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SHORT PROOFS OF SOME BASIC CHARACTERIZATION

THEOREMS OF FINITE p-GROUP THEORY

Yakov Berkovich

University of Haifa, Israel

Abstract. We offer short proofs of such basic results of finite p-group
theory as theorems of Blackburn, Huppert, Ito-Ohara, Janko, Taussky.
All proofs of those theorems are based on the following result: If G is a
nonabelian metacyclic p-group and R is a proper G-invariant subgroup of
G′, then G/R is not metacyclic. In the second part we use Blackburn’s
theory of p-groups of maximal class. Here we prove that a p-group G is of
maximal class if and only if Ω∗

2(G) = 〈x ∈ G | o(x) = p2〉 is of maximal
class. We also show that a noncyclic p-group G of exponent > p contains
two distinct maximal cyclic subgroups A and B of orders > p such that
|A ∩ B| = p, unless p = 2 and G is dihedral.

1◦. This note is a continuation of the author’s previous papers [Ber1,
Ber2, Ber4].

Only finite p-groups, where p is a prime, are considered. The same
notation as in [Ber1] is used. The nth member of the lower central se-
ries of G is denoted by Kn(G). Given a p-group G and a natural num-
ber n, set fn(G) = 〈xpn | x ∈ G〉, Ωn(G) = 〈x ∈ G | o(x) ≤ pn〉,
Ω∗
n(G) = 〈x ∈ G | o(x) = pn〉, f2(G) = f1(f1(G)), pd(G) = |G : Φ(G)|,

where Φ(G) is the Frattini subgroup of G. Next, G′ is the derived subgroup
and Z(G) is the center of G. A group G of order pm is of maximal class if
m > 2 and cl(G) = m − 1. A group G is metacyclic if it contains a normal
cyclic subgroup C such that G/C is cyclic. A group G is said to be minimal
nonabelian if it is nonabelian but all its proper subgroups are abelian. A p-
groupG is regular if, for x, y ∈ G, there is z ∈ 〈x, y〉′ such that (xy)p = xpypzp.
A p-group G is absolutely regular if |G/f1(G)| < pp. A p-group G is powerful
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[LM] provided G′ ≤ fεp(G), where ε2 = 2 and εp = 1 for p > 2. By cn(G) we
denote the number of cyclic subgroups of order pn in G.

In Section 2◦ we show that some basic results of p-group theory are easy
consequences of Theorem 2. In Section 3◦ we use [Ber1, Theorem 5.1] (=
Lemma 1(d)), a variant of Blackburn’s result [Ber3, Theorem 9.7], charac-
terizing p-groups of maximal class. The following results of this note are
new: Supplement 2 to Corollary 11, Corollary 14, theorems 22, 24, 25, 27, 30,
Supplements 1 and 2 to Theorem 22 and Remark 18.

In Lemma 1 we gathered some known results. All of them are proved in
[Ber3].

Lemma 1. Let G be a nonabelian p-group.

(a) (Tuan) If G has an abelian subgroup of index p, then |G| = p|G′||Z(G)|.
(b) (Mann)1 If M,N are two distinct maximal subgroups of G, then |G′| ≤

p|M ′N ′|.
(c) (Blackburn) If G/Kp+1(G) is of maximal class, then G is also of max-

imal class.
(d) (Berkovich) Suppose that G contains the unique subgroup L of index

pp+1. If G/L is of maximal class, then G is also of maximal class
(obviously, this is also true in the case |G : L| > pp+1).

(e) (Hall) If cl(G) < p or exp(G) = p, then G is regular.
(f) (Hall) If G is regular, then exp(Ωn(G)) ≤ pn and |Ωn(G)| =

|G/fn(G)|.
(g) (Blackburn) If G is of maximal class and order ≤ pp+1, then exp(G) ≤

p2. If |G| ≤ pp, then |G : Ω1(G)| ≤ p. If |G| = pp+1, then G is irregular
and |G/f1(G)| = pp.

(h) (Blackburn) A p-group G of maximal class has an absolutely regular
subgroup G1 of index p, and exp(G1) = exp(G). In particular, if G is
of order > pp+1, it has no normal subgroup of order pp and exponent
p since, for each n > 1, G has at most one normal subgroup of index
pn. If |G| > pp, then |Ω1(G1)| = pp−1. Next, all elements of the set
G−G1 have orders ≤ p2.

(i) (Berkovich) If G has a nonabelian subgroup B of order p3 such that
CG(B) < B, then G is of maximal class.

(j) (Lubotzky-Mann) If G is powerful and X is a maximal cyclic subgroup
of G, then X 6≤ Φ(G).

(k) (Berkovich) If N is a two-generator G-invariant subgroup of Φ(G),
then N is metacyclic.

(l) (Blackburn) If G is of maximal class and order > pp+1, then exactly p
maximal subgroups of G are of maximal class, the (p+ 1)-th maximal
subgroup G1, the fundamental subgroup of G, is absolutely regular.

1This result is also contained in Kazarin’s Ph.D. thesis (unpublished).
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(m) (Berkovich) If H < G and NG(H) is of maximal class, then G is also
of maximal class.

(n) (Berkovich) Let G be irregular but not of maximal class. If U / G,
|U | < pp and exp(U) = p, then there is in G a normal subgroup V of
order pp and exponent p such that U < V .

(o) (Blackburn) If G is irregular of maximal class and a normal subgroup
V of G is of order pp−1, then exp(G/V ) = 1

p · exp(G).

(p) (Blackburn) If an irregular group G has an absolutely regular maximal
subgroup H, then either G is of maximal class or G = HΩ1(G), where
|Ω1(G)| = pp.

(q) (Blackburn) If an irregular group G has no normal subgroup of order
pp and exponent p, it is of maximal class.

(r) (Hall’s regularity criterion) Absolutely regular p-groups are regular.
(s) (Berkovich) If G is a p-group of maximal class and order > pp+1, then

c2(G) ≡ pp−2 (mod pp−1).
(t) (Berkovich) If a p-group G is neither absolutely regular nor of maximal

class, then c2(G) ≡ 0 (mod pp−1).
(u) (Berkovich) Let G be not of maximal class. Then the number of sub-

groups of maximal class and index p in G is divisible by p2.
(v) (Berkovich) If G is neither absolutely regular nor of maximal class,

then the number of subgroups of order pp and exponent p is G is ≡ 1
(mod p).

(w) (Blackburn) If Ω2(G) is metacyclic, then G is also metacyclic.

2◦. Blackburn [Bla1, Theorem 2.3] has proved that a p-group G is meta-
cyclic if and only if G/K3(G)Φ(G′) is metacyclic. This result is an important
source of characterizations of metacyclic p-groups. Here we prove this asser-
tion in slightly another, but equivalent form (Theorem 2). The main point
of this section is to deduce from that theorem some basic results of p-group
theory. Besides, our proof of Theorem 2 is essentially simpler than the Philip
Hall’s proof presented in [Bla1].

We prove Blackburn’s result in the following form.

Theorem 2. The following conditions for a nonabelian p-group G are
equivalent:

(a) G is metacyclic.
(b) The quotient group G/R is metacyclic for some G-invariant subgroup

R of index p in G′.2

Remark 3. If there is a G-invariant subgroup R < G′ such that G/R is
metacyclic, then G is also metacyclic. Indeed, take R ≤ R1 < G′, where R1 is

2Since d(G) = 2, R is characteristic in G, by Lemma 7(b).
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G-invariant of index p in G′; then G/R1 is also metacyclic as an epimorphic
image of G/R, whence G is metacyclic (Theorem 2).3

Theorem 2 and Remark 3, in view of K3(G)Φ(G′) < G′, imply the original
Blackburn’s result:

Corollary 4 ([Bla1, Theorem 2.3]). If a p-group G is such that
G/K3(G)Φ(G′) is metacyclic, then G is also metacyclic.

The following lemma is a useful criterion for a p-group to be minimal
nonabelian.

Lemma 5 ([BJ1, Lemma 65.2(a)]). If a p-group G is such that d(G) = 2,
G′ ≤ Z(G) and exp(G′) = p, then G is minimal nonabelian.

Proof. It follows from exp(G′) = p that G is nonabelian. For x, y ∈ G,
we have 1 = [x, y]p = [x, yp] so yp ∈ Z(G) whence Φ(G) = G′f1(G) ≤ Z(G)
and Φ(G) = Z(G) since |G : Z(G)| > p. If M < G is maximal, then |M :
Z(G)| = p so M is abelian. We are done.

Lemma 6 ([Red]). If G is a nonmetacyclic minimal nonabelian p-group,
then

(∗)
G = 〈a, b | ap

m

= bp
n

= cp = 1,

[a, b] = c, [a, c] = [b, c] = 1,m ≥ n〉.
Here G′ = 〈c〉 is a maximal cyclic subgroup of G, Z(G) = Φ(G) = 〈ap, bp, c〉
has index p2 in G, Ω1(G) = 〈apm−1

, bp
n−1

, c〉 is elementary abelian of order
p3, f1(G) = 〈ap, bp〉 and |G/f1(G)| = p3 if and only if p > 2.

Proof. If a, b ∈ G are not permutable, then G = 〈a, b〉. If A,B are
distinct maximal subgroups of G, then A ∩B = Z(G) and G/Z(G) is abelian
of type (p, p) so Φ(G) = Z(G). We have |G′| = 1

p |G : Z(G)| = p (Lemma 1(a)).

Let G/G′ = (U/G′) × (V/G′), where both factors are cyclic of orders pm, pn,
respectively, m ≥ n; then U and V are noncyclic (G is not metacyclic!) so
Ω1(G) = Ω1(U)Ω1(V ) is elementary abelian of order p3 (indeed, Ω1(G)/G′ =
Ω1(G/G

′)). Assume that G′ < L < G, where L is cyclic of order p2. We
have m + n > 2. Then G/G′ = (C/G′) × (D/G′), where L ≤ C and C/G′

is cyclic, by [BZ, Theorem 1.16]. It follows from G′ = Φ(L) ≤ Φ(C) that
1 = d(C/G′) = d(C) so C is cyclic. Since G/C is cyclic, G is metacyclic,
contrary to the hypothesis. All remaining assertions are obvious.

It follows from Lemma 6 that a minimal nonabelian p-group G is not
metacyclic if and only if G′ is a maximal cyclic subgroup of G.

3In our case, R1 is determined uniquely since G′/K3(G) is cyclic and K3(G) ≤ R1;
see Lemma 7, below.
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Lemma 7. (a) If a p-group G is two-generator of class 2, then G′ is
cyclic.

(b) [Bla1, Lemma 2.2] If G is a nonabelian two-generator p-group, then
G′/K3(G) is cyclic.

Proof. (a) Since cl(G) = 2, then [xy, uv] = [x, u][x, v][y, u][y, v] for
x, y, u, v ∈ G. Let G = 〈a, b〉 and w, z ∈ G. Expressing w, z in terms of
a and b and using the above identity, we see that the commutator [w, z] is a
power of [a, b] so G′ = 〈[a, b]〉.

(b) The statement (b) follows from (a): G/K3(G) is two-generator of
class 2.

Remark 8. Let G be a nonmetacyclic minimal nonabelian 2-group given
by (∗). We claim that if G = AB, where A and B are cyclic, then n = 1.
Assume that this is false. Set Ḡ = G/〈a4, b4〉; then Ḡ is of order 25 and
exponent 4 so it is not a product of two cyclic subgroups (of order ≤ 4). This
is a contradiction since Ḡ = ĀB̄. Let, in addition, m > n = 1. We claim that
G is indeed a product of two cyclic subgroups. Set A = 〈a〉. Then G/f1(A)
is dihedral of order 8. Let U/f1(A) < G/f1(A) be cyclic of order 4. If B0

is a cyclic subgroup which covers U/f1(A), then, by the product formula,
G = AB0, as want to be shown.

Remark 9. Let G be a nonabelian two-generator p-group. It follows from
Lemma 6 and Theorem 2 that if R is a G-invariant subgroup of index p in G′,
then G is metacyclic if and only if G′/R is not a maximal cyclic subgroup of
G/R. In particular, we obtain the following theorem from [IO]: The derived
subgroup G′ of a 2-group G = AB (A and B are cyclic) is contained properly
in a cyclic subgroup of G if and only if G is metacyclic.

Remark 10. If G is a nonmetacyclic p-group, then it contains a char-
acteristic subgroup R such that G/R is one of the following groups: (i) el-
ementary abelian of order > p2, (ii) nonabelian of order p3 and exponent
p, (iii) a 2-group, given in (∗), with m = n = 2, (iv) a 2-group, given in
(∗), with m = 2, n = 1. (Obviously, groups (i)-(iii) are not products of two
cyclic subgroups.) Let us prove this. If d(G) > 2, we have case (i) with
R = Φ(G). Next assume that d(G) = 2. If p > 2, we have case (ii) with
R = K3(G)Φ(G′)f1(G) = K3(G)f1(G) (Theorem 2 and Lemmas 5-7). If
p = 2, we have cases (iii) or (iv) with R = K3(G)Φ(G′)f2(G) (Corollary 4
and Lemma 6).4

It follows from Remark 10 that, if a 2-group G and all its character-
istic maximal subgroups are two-generator, then G is either metacyclic or
G/K3(G)Φ(G′)f2(G) is a group (iii) of Remark 10 (the second group has no

4The group (iv) is a product of two cyclic subgroups; see the footnote to the proof of
Corollary 17.
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characteristic maximal subgroups at all). In particular, a 2-group G is meta-
cyclic if and only if G and all its maximal subgroups are two-generator. This
also follows from

Corollary 11 ([Bla1]). Suppose that a nonabelian p-group G and all its
maximal subgroups are two-generator. Then G is either metacyclic or p > 2
and K3(G) = f1(G) has index p3 in G (in the last case, |G : G′| = p2).

Proof. Suppose that G is not metacyclic. In cases (iii) and (iv) of
Remark 10, G has a maximal subgroup that is not generated by two elements
so p > 2. By Lemma 6, G has no nonmetacyclic epimorphic image which
is minimal nonabelian of order > p3. The group G also has no epimorphic
image of order > p3 and exponent p so |G/f1(G)| = p3. Assume that |G :
G′| > p2. Let R be a G-invariant subgroup of index p in G′. Then G/R
is a nonmetacyclic minimal nonabelian group (Theorem 2 and Lemma 5)
of order > p3, contrary to what has just been said. Thus, |G : G′| = p2.
Then G/K3(G) is minimal nonabelian since its center G′/K3(G) has index
p2; moreover, that quotient group is nonmetacyclic (Remark 3). In that
case, by the above, |G/K3(G)| = p3 = |G/f1(G)| so K3(G) = f1(G) since
f1(G) ≤ K3(G).

Corollary 12 (Taussky). Let G be a nonabelian 2-group. If |G : G′| =
4, then G is of maximal class.

Proof. Let R be a G-invariant subgroup of index 2 in G′. Then G/R is
nonabelian of order 8 so metacyclic; then G is metacyclic (Theorem 2) so G
has a normal cyclic subgroup U < G such that G/U is cyclic. Since G′ < U ,
we get |G : U | = 2, and the result follows from description of 2-groups with
cyclic subgroup of index 2.

Corollary 13 (Huppert [Hup]). Let G be a p-group, p > 2, and let
|G/f1(G)| ≤ p2. Then G is metacyclic.

Proof. Assuming that G is not metacyclic, we must consider cases (i)
and (ii) of Remark 10. We have there |G/f1(G)| > p2, a contradiction.

Supplement 1 to Corollary 11. Let G be a p-group.

(a) G is metacyclic if and only if G/f2(G) is metacyclic.
(b) [Ber1, Theorem 3.4] G is metacyclic if and only if G/f2(G) is meta-

cyclic.

Proof. (b) ⇒ (a) since f2(G) ≤ f2(G) (indeed, exp(G/f2(G)) ≤ p2).
If G is not metacyclic, then G/f2(G) is not metacyclic (Remark 10), proving
(b).

Supplement 2 to Corollary 11. Suppose that a nonabelian p-group
G and all its characteristic subgroups of index 1

p2 |G : G′| are two-generator.
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Then either G is metacyclic or p > 2 and G/K3(G) is of order p3 and expo-
nent p. If, in addition, a nonmetacyclic p-group G and all its characteristic
subgroups are two-generator, then K3(G) = f1(G).

Proof. By Lemma 7(b), a G-invariant subgroup R of index p in G′

is characteristic in G. Suppose that G is nonmetacyclic; then G/R is also
nonmetacyclic (Theorem 2) and minimal nonabelian (Lemma 5). Assume
that |G/R| > p3. Then H/R = Ω1(G/R) is elementary abelian of order
p3 (Lemma 6), d(H) > 2, |G/H | = 1

p2 |G/G′| and H is characteristic in G,

contrary to the hypothesis. Thus, |G/R| = p3 so |G/G′| = 1
p |G/R| = p2; then

p > 2 since G/R is nonmetacyclic (Corollary 12). It follows that G/K3(G)
is minimal nonabelian so |G′/K3(G)| = p (Lemma 6); then R = K3(G) and
exp(G/R) = p since G/R is not metacyclic (Corollary 11).

Now suppose, in addition, that all characteristic subgroups of a nonmeta-
cyclic p-groupG are two-generator. Set Ḡ = G/f1(G). Assume that |Ḡ| > p3.
Let Ḡ be of order p4; then it contains an abelian subgroup Ā of index p and
d(A) ≥ d(Ā) = 3 so, by hypothesis, Ā is not characteristic in Ḡ. Then Ḡ has
another abelian maximal subgroup B̄. We have Ā∩B̄ = Z(Ḡ) so Ḡ is minimal
nonabelian since d(G) = 2. But a minimal nonabelian group of exponent p
has order p3 (Lemma 6), a contradiction. Now let |Ḡ| > p4. Then d(Ḡ′) = 2,
by hypothesis, so |Ḡ′| = p2 since exp(Ḡ′) = p (Lemma 1(k)). In that case,
|Ḡ| = |Ḡ : Ḡ′||Ḡ′| = p4, contrary to the assumption. Thus, |G/f1(G)| = p3

so K3(G) = f1(G) since K3(G) ≤ f1(G) and |G/K3(G)| = p3.

In particular, if a 2-group G and all its characteristic subgroups of index
1
4 |G : G′| are two-generator, then G is metacyclic, and this implies Corol-
lary 12.

In the proof of Theorem 2 we use only Lemma 7(b) which is independent
of all other previously proved results.

Proof of Theorem 2. It suffices to show that (b) ⇒ (a). Since G/R
is metacyclic, it has a normal cyclic subgroup U/R such that G/U is cyclic.
Assume that U is noncyclic. Then U has a G-invariant subgroup T such that
U/T is abelian of type (p, p). Set Ḡ = G/T . In that case, R 6≤ T since
Ū = U/T cannot be an epimorphic image of the cyclic group U/R; then
G′ 6≤ T so Ḡ is nonabelian. Next, Ḡ/Ḡ′ is noncyclic so Ḡ′ < Ū and |Ḡ′| = p
since |Ū | = p2. It follows from Ḡ′ = G′T/T ∼= G′/(G′ ∩ T ) that G′ ∩ T = R,
by Lemma 7(b). Then R = G′ ∩ T < T , a contradiction.5

If a p-group G is nonmetacyclic but all its proper epimorphic images are
metacyclic, then either G is of order p3 and exponent p or G is as given in (∗)

5Isaacs proved the following equivalent of Theorem 2. Let G be a p-group and let
Z < G′ be G-invariant of order p. If G/Z is metacyclic, then G is metacyclic; see [Ber5,
Lemma 11].
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with m = 2 and n = 1. Indeed, the result is trivial for abelian G. Now let G
be nonabelian. Let R be a G-invariant subgroup of index p in G′; then G/R
is not metacyclic (Theorem 2) so R = {1}, and we get |G′| = p. By Lemma 5,
G is minimal nonabelian. Now the assertion follows from Lemma 6.

Corollary 14. Suppose that a nonabelian and nonmetacyclic p-group G
and all its maximal subgroups are two-generator, p > 2 and |G| = pm, m > 3;
then cl(G) > 2. Set K = K4(G) and Ḡ = G/K. Then one of the following
holds:

(a) Ḡ is of order p4. In particular, if p = 3, then G is of maximal class.
(b) |Ḡ| = p5, all maximal subgroups of Ḡ are minimal nonabelian (see

[BJ2, Theorem 5.5] for defining relations of Ḡ).

Proof. By Corollary 11, K3(G) = f1(G) has index p3 in G so that
cl(G) > 2 since m > 3 and |G : G′| = p2, d(G) = 2. Then Z(Ḡ) = K3(G)/K
has index p3 in Ḡ since cl(Ḡ) = 3. Let M̄ < Ḡ be maximal; then |M̄ : Z(Ḡ)| =
1
p |Ḡ : Z(Ḡ)| = p2 and, since d(M̄) = 2, it follows that M̄ is either abelian

or minimal nonabelian. In view of Lemma 6, Ḡ has a nonabelian maximal
subgroup, say M̄ . By Lemma 1(a), Ḡ has at most one abelian maximal
subgroup.

Suppose that Ḡ has an abelian maximal subgroup, say Ā. Then |Ḡ′| ≤
p|M̄ ′Ā′| = p2 (Lemma 1(b)) so |Ḡ| = |Ḡ′||Ḡ : Ḡ′| = p4, and we get cl(Ḡ) = 3.
In particular, if p = 3, then G is of maximal class (Lemma 1(c)). Thus, G is
as stated in part (a).

Now suppose that all maximal subgroups of Ḡ are minimal nonabelian;
then |Ḡ| > p4. If Ū , V̄ are distinct maximal subgroups of Ḡ, then |Ḡ′| ≤
p|Ū ′V̄ ′| = p3 so |Ḡ′| = p3 since p5 ≤ |Ḡ| = |Ḡ : Ḡ′||Ḡ′| ≤ p5.

Blackburn found indices of the lower central series of groups of Corol-
lary 14 for p > 3 (the case p = 3 is open); see [Bla2].

Our arguments in Corollary 15 and Remark 16 are based on [Jan2].

Corollary 15 (Janko [Jan2]). If every maximal cyclic subgroup of a
noncyclic p-group G is contained in a unique maximal subgroup of G, then G
is metacyclic.

Proof. Let N be a proper normal subgroup of G and let U/N ≤ G/N be
maximal cyclic. Then U = AN for a cyclic A. Let B ≥ A be a maximal cyclic
subgroup of G; then B ∩ N = A ∩ N and U/N = BN/N so |A| = |B| and
A = B, i.e., A is a maximal cyclic subgroup of G. Assume thatK/N,M/N are
distinct maximal subgroups of G/N containing U/N . Then A ≤ U ≤ K ∩M ,
contrary to the hypothesis. Thus, the hypothesis is inherited by epimorphic
images.

Let A < G be maximal cyclic. Then AΦ(G)/Φ(G) is contained in a unique
maximal subgroup of G/Φ(G) so AΦ(G) is maximal in G, and we conclude
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that d(G) = 2. Assume that G is nonmetacyclic. Let R be a G-invariant
subgroup of index p in G′. Then Ḡ = G/R is nonmetacyclic (Theorem 2) and
minimal nonabelian (Lemma 5) so Ḡ′ is maximal cyclic in Ḡ (Lemma 6). Since
Ḡ/Ḡ′ is abelian of rank 2, Ḡ′ is contained in 1 + p > 1 maximal subgroups of
Ḡ, contrary to the previous paragraph.

Remark 16. Obviously, metacyclic p-groups are powerful for p > 2. Let
us show (this is Janko’s result as well) that G of Corollary 15 is also powerful
for p = 2, unless G is of maximal class. Assume that G is not of maximal class.
Then |G/G′| > 4 (Corollary 12) so W = G/f2(G) cannot be nonabelian of
order 8. It suffices to show that W is abelian. Assume that this is false. Then
W = 〈a, b | a4 = b4 = 1, ab = a−1〉 is the unique nonabelian metacyclic group
of order 24 and exponent 4 (Corollary 15). In that case, W/〈a2b2〉 is ordinary
quaternion so has two distinct maximal subgroups U/〈a2b2〉 and V/〈a2b2〉.
Since 〈a2b2〉 is a maximal cyclic subgroup of W , we get a contradiction. Thus,
G is powerful. Then, by Lemma 1(j), if X < G is maximal cyclic, then X
is not contained in Φ(G) (Lemma 1(j)) so XΦ(G) is the unique maximal
subgroup of G containing X since d(G) = 2. Thus, G satisfies the hypothesis
of Corollary 15 if and only if it is powerful and metacyclic.

It follows from Corollary 13 that a p-group G = AB, where A and B are
cyclic, is metacyclic if p > 2. This is not true for p = 2, however, we have

Corollary 17 (Ito-Ohara [IO]). If a nonmetacyclic 2-group G = AB
is a product of two cyclic subgroups A and B, then G/G′ is of type (2m, 2),
m > 1.

Proof. Let R be a G-invariant subgroup of index 2 in G′. Then Ḡ =
G/R is nonmetacyclic (Theorem 2) and minimal nonabelian (Lemma 5) as in
(∗). Since Ḡ = ĀB̄, we get n = 1 (Remark 8). Next, m > 1 (Corollary 12).

Remark 18. Suppose that a nonmetacyclic 2-groupG = AB is a product
of two cyclic subgroups A and B. Since A∩B = Φ(A)∩Φ(B), we get Φ(G) =
Φ(A)Φ(B), by the product formula, so Φ(G) is metacyclic (Lemma 1(k)). It
follows that all subgroups of G are three-generator. By Corollary 11, G has a
maximal subgroupM with d(M) = 3. We claim thatM is the unique maximal
subgroup of G which is not generated by two elements. Indeed, let U, V be
maximal subgroups of G, containing A, B, respectively; then U 6= V . By the
modular law, U = A(U ∩ B) and V = B(V ∩ A) so d(U) = 2 = d(V ) since
G in nonmetacyclic. Since the set of maximal subgroups of G is {M,U, V },
our claim follows. In particular, M is characteristic in G. Set Ḡ = G/f2(G);
then Ḡ = ĀB̄ so |Ā| = 4 = |B̄| since Ḡ is of exponent 4 (in fact, Ḡ is a group
(iv) of Remark 10).6

6The author and Janko [J5] have proved independently that subgroups U and V are
metacyclic; see the proof of Supplement to Corollary 17 due to the author.
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Suppose that X is a 2-group such that d(X) = 2, exp(X) > 2 and Φ(X) is
metacyclic. We claim that |X/f2(X)| ≤ 24. Assume that this is false. Clearly,
f2(X) ≤ f1(Φ(X)) < Φ(X) and |Φ(X)/f2(X)| ≤ |Φ(X)/f2(Φ(X))| ≤ 24.
To obtain a contradiction, one may assume that f2(X) = {1}, i.e., exp(X) =
4. Then 23 ≤ |Φ(X)| ≤ 24 since Φ(X) is metacyclic of exponent ≤ 4. By
Burnside, Φ(X) cannot be nonabelian of order 8 so it is either abelian of type
(4, 2), or abelian of type (4, 4), or Φ(X) = 〈a, b | a4 = b2 = 1, ab = a−1〉.
In any case, every generating system of Φ(X) must contain an element of
order 4. It follows from Φ(X) = f1(X) that X has an element of order 8, a
contradiction since exp(X) = 4.

Supplement to Corollary 17. Let G = AB be a nonmetacyclic 2-
group, where A and B are cyclic and let G/G′ be abelian of type (2m, 2),
m > 1 (see Corollary 17). Then the set Γ1 = {U, V,M} is the set of maximal
subgroups of G, where A < U , B < V , the subgroups U, V are metacyclic but
not of maximal class and d(M) = 3.

Proof. By Remark 18, Φ(G)(= f1(G)) is metacyclic but not cyclic since
G has no cyclic subgroup of index 2.

Since d(G) = 2 and G is not minimal nonabelian, we get Z(G) < Φ(G).
Assume that U is of maximal class. Since G is nonmetacyclic, it is not

of maximal class. Then, by [Ber1, Theorem 7.4(a)], we get d(G) = 3, a
contradiction. Similarly, V is also not of maximal class.

Let us prove, for example, that U is metacyclic. Assume that this is
false. Then U/f2(U) is nonmetacyclic, by Blackburn’s result [Ber1, Theorem
3.4]; in particular, |U/f2(U)| ≥ 24 and G/f2(U) is nonmetacyclic. Since
d(U) = 2 and Φ(U) is metacyclic, we get |U/f2(U)| = 24 (see the paragraph
preceding the supplement). We have f2(U) / G and f2(U) < Φ(M) (other-
wise, all maximal subgroups of two-generator nonmetacyclic group G/f2(U)
are two-generator, contrary to [Ber1, Theorem 3.3]). We conclude that
d(M/f2(U)) = 3. Next, G/f2(U) = (Af2(U)/f2(U))(Bf2(U)/f2(U)),
where both factors are cyclic. Therefore, to get a contradiction, one may
assume that f2(U) = {1}. In that case, |G| = 25, U = 〈x, y | x4 = b2 = z2 =
1, z = [x, y], [x, z] = [y, z] = 1〉 is minimal nonabelian. Since U is not meta-
cyclic and two-generator, it has no normal cyclic subgroup of order 4. Since
G = AB is of order 25 and exponent ≤ 8, one of the factors A,B, namely
B (since |A| ≤ exp(U) = 4) has order 8, by the product formula. Then
exp(V ) = 8 and |V : B| = 2. It follows from Φ(V ) = f1(B) that f1(B) / G.
But f1(B) = Φ(B) < Φ(G) < U , and the cyclic subgroup f1(B) of order 4
is normal in G so in U , contrary to what has been said already. Thus, U is
metacyclic. Similarly, V is metacyclic.

Remark 19. Let G be a metacyclic 2-group with c1(G) > 3. Assume
that G is not of maximal class. Then G has a normal abelian subgroup R of
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type (2, 2). Let x ∈ G − R be an involution. Then D = 〈x,R〉 ∼= D8. By
Lemma 1(i), DCG(D) is nonmetacyclic, a contradiction. It follows that then
G is either dihedral or semidihedral7. If, in addition, G is nonabelian and
satisfies Ω1(G) = G, then it is dihedral.

Remark 20. Suppose that a metacyclic 2-group G of exponent ≥ 23

satisfies Ω∗
2(G) = G. Then G is either generalized quaternion or G/Ω1(G) is

dihedral with Ω1(G) ≤ Z(G). Obviously, G is nonabelian. If G is of maximal
class, it is generalized quaternion. Next assume that G is not of maximal
class. Then G has a normal four-subgroup R (Lemma 1(q)) and R = Ω1(G)
(Remark 19). If U < G is cyclic of order 4, then U∩R = Ω1(U) so |RU/R| = 2.
It follows that Ω1(G/R) = G/R so G/R is dihedral, by Remark 19. We claim
that if G is metacyclic and G/R is dihedral (R = Ω1(G) is a four-subgroup),
then R ≤ Z(G). Indeed, let U/Ω1(G) < G/Ω1(G) be of order 2; then U
is abelian (Remark 19). Since all such U centralize Ω1(G) and generate G,
Ω1(R) ≤ Z(G).8

Remark 21. Let G be a 2-group. Suppose that H = Ω2(G) is metacyclic
of exponent ≥ 23. Then one of the following holds: (a) G is of maximal class
(in that case, H = G), (b) G is metacyclic with dihedral G/Ω1(G) (then
H = G and Ω1(G) ≤ Z(G)) or semidihedral (then |G/H | = 2). Indeed, by
Lemma 1(w), G is metacyclic. By Remark 20, H is one of groups (a), (b). If
H is of maximal class, then c2(G) = c2(H) ≡ 1 (mod 4) so G is of maximal
class, by Lemma 1(p) and 1(q). Now let H be not of maximal class and let
R < H be G-invariant of type (2, 2). We have Ω1(H/R) = H/R so H/R is
dihedral and R ≤ Z(H) (remarks 19, 20).

If G is a nonmetacyclic 2-group of order 2m and m > n ≥ 4, then the
number of normal subgroups D of G such that G/D is metacyclic of order 2n,
is even [Ber5].

3◦. In this section, most proofs are based on properties of p-groups of
maximal class and counting theorems.

Let G be a p-group of exponent pe > p2, p > 2, and let 1 < k < e.
Suppose that H < G is metacyclic of exponent pk such that whenever H < L,
then exp(L) > pk. Then G is also metacyclic. This is a consequence of
Corollary 13 and the following

Theorem 22. Let G be a p-group of exponent pe > p2 and let 1 < k < e.
Suppose that U is a maximal member of the set of subgroups of G having
exponent pk.

(a) If U is absolutely regular then G is also absolutely regular, U = Ωk(G)
and the subgroup U is not of maximal class.

7The above argument also shows that if G has a nonabelian subgroup of order 8, it is
of maximal class.

8Janko (see [BJ1, §86]) has classified the 2-groups G with metacyclic Ω∗

2(G).
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(b) If U is irregular of maximal class, then G is also of maximal class.

Proof. If G is absolutely regular, then U is also absolutely regular. If
G is a 2-group of maximal class, then U is also of maximal class (and order
2k+1).

Let G be of maximal class, p > 2 and let U be absolutely regular. Then
G is irregular since e > 2 (Lemma 1(g)). Denote by G1 the absolutely regular
subgroup of index p in G; then exp(G1) = exp(G) = pe > pk (Lemma 1(h)).
Assume that U < G1. Then U = Ωk(G1) < G1 since k < e, hence U / G.
Since |G : U | > p, then all elements of the set (G/U) − (G1/U) have the
same order p [Ber3, Theorem 13.19], so there exists H/U < G/U such that
H 6≤ G1 and |H : U | = p. Then H is of maximal class [Ber3, Theorem
13.19] so exp(H) = exp(U) (Lemma 1(h)), contrary to the choice of U . Now
suppose that U 6≤ G1. We get k = 2 (otherwise, U = Ω∗

k(U) ≤ Ω∗
k(G) ≤ G1,

by Lemma 1(h)). Assume that Ω1(G1) 6≤ U . Let R ≤ Ω1(G1) be a minimal
G-invariant subgroup such that R 6≤ U . In that case, |UR : R| = p. By
Lemma 1(f), 1(h) and 1(p), exp(UR) = exp(U), contrary to the choice of U .
Thus, Ω1(G1) < U so |U | ≥ pp (Lemma 1(h)); moreover, by [Ber3, Theorem
13.19], |U | = pp. Let U < H ≤ G, where |H : U | = p. Then H is of maximal
class [Ber3, Theorem 13.19] and order pp+1 so exp(H) = p2 = exp(U) and
U < H , contrary to the choice of U . Thus, if G is irregular of maximal class,
then U must be also irregular of maximal class and Ωk(G1) has index p in U .

In what follows we may assume that G is not of maximal class.
Next we proceed by induction on |G|.
(i) LetG be noncyclic and regular; then U is absolutely regular. Then U =

Ωk(G) (Lemma 1(f)) so Ω1(G) = Ω1(U) and pp > |U/f1(U)| = |Ω1(U)| =
|Ω1(G)| = |G/f1(G)|, whence G is absolutely regular; in that case, p > 2.
Assume that, in addition, U is of maximal class. Then |U : Ω1(U)| = p
(Lemma 1(g)) so |Ω1(G/Ω1(G))| = p. It follows that G/Ω1(G) is cyclic (of
order > p). Let D be a G-invariant subgroup of index p2 in Ω1(U) = Ω1(G),
and set C = CG(Ω1(U)/D); then C/D is abelian and U ≤ C so U/D is
abelian of order p3, and we conclude that U is not of maximal class, contrary
to the assumption. Thus, U is not of maximal class.

In what follows we assume that G is irregular.
(ii) Let U be absolutely regular; then |Ω1(U)| = |U/f1(U)| < pp. We

write R = Ω1(U) and N = NG(R); then U < N .
Assume that N = G. Then, by Lemma 1(n), there is in G a normal

subgroup S of order p|Ω1(U)| and exponent p such that R < S. Set H = US.
Then H/S ∼= U/R is of exponent pk−1 so, since U < H , we get exp(H) = pk,
contrary to the choice of U .

Now let N < G. Then N is absolutely regular, by induction and
Lemma 1(m). In that case, U = Ωk(N) so R = Ω1(N) is characteristic
in N whence N = G, contrary to the assumption.
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(iii) In what follows we assume that U is irregular of maximal class. Set
V = Ω1(Φ(U)) and N = NG(V ). If N < G, then, by induction, N is of
maximal class so G is also of maximal class (Lemma 1(m)), contrary to the
assumption. Now let N = G. Then, as in (ii), G has a normal subgroup R of
order pp and exponent p such that V < R. Set H = UR; then H/R ∼= U/V
is of exponent pk−1. This is a contradiction since exp(H) = pk = exp(U) and
U < H .

Supplement 1 to Theorem 22. Let G be a p-group of exponent pe >
p, 1 < k ≤ e. Set H = Ω∗

k(G).

(a) If H is absolutely regular, then G is either absolutely regular or irreg-
ular of maximal class.

(b) If H is of maximal class, then G is also of maximal class.

Proof. We proceed by induction on |G|. One may assume that H < G.
(a) Suppose that H is absolutely regular. Set R = Ω1(H); then R / G.
Assume that G is neither absolutely regular nor of maximal class. Then G

contains a normal subgroup S of order p|R| and exponent p such that R < S
(Lemma 1(n)). Set U = HS. Assume that U is of maximal class. Then
|S| = |H | = 1

p |U | (Lemma 1(h)), |HS| = pp+1, exp(HS) = p2 so k = 2 and

H(= Ω∗
2(G)) is the unique maximal subgroup of HS of exponent p2. In that

case, c2(G) = c2(H) 6≡ 0 (mod pp−1) so G is either absolutely regular or of
maximal class (Lemma 1(s) and 1(t)), contrary to the assumption. The proof
of (a) is complete.

(b) Suppose that H is irregular of maximal class.
Assume that |H | > pp+1. Then c2(G) = c2(H) ≡ pp−2 (mod pp−1), so G

is of maximal class (Lemma 1(s) and 1(t)), a contradiction.
It remains to consider the possibility |H | = pp+1; then exp(H) = p2

(Lemma 1(g)) so k = 2. In that case, c2(H) = c2(G) ≡ 0 (mod pp−1)
(Lemma 1(t)) so Ω1(H) is of order pp and exponent p. Let H < A ≤ G
and |A : H | = p. By [Ber3, Theorem 13.21], one may assume that A is not of
maximal class. By [Ber1, Theorem 7.4(c)], A contains exactly p + 1 regular
subgroups T1, . . . , Tp+1 of index p which are not absolutely regular. It follows
that exp(Ti) = p for all i (otherwise, Ti = Ω∗

2(Ti) ≤ Ω∗
2(G) = H , which is not

the case). Then Ti ∩H = Ω1(H). It follows that Ω1(H) is contained in p+ 2
pairwise distinct subgroups H,T1, . . . , Tp+1 of index p in A, a contradiction
since A/Ω1(H) is of order p2.

Supplement 2 to Theorem 22. Let H be a metacyclic subgroup of ex-
ponent 2k of a 2-group G. Suppose that H is maximal among subgroups of
exponent 2k in G. Then G has no H-invariant elementary abelian subgroup
of order 8 (see [Jan1]).
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Proof. Assume that G has an H-invariant elementary abelian subgroup
E of order 8. To get a contradiction, one may assume, without loss of gen-
erality, that G = HE; then E / G. Set L = H ∩ E; then |L| ≤ 4 and L is
normal in G.

Let L = {1}. If L0 ≤ E ∩ Z(G) is of order 2, then H < H × L0 and
exp(H × L0) = 2k, contrary to the choice of H .

Let L be of order 4. Then G/L = (E/L)× (H/L) is of exponent 2k−1 so
exp(G) = 2k, contrary to the choice of H .

Now let |L| = 2. In view of Theorem 22, one may assume that H is not of
maximal class. Then H contains a normal abelian subgroup R of type (2, 2).
By the product formula, |ER| = 16. Note that ER is H-invariant. We also
have R < CE(R) and CE(R) is H-invariant. Let R < F < RCE(R), where
F is an H-invariant subgroup of order 8; then F is elementary abelian, the
quotient groupHF/R = (H/R)×(F/R) has exponent 2k−1 so exp(HF ) = 2k,
contrary to the choice of H since H < HF .

For related results, see [Ber4].
Let s be a positive integer. A p-groupG is said to be an Ls-group, if Ω1(G)

is of order ps and exponent p and G/Ω1(G) is cyclic of order > p (Ω1(G) is
said to be the kernel of G).

Below we use the following

Lemma 23 ([Ber1, Lemma 2.1]). Let G be a p-group with |Ω2(G)| =
pp+1 < |G|. Then one of the following holds:

(a) G is absolutely regular.
(b) G is an Lp-group.

(c) p = 2 and G = 〈a, b | a2n

= 1, a2n−1

= b4, ab = a−1+2n−2〉.
It is known that an irregular p-group G has a maximal regular subgroup

R of order pp if and only if G is of maximal class [Ber3, §10].9 The following
theorem supplements this result.

Theorem 24. Let G be a p-group and let H < G be a maximal member
of the set of subgroups of G of exponent p2. Suppose that |H | = pp+1. Then
one of the following holds:

(a) p = 2 and G is of maximal class.
(b) H = Ω2(G) (see Lemma 23).

Proof. If G is regular, then H = Ω2(G) so G is a group of Lemma 23.
Next let G be irregular. By hypothesis, exp(H) < exp(G).

9This is an easy consequence of Lemma 1(m). Indeed, write N = NG(R). If N < G,
then N is of maximal class, by induction, and we are done (Lemma 1(m)). Now let N = G.
Take D, a G-invariant subgroup of index p2 in N , and set C = CG(R/D). If B/R ≤ C/R is
of order p, then B is regular since B/D is abelian of order p3 (Lemma 1(e)), a contradiction
since R < B.
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Suppose that G is irregular of maximal class. It follows from [Ber3, the-
orems 9.5 and 9.6] that then p = 2, and we get case (a). Indeed, assume that
p > 2. If H ≤ G1, then H = Ω2(G1). If H = G1, then exp(H) = exp(G),
contrary to the choice of H . Thus, H < G1. Let U/H be a subgroup of
G/H of order p not contained in G1/H . Then U is of maximal class and
exponent p2 [Ber3, Theorem 13.19], contrary to the choice of H . Now let
H 6≤ G1; then Ω1(G1) ≤ H and H is of maximal class. Let H < F ≤ G
with |F : H | = p. Then exp(F ) = exp(H), contrary to the choice of H . The
2-groups of maximal class satisfy the hypothesis.

In what follows we assume that G is not of maximal class. Then, in view
of Theorem 22, one may assume that H is neither absolutely regular nor of
maximal class so cl(H) < p. It follows that H is regular (Lemma 1(e)) and
Ω1(H) is of order pp and exponent p. Set N = NG(Ω1(H)); then H < N
since Ω1(H) is characteristic in H < G. We use induction on |G|.

Assume that N < G. Then, by induction, N is one of groups (a,b).
However, in case (b), Ω1(H) is characteristic in N (Lemma 23) so N = G,
contrary to the assumption. On the other hand, N cannot be a 2-group of
maximal class since H is abelian of type (4, 2), by the previous paragraph.

Thus, N = G so Ω1(H) / G. By hypothesis, G/Ω1(H) has no abelian
subgroup K/Ω1(H) of type (p, p) such that H < K, so G/Ω1(H) is either
cyclic or generalized quaternion (then p = 2). In that case, Ω1(G) = Ω1(H)
so that Ω2(G) = H .

Let a natural number n ≥ p − 1. A p-group G is said to be a Up
n-group

provided it has a normal subgroup R of order pn and exponent p such that
G/R is irregular of maximal class and, if T/R is absolutely regular of index
p in G/R, then Ω1(T ) = R.10 Let us prove that if a normal subgroup R1 of
G is of exponent p, then R1 ≤ R. Assume that this is false and that every
proper G-invariant subgroup of R1 is contained in R; then |RR1 : R| = p so
RR1/R < T/R since G/R has only one minimal normal subgroup. This is a
contradiction: RR1 ≤ Ω1(T ) = R < RR1. It follows that R is characteristic in
G. We call R the kernel of the Up

n-group G. It follows from Lemma 1(p) that
Up
p−1-groups are of maximal class. Note that exp(G) = p·exp(G/R) = exp(T ).

Theorem 25. Let G be a p-group and let H < G be a maximal member
of the set of subgroups of G of exponent exp(H). If H is a Up

n-group, then G
is also a Upn-group.

Proof. We use induction on |G|. In view of Theorem 22(b), one may
assume that H is not of maximal class so that n > p− 1. Let R be the kernel
of H and set N = NG(R). If N < G, then N is a Up

n-group, by induction. In
that case, R is also kernel of N so characteristic in N . It follows that N = G,

10It follows from Lemma 1(p) and 1(q), that Up
n-groups do no exist for n < p−1. The

U2
2-groups are classified by Janko; see [Jan3] or [BJ1, §67].
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contrary to the assumption. Thus, N = G. Then H/R is a maximal member
of the set of subgroups of exponent 1

p · exp(H) in G/R and H/R is irregular

of maximal class. Then G/R is of maximal class, by Theorem 22. Let us
show that G is a Up

n-group. Let T/R be the11 absolutely regular subgroup of
index p in G/R (Lemma 1(h)) and set U/R = (H/R) ∩ (T/R). Then U/R
is an absolutely regular subgroup of index p in H/R so Ω1(U) = R since
H is a Up

n-group. Let F/R < T/R be G-invariant of order p. It follows
from the subgroup structure of G/R (see [Ber3, §9 and Theorem 13.19]) that
F/R ≤ Φ(G/R) < H/R so F/R ≤ Φ(H/R) < U/R, and we get exp(F ) = p2

since F is not contained in R = Ω1(U). In that case, R = Ω1(T ) so G is a
Up
n-group.

Remark 26. Let G be a p-group and let H < G be a maximal member of
the set of subgroups of G of exponent exp(H). If H is an Ln-group, then G is
also an Ln-group. To prove this, it suffices to repeat, with small modifications,
the proof of Theorem 25 and use the following easy fact: If C < G is a cyclic
subgroup of order pk > p which is not contained properly in a subgroup of
exponent pk, then G is cyclic.

The following theorem is an analogue of Supplement 1 to Corollary 11
and dual, in some sense, to Theorem 22.

Theorem 27. Suppose that a p-group G is such that G/f2(G) is of max-
imal class. Then G is also of maximal class.

Proof. (a) Suppose that G is regular. Then |G/f1(G)| = pk, where
k < p, and |G/f2(G)| = pk+1 (Lemma 1(g)) so |f1(G) : f1(f1(G))| = p,
and we conclude that f1(G) is cyclic. Let |f1(G)| = pe; then exp(G) = pe+1.
By Lemma 1(f), |Ω1(G)| = pk. Since |G| = pk+e, it follows that G/Ω1(G)
is cyclic of order pe. By hypothesis, |G : G′| = p2 so e = 1. In that case,
f2(G) = {1} so G is of maximal class, by hypothesis.

(b) Now let G be irregular. One may assume that |G| > pp+1 (oth-
erwise, in view of Lemma 1(e), it is nothing to prove). By Lemma 1(r),
|G/f1(G)| ≥ pp so |G/f2(G)| ≥ pp+1 and we conclude that G/f2(G) is irreg-
ular (Lemma 1(g)). By hypothesis and Lemma 1(g), we get |G/f1(G)| = pp

and |G/G′| = p2.
(i) Let L be a normal subgroup of index pp+1 in G. By the previous

paragraph, exp(G/L) > p. Let R/L = f2(G/L); then f2(G) ≤ R. It follows
from properties of irregular p-groups of maximal class12 that |G/R| ≥ pp+1 =
|G/L| so R = L, and we conclude that exp(G/L) = p2 and f2(G) ≤ L.

(ii) Assume that L and L1 are distinct normal subgroups of the same
index pp+1 in G. Then f2(G) ≤ L ∩ L1, by (i). In that case, L/f2(G) and

11‘the’ since |G/R| > |H/R| ≥ pp+1.
12If X is irregular p-group of maximal class, then every its epimorphic image of order

pp has exponent p.
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L1/f
2(G) are different normal subgroups of index pp+1 > p in a p-group of

maximal class G/f2(G), which is impossible (Lemma 1(h)). Thus, G has
the unique normal subgroup, say L, of index pp+1. By the above, G/L, as
a nonabelian epimorphic image of G/f2(G), is of maximal class. Then, by
Lemma 1(d), G is also of maximal class.

The case p = 2 of Theorem 27 follows immediately from Corollary 12.
A p-group G is of maximal class if and only if G/f2(G) is of maximal

class. Indeed, f2(G) ≤ f2(G) so G/f2(G) is of maximal class as a nonabelian
epimorphic image of G/f2(G), and the result follows from Theorem 27.

Remark 28. Now we offer another argument for part (b) of the proof of
Theorem 27. Let H/f2(G) be an absolutely regular subgroup of index p in
G/f2(G), existing, by Lemma 1(h). Assume that H is not absolutely regular.
Then, by Lemma 1(r), we have |H/f1(H)| ≥ pp. Clearly, f2(G) ≤ f1(H)
so H/f1(H) of order ≥ pp and exponent p is an epimorphic image of the
absolutely regular group H/f2(G), a contradiction.13 Thus, H is absolutely
regular. Assume that G is not of maximal class. Then G = HΩ1(G), where
Ω1(G) is of order pp and exponent p (Lemma 1(p)). By hypothesis, |G/G′| =
p2. We have G/(H ∩ Ω1(G)) = G/Ω1(H) ∼= (H/Ω1(H)) × (Ω1(G)/Ω1(H))
so |H/Ω1(H)| = p, |H | = p|Ω1(H)| = pp and |G| = pp+1. In that case,
f2(G) = {1} so G is of maximal class, contrary to the assumption.

In Remark 29 we use the following fact. If G is neither absolutely regular
nor maximal class and E1, . . . , Er are all its subgroups of order pp and expo-
nent p, then

⋃r
i=1Ei = {x ∈ G | xp = 1}. Indeed, if D is a normal subgroup

of G of order pp−1 and exponent p and x ∈ G − D is of order p, then the
subgroup 〈x,D〉 is of order pp and exponent p so coincides with some Ei.

Remark 29. If G is a p-group such that H = Ω1(G) is of maximal
class, then one of the following holds: (a) H is of order ≤ pp and exponent
p, (b) G is of maximal class. Indeed, this is the case if G is regular, by
Lemma 1(g). Now assume that G is not of maximal class and |H | > pp. Let
E1, . . . , Er be all subgroups of order pp and exponent p in G; then r > 1
and, by Lemma 1(v), r ≡ 1 (mod p). We have Ei < H for all i so H has
a G-invariant subgroup, say E1, of order pp and exponent p. It follows that
|H | = pp+1 (Lemma 1(h)). Since r ≥ p+ 1 and d(H) = 2, we get exp(H) = p
so H is regular (Lemma 1(e)), a contradiction.

4◦. In this section we prove the following

Theorem 30. Let A be a maximal cyclic subgroup of order > p of a
noncyclic p-group G. Then there exists in G a maximal cyclic subgroup B of
order > p such that |A ∩ B| = p, unless p = 2 and G is dihedral.

13This argument is similar to one from the proof of Theorem 2.
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Proof. If A is the unique cyclic subgroup of its order in G, then p = 2
and G is of maximal class [Ber2, Remark 6.2], and the theorem is true. In
what follows we assume that there is in G another cyclic subgroup of order
|A|.

Suppose that |G : A| = p and G is either abelian 〈a〉 × 〈b〉 of type (pn, p)

or G = 〈a, b | apn

= bp = 1, ab = a1+pn−1〉, A = 〈a〉, n > 1 and n > 2 if
G is nonabelian 2-group. In both cases G has exactly p cyclic subgroups of
order pi, i = 2, . . . , n. If n = 2 and B is a cyclic subgroup of index p in G,
B 6= A, then |A ∩ B| = p. Now let n > 2; then Φ(G) = 〈ap〉. Let B < G be
a cyclic subgroup of order p2 not contained in Φ(G). Then B is a maximal
cyclic subgroup of G (indeed, if B < C ≤ G and C is cyclic of order p|B|,
then B = Φ(C) ≤ Φ(G), contrary to the choice of B). We have |A ∩ B| = p
again.

If G is a 2-group of maximal class and G is not dihedral, it has a maximal
cyclic subgroup B of order 4 with B 6≤ A; then |A ∩ B| = 2.

In what follows we assume that |G : A| > p. Let A < H < G, where
|H : A| = p.

Suppose that H is not dihedral. Then, by the above, there is in H a
maximal cyclic subgroup B1 of order p2 such that |A ∩ B1| = p. Let B1 ≤
B < G, where B is a maximal cyclic subgroup of G. Then A ∩ B = A ∩ B1,
completing this case.

Now suppose that H is dihedral. Let H < F ≤ G, where |F : H | = 2.
Then A / F since A is characteristic in H . Let A1 be a subgroup of order 4
in A; then A1 /F . In that case, CF (A1) is maximal in F and contains A as a
subgroup of index 2. Since A is maximal cyclic subgroup of G, the subgroup
CF (A1) is noncyclic. Since CF (A1) is not dihedral, it has a maximal cyclic
subgroupB1 of order> 2 such that |A∩B1| = 2, by induction. If B1 ≤ B < G,
where B is a maximal cyclic subgroup of G, then A∩B = A∩B1, completing
the proof.

Suppose that a p-group G is neither abelian nor minimal nonabelian. We
claim that then G contains p pairwise distinct minimal nonabelian subgroups,
say B1, . . . , Bp, of the same order, say pn, such that B1 ∩ · · · ∩ Bp ≥ Φ(Bi)
for i = 1, . . . , p (in particular, |B1 ∩ · · · ∩ Bp| ≥ pn−2). Indeed, let B1 be
a minimal nonabelian subgroup of G of minimal order, and set |B1| = pn.
Let B1 < U ≤ G, where |U : B1| = p. It follows from the choice of B1 that
each maximal subgroup of U is either abelian or minimal nonabelian (of order
pn). By [Ber6, Remark 1], U contains at least p distinct minimal nonabelian
subgroups, say B1, . . . , Bp. If i 6= j, then |Bi ∩ Bj | = pn−1 so Bi ∩ Bj is
maximal in Bi. It follows that Φ(Bi) < Bi ∩ Bj for all i 6= j, and our claim
follows.
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Problems

1. Classify the p-groups G in which every maximal cyclic subgroup of
composite order is contained in a unique maximal subgroup of G.

2. Study the p-groups G, all of whose maximal cyclic subgroups are not
contained in Φ(G).

3. Study the p-groups G, p > 2, such that Kp(G) = f1(G) has index pp

in G.
4. Let H be a maximal member of the set of subgroups of exponent p > 2

in a p-group G. Study the structure of G provided H is of maximal
class.

5. Study the p-groups G such that G/Ω1(G) is irregular of maximal class
and Ω1(G) is irregular.

6. Let H be a metacyclic subgroup of exponent 2k > 2 of a 2-group G.
Study the structure of G provided every subgroup of G containing H
properly, has exponent > 2k.

7. Let H be a subgroup of exponent 4 in a 2-group G such that every
subgroup of G properly containing H , has exponent > 4. Study the
structure of G provided |H | ≤ 25.

8. Classify the nonmetacyclic p-groups G containing a normal subgroup
R of order p such that G/R is metacyclic.

9. Let H be a maximal member of the set of subgroups of exponent
exp(H) in a p-group G. Study the structure of G provided H is ex-
traspecial.

10. Let a nonmetacyclic 2-group G = BC, where B and C are cyclic.
(i) Describe the maximal subgroup of G that is not generated by two
elements (see Remark 18). (ii) Find all possible numbers of involutions
in G. (iii) Does there exist A < G such that |A/f2(A)| = p5? If so,
study its structure and embedding in G. (iv) Is it true that f2(A) =
f2(A) for all A < G?

11. Classify the 2-groups G such that Ω∗
k(G) is metacyclic, for k > 2.14
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