, one may assume that H is not of
maximal class. Then H contains a normal abelian subgroup R of type (2, 2).
By the product formula, |EFR| = 16. Note that ER is H-invariant. We also
have R < Cg(R) and Cg(R) is H-invariant. Let R < F < RCg(R), where
F is an H-invariant subgroup of order 8; then F' is elementary abelian, the
quotient group HF/R = (H/R) x (F/R) has exponent 28! so exp(HF) = 2%,
contrary to the choice of H since H < HF'. O

For related results, see [Ber4].

Let s be a positive integer. A p-group G is said to be an Ls-group, if Q1 (G)
is of order p® and exponent p and G/ (G) is cyclic of order > p (21(G) is
said to be the kernel of G).

Below we use the following

LEMMA 23 ([Berl, Lemma 2.1]). Let G be a p-group with |Q2(G)| =
pPTt < |G|. Then one of the following holds:

(a) G is absolutely regular.
(b) G is an Ly,-group. 1 ]
(c) p=2and G = (a,b| a® =1,a*" =b*a> =a 112" ).

It is known that an irregular p-group G has a maximal regular subgroup
R of order p? if and only if G is of maximal class [Ber3, §10].° The following
theorem supplements this result.

THEOREM 24. Let G be a p-group and let H < G be a maximal member
of the set of subgroups of G of exponent p*>. Suppose that |H| = pP*l. Then
one of the following holds:

(a) p=2 and G is of mazimal class.
(b) H =02(G) (see Lemma 23).

PRrROOF. If G is regular, then H = Q3(G) so G is a group of Lemma 23.
Next let G be irregular. By hypothesis, exp(H) < exp(G).

9This is an easy consequence of Lemma 1(m). Indeed, write N = Ng(R). If N < G,
then N is of maximal class, by induction, and we are done (Lemma 1(m)). Now let N = G.
Take D, a G-invariant subgroup of index p? in N, and set C = Cg(R/D). If B/R < C/R is
of order p, then B is regular since B/D is abelian of order p3 (Lemma 1(e)), a contradiction
since R < B.
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Suppose that G is irregular of maximal class. It follows from [Ber3, the-
orems 9.5 and 9.6] that then p = 2, and we get case (a). Indeed, assume that
p>2 If H<Gq, then H = Qy(Gy). If H = Gy, then exp(H) = exp(G),
contrary to the choice of H. Thus, H < G;. Let U/H be a subgroup of
G/H of order p not contained in G1/H. Then U is of maximal class and
exponent p? [Ber3, Theorem 13.19], contrary to the choice of H. Now let
H £ Gy; then Q1(G1) < H and H is of maximal class. Let H < F < G
with |F : H| = p. Then exp(F) = exp(H ), contrary to the choice of H. The
2-groups of maximal class satisfy the hypothesis.

In what follows we assume that G is not of maximal class. Then, in view
of Theorem 22, one may assume that H is neither absolutely regular nor of
maximal class so cl(H) < p. It follows that H is regular (Lemma 1(e)) and
Oy (H) is of order p” and exponent p. Set N = Ng(21(H)); then H < N
since Q4 (H) is characteristic in H < G. We use induction on |G|.

Assume that N < G. Then, by induction, N is one of groups (a,b).
However, in case (b), Q1(H) is characteristic in N (Lemma 23) so N = G,
contrary to the assumption. On the other hand, N cannot be a 2-group of
maximal class since H is abelian of type (4,2), by the previous paragraph.

Thus, N = G so Q;(H) < G. By hypothesis, G/Q1(H) has no abelian
subgroup K/Q1(H) of type (p,p) such that H < K, so G/ (H) is either
cyclic or generalized quaternion (then p = 2). In that case, Q1(G) = Q1 (H)
so that Q3(G) = H. O

Let a natural number n > p — 1. A p-group G is said to be a UP-group
provided it has a normal subgroup R of order p" and exponent p such that
G/R is irregular of maximal class and, if T'/R is absolutely regular of index
p in G/R, then Q;(T) = R.1° Let us prove that if a normal subgroup R; of
G is of exponent p, then R; < R. Assume that this is false and that every
proper G-invariant subgroup of R is contained in R; then |RR; : R| = p so
RRy/R < T/R since G/R has only one minimal normal subgroup. This is a
contradiction: RR; < Q1(T) = R < RR;. It follows that R is characteristic in
G. We call R the kernel of the UE-group G. It follows from Lemma 1(p) that
UP_-groups are of maximal class. Note that exp(G) = p-exp(G/R) = exp(T).

THEOREM 25. Let G be a p-group and let H < G be a maximal member
of the set of subgroups of G of exponent exp(H). If H is a UP.-group, then G
is also a UP-group.

PROOF. We use induction on |G|. In view of Theorem 22(b), one may
assume that H is not of maximal class so that n > p—1. Let R be the kernel
of H and set N = Ng(R). If N < G, then N is a UP-group, by induction. In
that case, R is also kernel of N so characteristic in N. It follows that N = G,

101t follows from Lemma 1(p) and 1(q), that U%-groups do no exist for n < p—1. The
U%—groups are classified by Janko; see [Jan3] or [BJ1, §67].
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contrary to the assumption. Thus, N = G. Then H/R is a maximal member
of the set of subgroups of exponent % -exp(H) in G/R and H/R is irregular
of maximal class. Then G/R is of maximal class, by Theorem 22. Let us
show that G is a UP-group. Let T/R be the'! absolutely regular subgroup of
index p in G/R (Lemma 1(h)) and set U/R = (H/R) N (T/R). Then U/R
is an absolutely regular subgroup of index p in H/R so Q1(U) = R since
H is a UP-group. Let F/R < T/R be G-invariant of order p. It follows
from the subgroup structure of G/R (see [Ber3, §9 and Theorem 13.19]) that
F/R<®(G/R) < H/Rso F/R< ®(H/R) < U/R, and we get exp(F) = p?
since F' is not contained in R = Q1 (U). In that case, R = Q1(T) so G is a
UP-group. O

REMARK 26. Let G be a p-group and let H < G be a maximal member of
the set of subgroups of G of exponent exp(H). If H is an L,-group, then G is
also an L,,-group. To prove this, it suffices to repeat, with small modifications,
the proof of Theorem 25 and use the following easy fact: If C' < G is a cyclic
subgroup of order p* > p which is not contained properly in a subgroup of
exponent p¥, then G is cyclic.

The following theorem is an analogue of Supplement 1 to Corollary 11
and dual, in some sense, to Theorem 22.

THEOREM 27. Suppose that a p-group G is such that G/U%(G) is of maz-
imal class. Then G is also of mazimal class.

PROOF. (a) Suppose that G is regular. Then |G/U1(G)| = p*, where
k < p, and |G/U?(G)| = pF*t! (Lemma 1(g)) so |U1(G) : U1(01(Q))| = p,
and we conclude that U;(G) is cyclic. Let |U1(G)| = p%; then exp(G) = peti.
By Lemma 1(f), |Q:(G)| = p*. Since |G| = pF*¢, it follows that G/Q;(QG)
is cyclic of order p®. By hypothesis, |G : G’| = p? so e = 1. In that case,
U?%(G) = {1} so G is of maximal class, by hypothesis.

(b) Now let G be irregular. One may assume that |G| > pP™! (oth-
erwise, in view of Lemma 1(e), it is nothing to prove). By Lemma 1(r),
|G/G1(G)| > pP so |G/U2(G)| > pPT! and we conclude that G/U?(G) is irreg-
ular (Lemma 1(g)). By hypothesis and Lemma 1(g), we get |G/U1(G)| = p?
and |G/G'| = p*.

(i) Let L be a normal subgroup of index pP*! in G. By the previous
paragraph, exp(G/L) > p. Let R/L = U?(G/L); then U?(G) < R. It follows
from properties of irregular p-groups of maximal class'? that |G/R| > pP*! =
|G/L| so R = L, and we conclude that exp(G/L) = p? and U?(G) < L.

(ii) Assume that L and L, are distinct normal subgroups of the same
index pP*! in G. Then U?(G) < LN Ly, by (i). In that case, L/U?(G) and

¢the’ since |G/R| > |H/R| > pPt!.
121f X is irregular p-group of maximal class, then every its epimorphic image of order
pP has exponent p.
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L1/U?(G) are different normal subgroups of index pP*! > p in a p-group of
maximal class G/U?(G), which is impossible (Lemma 1(h)). Thus, G has
the unique normal subgroup, say L, of index pP*!. By the above, G/L, as
a nonabelian epimorphic image of G/U?(G), is of maximal class. Then, by
Lemma 1(d), G is also of maximal class. O

The case p = 2 of Theorem 27 follows immediately from Corollary 12.

A p-group G is of maximal class if and only if G/U3(G) is of maximal
class. Indeed, U2(G) < U?(G) so G/B?(G) is of maximal class as a nonabelian
epimorphic image of G/U2(G), and the result follows from Theorem 27.

REMARK 28. Now we offer another argument for part (b) of the proof of
Theorem 27. Let H/U?(G) be an absolutely regular subgroup of index p in
G/U%(G), existing, by Lemma 1(h). Assume that H is not absolutely regular.
Then, by Lemma 1(r), we have |H/Uy(H)| > pP. Clearly, 5*(G) < U1(H)
so H/U1(H) of order > pP and exponent p is an epimorphic image of the
absolutely regular group H/U?(G), a contradiction.’® Thus, H is absolutely
regular. Assume that G is not of maximal class. Then G = HQ;(G), where
041 (Q) is of order p? and exponent p (Lemma 1(p)). By hypothesis, |G/G’| =
p?. We have G/(H N Q1(G)) = G/Q(H) = (H/Q1(H)) x (21(G)/Q1(H))
so |H/Qi(H)| = p, |H| = p|Q1(H)| = p? and |G| = pP*!1. In that case,
U?%(G) = {1} so G is of maximal class, contrary to the assumption.

In Remark 29 we use the following fact. If G is neither absolutely regular
nor maximal class and E,..., E, are all its subgroups of order p? and expo-
nent p, then |J,_; E; = {x € G | 2P = 1}. Indeed, if D is a normal subgroup
of G of order p?~! and exponent p and x € G — D is of order p, then the
subgroup (x, D) is of order p? and exponent p so coincides with some E;.

REMARK 29. If G is a p-group such that H = Q4(G) is of maximal
class, then one of the following holds: (a) H is of order < pP and exponent
p, (b) G is of maximal class. Indeed, this is the case if G is regular, by
Lemma 1(g). Now assume that G is not of maximal class and |H| > pP. Let
Ey, ..., E, be all subgroups of order p? and exponent p in G; then r > 1
and, by Lemma 1(v), r = 1 (mod p). We have F; < H for all i so H has
a G-invariant subgroup, say E7, of order p” and exponent p. It follows that
|H| = pP™ (Lemma 1(h)). Since r > p+1 and d(H) = 2, we get exp(H) = p
so H is regular (Lemma 1(e)), a contradiction.

4°. In this section we prove the following

THEOREM 30. Let A be a maximal cyclic subgroup of order > p of a
noncyclic p-group G. Then there exists in G a mazximal cyclic subgroup B of
order > p such that |AN B| = p, unless p =2 and G is dihedral.

13This argument is similar to one from the proof of Theorem 2.
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ProOOF. If A is the unique cyclic subgroup of its order in G, then p = 2
and G is of maximal class [Ber2, Remark 6.2], and the theorem is true. In
what follows we assume that there is in G another cyclic subgroup of order
|Al.

Suppose that |G : A| = p and G is either abelian (a) x (b) of type (p™, p)
or G ={ab|a? =t =1,a®> =a*" '), A= (a),n>1and n > 2if
G is nonabelian 2-group. In both cases G has exactly p cyclic subgroups of
order p*, i = 2,...,n. If n = 2 and B is a cyclic subgroup of index p in G,
B # A, then |AN B| = p. Now let n > 2; then ®(G) = (a?). Let B < G be
a cyclic subgroup of order p? not contained in ®(G). Then B is a maximal
cyclic subgroup of G (indeed, if B < C < G and C is cyclic of order p|B],
then B = ®(C) < ®(G), contrary to the choice of B). We have |[ANB| =p
again.

If G is a 2-group of maximal class and G is not dihedral, it has a maximal
cyclic subgroup B of order 4 with B £ A; then |AN B| = 2.

In what follows we assume that |G : A] > p. Let A < H < G, where
|H : Al =p.

Suppose that H is not dihedral. Then, by the above, there is in H a
maximal cyclic subgroup B; of order p? such that |[AN By| = p. Let By <
B < G, where B is a maximal cyclic subgroup of G. Then AN B = AN By,
completing this case.

Now suppose that H is dihedral. Let H < F < G, where |F : H| = 2.
Then A < F since A is characteristic in H. Let A; be a subgroup of order 4
in A; then A; < F. In that case, Crp(A;) is maximal in F' and contains A as a
subgroup of index 2. Since A is maximal cyclic subgroup of G, the subgroup
Cr(A;) is noncyclic. Since Cp(A;1) is not dihedral, it has a maximal cyclic
subgroup Bj of order > 2 such that |ANB;| = 2, by induction. If By < B < G,
where B is a maximal cyclic subgroup of G, then AN B = AN By, completing
the proof. O

Suppose that a p-group G is neither abelian nor minimal nonabelian. We
claim that then G contains p pairwise distinct minimal nonabelian subgroups,
say Bi,...,Bp, of the same order, say p", such that By N---N B, > ®(B;)
for i = 1,...,p (in particular, |[By N--- N B,| > p"~?). Indeed, let By be
a minimal nonabelian subgroup of G of minimal order, and set |Bi| = p™.
Let By < U < G, where |U : By| = p. It follows from the choice of By that
each maximal subgroup of U is either abelian or minimal nonabelian (of order
p™). By [Ber6, Remark 1], U contains at least p distinct minimal nonabelian
subgroups, say Bi,...,B,. If i # j, then |B; N Bj| = p"~! so B, N B;j is
maximal in B;. It follows that ®(B;) < B; N B; for all ¢ # j, and our claim
follows.
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PROBLEMS

Classify the p-groups G in which every maximal cyclic subgroup of
composite order is contained in a unique maximal subgroup of G.
Study the p-groups G, all of whose maximal cyclic subgroups are not
contained in ®(G).

Study the p-groups G, p > 2, such that K,(G) = U1(G) has index p?
in G.

. Let H be a maximal member of the set of subgroups of exponent p > 2

in a p-group G. Study the structure of G provided H is of maximal
class.

Study the p-groups G such that G/Q;(G) is irregular of maximal class
and Q4 (G) is irregular.

. Let H be a metacyclic subgroup of exponent 2¥ > 2 of a 2-group G.

Study the structure of G provided every subgroup of G containing H
properly, has exponent > 2%.

Let H be a subgroup of exponent 4 in a 2-group G such that every
subgroup of G properly containing H, has exponent > 4. Study the
structure of G provided |H| < 25.

Classify the nonmetacyclic p-groups G containing a normal subgroup
R of order p such that G/R is metacyclic.

Let H be a maximal member of the set of subgroups of exponent
exp(H) in a p-group G. Study the structure of G provided H is ex-
traspecial.

Let a nonmetacyclic 2-group G = BC, where B and C are cyclic.
(i) Describe the maximal subgroup of G that is not generated by two
elements (see Remark 18). (ii) Find all possible numbers of involutions
in G. (iii) Does there exist A < G such that |A/U2(A)| = p°? If so,
study its structure and embedding in G. (iv) Is it true that U3(A4) =
U?(A) for all A < G?

Classify the 2-groups G such that Qf(G) is metacyclic, for k > 2.14
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