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Abstract. We prove that if G is a p-group of order pm > pn, where
n > 3 for p = 2 and n > 2 for p > 2, then the number of normal subgroups
D of G such that G/D is metacyclic of order pn is a multiple of p, unless
G is metacyclic. We also give a very short and elementary proof of the
following result: representation groups of nonabelian metacyclic p-groups
are metacyclic.

In this note only finite p-groups are considered, where p is a prime. We use
standard notation usual for finite p-group theory. Thus, d(G) is the minimal
number of generators of G, o(x) the order of x ∈ G, Ωn(G) = 〈x ∈ G | o(x) ≤
pn〉, fn(G) = 〈xpn | x ∈ G〉.

1◦. In this section we prove the following1

Theorem 1. Let G be a nonmetacyclic p-group of order pm and let n <
m.

(a) Let p = 2 and n > 3. Then the number of normal subgroups D of G,
such that G/D is metacyclic of order 2n, is even.

(b) [Ber1, Theorem 6.3] Let p > 2 and n > 2. Then the number of nor-
mal subgroups D of G, such that G/D is metacyclic of order pn, is a
multiple of p.

The proof of Theorem 1(b) is easy; in contrast, the proof of Theorem 1(a)
is fairly involved. Part (b) is included in Theorem 1 for the sake of complete-
ness.

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite p-groups, metacyclic p-groups, minimal nonabelian p-

groups, Schur multiplier, representation group.
1As I know, Theorem 1 is the first nontrivial result on counting epimorphic images of

p-groups. Theorem 6.2 in [Ber2] is of the same kind but it is not so deep.
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Remark 2. Let G be a two-generator nonmetacyclic 2-group. Then all
epimorphic images of G of order 8 are metacyclic. Since the number of normal
subgroups of given index in a 2-group G is odd, it follows that Theorem 1(a)
is not true for n = 3. As groups of order p3 and exponent p show, Theorem 1
is not true for n = 2.

Remark 3. Let G be an abelian group of rank 3 and order pm > p3. Let
us check Theorem 1 for n = m − 1. Let D < G be of order p. Then G/D
is metacyclic if and only if D 6≤ Φ(G). Since both G and Φ(G) contain ≡ 1
(mod p) subgroups of order p, one can choose D in ≡ 0 (mod p) ways.

Remark 4. Let G = 〈a, b | a4 = b4 = c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉
be a nonmetacyclic minimal nonabelian group of order 25 (G is the unique
minimal nonabelian group of order 25 and exponent 4). Let us check Theo-
rem 1(a) for n = 4. Below we use the following obvious fact: If X = 〈u, v〉
and 〈u〉/X , then X is metacyclic. Therefore, since Ω1(G) = Φ(G), our group
G has no normal cyclic subgroup of order 4. The group G has exactly seven
central subgroups of order 2:

X1 = 〈a2〉, X2 = 〈b2〉, X3 = 〈a2b2〉, X4 = 〈c〉,

X5 = 〈a2c〉, X6 = 〈b2c〉, X7 = 〈a2b2c〉
since E8

∼= Ω1(G) = Z(G). Then G/Xi is metacyclic for i = 4, 5, 6, 7 and
nonmetacyclic for i = 1, 2, 3. This assertion is obvious for i = 1, 2, 4. Let
us consider the case i = 5. The subgroup U = 〈a, c〉 = 〈a〉 × X5 / G so
C4

∼= U/X5 /G/X5 and, since a generator of U/X5 is a member of a minimal
basis of the two-generator group G/X5, it follows that G/X5 is metacyclic,
by what has just been said. Similarly, G/X6 is metacyclic since 〈b, c〉 =
〈b〉 × X6 / G. We have (ab)2 = a2b2c so V = 〈ab, c〉 = 〈ab〉 × X7 / G and,
as above, G/X7 is metacyclic and G/X3 is not metacyclic. For i = 4, 5, 6, 7,
we have G/Xi

∼= 〈x, y | x4 = y4 = 1, xy = x3〉; for i = 1, 2, 3, we have
G/Xi

∼= 〈x, y | x4 = y2 = z2 = 1, z = [x, y], [x, z] = [y, z] = 1〉. Thus, there
are exactly four normal subgroups D of G such that G/D is metacyclic of
order 24, and we have checked Theorem 1(a) in this partial case.

Remark 5. Let G = 〈a, b | a2m

= b2 = c2 = 1,m > 2, c = [a, b], [a, c] =
[b, c] = 1〉 be a nonmetacyclic minimal nonabelian group of order 2m+2. Set

α = a2m−1

; then {〈cα〉, 〈α〉, 〈c〉} is the set of minimal normal subgroups of G.
In that case, G/〈c〉 and G/〈cα〉 are metacyclic and G/〈α〉 is not metacyclic.

Let Sc(G) = Ω1(Z(G)) be the socle of a p-groupG. For all i such that pi ≤
|Sc(G)|, let ∆i denote the set of subgroups of order pi in Sc(G). Let M be a set
of nonidentity normal subgroups of G. Given H ∈ ∆0∪∆1∪∆2∪· · ·∪{Sc(G)},
let α(H) denote the number of members of the set M containingH ; obviously,
|M| = α({1}). Set |Sc(G)| = pt. We claim that the following identity holds
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(see [Ber1, Theorem 6.1]):

(1) |M| =

t∑

i=1

(−1)i−1pi(i−1)/2
∑

H∈∆i

α(H).

Indeed, let D ∈ M and let |D ∩ Sc(G)| = pk; then k ≥ 1 since D > {1}.
For natural numbers u ≥ v, let ϕu,v denote the number of subgroups of
order pv in the elementary abelian group of order pu; then |∆i| = ϕt,i, the
number of subgroups of order pi in Sc(G), the elementary abelian group of
order pt. The subgroup D is counted in the right-hand side of (1) exactly∑k

i=1(−1)i−1pi(i−1)/2ϕk,i times (indeed, for i ≤ k, D contains exactly ϕk,i
members of the set ∆i), and that number equals 1, by Hall’s identity (see
[Hup, §III.5]). Since the contribution of D in the left-hand side of (1) is also
equal 1, we are done. Identity (1), dual to Hall’s enumeration principle, is the
enumeration principle for counting of normal subgroups. It looks like Hall’s
enumeration principle. It follows from (1) the following congruence (only this
congruence we use in the sequel):

(2) |M| ≡
∑

H∈∆1

α(H) (mod p).

To clear our path, we give one simplest application of (2).

Remark 6. Let G be a noncyclic group of order pm, m > 2 and 1 < n <
m. We claim that the number c(G) of normal subgroups N of G such that
G/N is cyclic of order pn, is a multiple of p. One may assume that c(G) > 0.
First let n = m− 1. By assumption, there is a normal subgroup N of order p
such that G/N is cyclic. Then G is abelian of type (pm−1, p) so G = Z ×N ,
where Z is cyclic of order pm−1 = pn. If N1 < G is of order p, then G/N1 is
cyclic if and only if N1 6≤ Z so c(G) = p. Now let n < m−1. In that case, one
can use (2) and the same notation as in (2). Let H ∈ ∆1. Suppose that G/H
is cyclic; then G is abelian of type (pm−1, p). The group G contains exactly
p+1 subgroups of index pn. If N is one of such subgroups, then G/N is cyclic
if and only if N 6≤ Φ(G) so, since Φ(G) is cyclic, we get c(G) = p. Next we
assume that G is not abelian of type (pm−1, p); then G/H is not cyclic for all
H ∈ ∆1, therefore, by induction on m, we get α(H) ≡ 0 (mod p) so c(G) ≡ 0
(mod p), by (2).

Remark 7. Let G be a group of order pm and pn ≤ |G : G′|. We claim
that then the number ν(G) of N / G such that G/N is nonabelian of order
pn is a multiple of p. One may assume that G is nonabelian and ν(G) > 0;
then n ≥ 3. The number of normal subgroups of given index in G is ≡ 1
(mod p) (Sylow). If N / G has index pn, then G/N is nonabelian if and only
if G′ 6≤ N . Therefore, ν(G) ≡ 0 (mod p) (Sylow again; here we did not use
(2)). It follows that if a 2-group G of order 2m > 23 is not of maximal class,
then the number of N / G such that G/N is nonabelian of order 23 is even.
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Indeed, we get |G : G′| ≥ 23, by Taussky’s theorem, and our claim follows
from what has just been proved. Thus, [Ber1, Theorem 6.2] also holds for
p = 2 and n = 3.

In Lemma 8 we gathered some known results which we use in what follows.

Lemma 8. (a) (Huppert; see [Ber2, Corollary 13]) A p-group G, p >
2, is metacyclic if and only if |G/f1(G)| ≤ p2.

(b) ([Ber1, Theorem 3.4]) A 2-group G is metacyclic if and only if
G/f2(G) is metacyclic.2

(c) ([Ber2, Theorem 2]) If a nonabelian p-group G is nonmetacyclic and
R is a proper G-invariant subgroup of G′, then G/R is also nonmeta-
cyclic.

(d) ([Tua]; see also the proof of [Isa2, Lemma 12.12]) Let U be an abelian
normal subgroup of a group G and G/U = 〈xU〉 is cyclic. Then G′ ∼=
U/CU (x).

Note that Lemma 8(c) is equivalent to known result of Blackburn [Bla1,
Theorem 2.3] (the proof of that result, presented in [Bla1], is due to Philip
Hall). Lemma 8(b) follows from Lemma 8(c).

This note is self contained modulo Lemma 8.
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let M be the set of all normal subgroups D of
G such that quotient group G/D is metacyclic of order pn. One may assume
that the set M is not empty. As above, in (1), α(H) denotes the number of
members of the set M containing H ∈ ∆1.

A. Here we consider the most difficult case n = m−1; then M ⊆ ∆1. We
have to prove that |M| is a multiple of p, or, what is the same, |∆1 −M| ≡ 1
(mod p) since |∆1| ≡ 1 (mod p). In view of (2), we have to prove that

(3) (|M| ≡)
∑

H∈∆1

α(H) ≡ 0 (mod p).

If G is abelian, then d(G) = 3 since M 6= ∅, and the result follows, by
Remark 3. In what follows we assume that G is nonabelian.

(i) Let p > 2. Since G is not metacyclic, |G/f1(G)| ≥ p3 (Lemma 8(a)).
Take D ∈ M; then G/D is metacyclic. Assuming that |G/f1(G)| ≥ p4, we
conclude that G/Df1(G) is of order ≥ p3 and exponent p so nonmetacyclic,
a contradiction since G/Df1(G) is an epimorphic image of the metacyclic
group G/D. Thus, |G/f1(G)| = p3. Let U ∈ ∆1 − M; then G/U is not

2Given a p-group, set f
2(G) = f1(f1(G)). It follows from exp(G/f

2(G)) ≤ p2 that
f2(G) ≤ f

2(G). Let G be a 2-group such that G/f
2(G) is metacyclic. Let M be maximal

in G. Then f
2(G) = f1(f1(G)) = Φ(Φ(G)) < Φ(M) < M so d(M) = d(M/f

2(G)) ≤ 2.
Since, obviously, d(G) ≤ 2, it follows that G is metacyclic [Ber1, Theorem 3.3]. This
improves Lemma 8(b).
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metacyclic so |(G/U)/f1(G/U)| ≥ p3 (Lemma 8(a)). IfW is the inverse image
of f1(G/U) in G, then G/W is of order ≥ p3 and exponent p so W = f1(G)
since |G/f1(G)| = p3, and we get U ≤ f1(G). Thus, all members of the
set ∆1 − M are contained in f1(G). Conversely, if V ∈ ∆1 is contained in
f1(G), then G/V is not metacyclic since its epimorphic image G/f1(G) is not
metacyclic. Thus, |∆1 −M| equals the number of those members of the set
∆1 that are contained in f1(G). By Sylow, the last number is ≡ 1 (mod p)
so |M| ≡ |∆1| − 1 = ϕt,1 − 1 ≡ 0 (mod p), completing this case.

(ii) Let p = 2. Here we have to consider the nonmetacyclic quotient group
G/f2(G) (see Lemma 8(b)), whose order is at least 24 since its exponent
equals 4.

Assume that |G/f2(G)| = 24. Then f2(G) > {1} since, by hypothesis,
m > n ≥ 4. The number of members of the set ∆1 contained in f2(G),
is odd (Sylow). Therefore, if all members of the set ∆1 − M are contained
in f2(G), then |M| is even since |∆1| is odd, so, in what follows, we may
assume that there is U ∈ ∆1 − M such that U 6≤ f2(G); then Ḡ = G/U
is not metacyclic. It follows from Lemma 8(b) again, that Ḡ/f2(Ḡ) is not
metacyclic so its order is ≥ 24. Write H̄ = f2(Ḡ); then G/H(∼= Ḡ/H̄) is not
metacyclic of order ≥ 24 and exponent 4. It follows that H = f2(G) (here
we use the assumption that |G/f2(G)| = 24), contrary to the choice of U :
U 6≤ f2(G) and U ≤ H = f2(G). Thus, |G/f2(G)| > 24.

Take D ∈ M; then D 6≤ f2(G) since the nonmetacyclic group G/f2(G)
cannot be an epimorphic image of the metacyclic group G/D. We claim that
|G/f2(G)| ≤ 25. Indeed, G/Df2(G), as an epimorphic image of (metacyclic)
G/D and G/f2(G) (of exponent 4), is metacyclic of exponent 4 so its order
≤ 24, and our claim follows since Df2(G) = D × f2(G), by the choice of
D. Combining this with the result of the previous paragraph, we conclude
that |G/f2(G)| = 25. Since G/D is metacyclic, we have |Sc(G/D)| ≤ 22 so
|Sc(G)| ≤ |D||Sc(G/D)| = 23, and we conclude that |∆1| ∈ {1, 3, 7}.

Since |∆1| is odd, to complete this case, it suffices to show that the number
|∆1 − M| is also odd. Let D ∈ M; then G/D is metacyclic so D is not
contained in G′ (Lemma 8(c)) and hence G′ is of index 2 in DG′ = D × G′.
It follows that G′ is cyclic since G′ ∼= (G/D)′.

Suppose that d(G) > 2. If D ∈ M, then d(G) = 3 and G = D ×
M since D 6≤ Φ(G); here M ∼= G/D is a metacyclic maximal subgroup of
G. If |M ∩ Sc(G))| = 2, then |Sc(G)| = 4, |∆1| = 3 and |M| = 2 since
there are exactly two members of the set ∆1 not contained in M (both these
members are directly complemented by M and form the set ∆1 −{D}). Now
let |M ∩ Sc(G)| = 4; then |Sc(G)| = 8. Take U ∈ ∆1. If U < M , then
G/U = (M/U) × (DU/U) is not metacyclic (otherwise, M is abelian and so
is G), and we get U 6∈ M. If U is not contained in M , then G = U ×M and
U ∈ M since M is metacyclic. In that case, |M| = 4.

In what follows, we assume that d(G) = 2.
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Let D ∈ M again. Set Ḡ = G/D and H̄ = f2(Ḡ). Since G/Df2(G)
is metacyclic of order 16, we get H = Df2(G) = D × f2(G). Thus, for all
D ∈ M, we have |Ḡ/f2(Ḡ)| = 24 since |G/f2(G)| = 25.

Suppose that f2(G) = {1}; then G is nonmetacyclic of order 25 and
exponent 4. It follows from d(G) = 2 that G/G′ is abelian of type (4, 2)
or (4, 4). If |G′| = 2, then G is minimal nonabelian such as in Remark 4.
Indeed, if x, y ∈ G, then, since cl(G) = 2, we get [x, y2] = [x, y]2 = 1 so
Φ(G) = f1(G)G′ ≤ Z(G) and, since Φ(G) = Z(G) has index 4 in G, our claim
follows. In that case, |M| = 4 is even (Remark 4). It remains to consider the
case |G′| = 4 (indeed, by Taussky’s theorem, |G : G′| > 4 since G is not of
maximal class: G is not metacyclic). By Lemma 8(c), all members of the set
M are not contained in G′. As we have been established above, the derived
subgroup G′ is cyclic so it contains exactly one member of the set ∆1 − M
(Lemma 8(c)). Now suppose that V ∈ ∆1 is not contained in G′ (if V does
not exist, we are done since then ∆1 = {Ω1(G

′)}). In that case, |(G/V )′| =
|G′| = 4 hence |(G/V ) : (G/V )′| = 4, and so, by Taussky’s theorem, G/V is
of maximal class. In that case, exp(G) ≥ exp(G/V ) = 8 > 4 = exp(G), a
contradiction. Thus, if f2(G) = {1}, then ∆1 = {Ω1(G

′)} and G/Ω1(G
′) is

nonmetacyclic (Lemma 8(c)) so |M| = 0, contrary to the assumption: M 6= ∅.
In what follows we assume that f2(G) > {1}; then |G| ≥ 2|G/f2(G)| =

2 · 25 = 26.
Let N0 be the set of those members of the set ∆1 that are contained in

f2(G); then |N0| is odd (Sylow) and N0 ⊆ ∆1 −M. One may assume that
N0 ⊂ ∆1 − M (otherwise, |M| = |∆1| − |N0| is even, and we are done).
In that case, there exists U1 ∈ ∆1 − (M ∪ N0); then Ḡ = G/U1 is not
metacyclic. Write H̄1 = f2(Ḡ); then Ḡ/H̄1 is not metacyclic (Lemma 8(b))
so its order is ≥ 24 and, since U1f2(G) ≤ H1 and U1 6≤ f2(G), we get
H1 = U1 × f2(G) and |G/H1| = 1

2 |G/f2(G)| = 1
2 · 25 = 24. If V < H1

is a member of the set ∆1, then G/V is nonmetacyclic since its epimorphic
image G/H1

∼= Ḡ/H̄1 is not metacyclic. Let N1 be the set of members of
the set ∆1 − N0 that are contained in H1. Then |N0 ∪ N1| = |N0| + |N1|,
the number of members of the set ∆1 contained in H1, is odd (Sylow). It
follows that the number |N1| is even since the number |N0| is odd. Since
U1 ∈ N1, we obtain |N1| ≥ 2 so we get |N0 ∪N1| ≥ 1 + 2 = 3. Assuming that
N0 ∪ N1 ⊂ ∆1 −M (otherwise, we are done), we add to the set N0 ∪N1 the
set N2 (of even cardinality > 0) of new members of the set ∆1 −M. Indeed,
if U2 ∈ ∆1 − (N0 ∪ N1 ∪M), then, writing H2 = U2f2(G), we conclude, as
above with U1 and H1, that G/H2 is nonmetacyclic of order 24. We have
H1∩H2 = f2(G) since f2(G) ≤ H1∩H2 has order 1

2 |Hi|, i = 1, 2 and H1, H2

are distinct, so N2 is the set of members of the set ∆1 − (N0 ∪N1) contained
in H2 but not in H1 and |N2| > 0 is even (if Vi ∈ Ni, then Vif2(G) = Hi,
i = 0, 1, 2). Thus, we get |N0 ∪ N1 ∪ N2| ≥ 1 + 2 + 2 = 5. We claim that
then the set N0 ∪ N1 ∪ N2, which contains exactly five members, coincides
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with the set ∆1 −M. Indeed, otherwise, we can, acting as above, add to that
sum-set at least two new members of the set ∆1 − M, which is impossible
since |∆1 − M| ≤ 6: the set M 6= ∅ and |∆1| = 7. Thus, in any case, the
number |∆1 −M| is odd so that the number |M| is even, as was to be shown.

B. Now let n < m− 1. Here we consider cases p = 2 and p > 2 together.
We proceed by induction on |G|. Take H ∈ ∆1. If G/H is metacyclic, then
α(H) ≡ 1 (mod p) (Sylow). However, the number of such H , by part A of
the proof, is a multiple of p. Therefore, the contribution of such H in the
sum on the right-hand side of formula (2), is a multiple of p. Now let G/H
be not metacyclic. Then, by induction, α(H) ≡ 0 (mod p). Therefore, the
contribution of such H in the sum on the right-hand side of formula (2) is a
multiple of p again, Thus, congruence (3) is proven, and this completes the
proof.

We met, in part A of the proof of Theorem 1, a nonmetacyclic and
nonabelian two-generator group, say F , of order 24. We claim that then
F = 〈a4 = b2 = c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉. Indeed, assume that
B < F is minimal nonabelian. In that case, F = BZ(G), by [Ber3, Propo-
sition 19(a)]; then d(F ) = 3, a contradiction, Thus, B does not exist so F
is minimal nonabelian, and we are done, by Redei’s classification of minimal
nonabelian p-groups.3

Next we state an analogue of Theorem 1(b). Following Blackburn, we
call a p-group G absolutely regular provided |G/f1(G)| < pp. Absolutely
regular 2-groups are cyclic. Absolutely regular p-groups are regular, by Hall’s
regularity criterion, so that, if G is irregular, then |G/f1(G)| ≥ pp (there are
a lot of irregular p-groups G satisfying |G/f1(G)| = pp). Note that if G/Z(G)
is absolutely regular, then G is regular (to prove this, it suffices to use Mann’s
description of irregular p-groups all of whose proper sections are regular; see
[Man] or [Ber5, Theorem 7.5]).

Proposition 9. Let m > n > p− 1. Suppose that a p-group G of order
pm is not absolutely regular. Then the number of normal subgroups D of G,
such that G/D is absolutely regular of order pn, is a multiple of p.

To prove this, we have to repeat, word for word (using also the results
stated in the paragraph preceding the proposition), the proof of Theorem 1(b).
The same proof works in the case of the following more general

Supplement to Proposition 9. Let 1 ≤ k ≤ p − 1, k < n < m.
Suppose that a p-group G of order pm satisfies |G/f1(G)| > pk. Then the
number of normal subgroups D of G such that |(G/D)/f1(G/D)| ≤ pk and
|G/D| = pn, is a multiple of p.

3If p > 2, there exists a nonmetacyclic two-generator group of order p4 which is not
minimal nonabelian: this group must be of class 3.
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Let p > 2. Putting k = 2 in Supplement to Proposition 9, we get The-
orem 1(b) (see Lemma 8(a)). However, Theorem 1(b) is not a consequence
of Proposition 9. Note that the Supplement also generalizes the result of
Remark 6.

If n,m are such as in Theorem 1(a) (Proposition 9), then the group G
of order 2m (of order pm) is metacyclic (absolutely regular) if and only if the
number of normal subgroups D of G such that G/D is metacyclic of order 2n

(absolutely regular of order pn) is not divisible by 2 (by p). Therefore, one
can consider Theorem 1 (Proposition 9) as a characterization of metacyclic
2-groups (absolutely regular p-groups).

2◦. In this section we prove that representation groups of nonabelian
metacyclic p-groups are metacyclic.4 Let us recall some definitions.

Let G be a finite group. Issai Schur [Sch] (see also [BZ, Chapter 6] and
[Kar, Theorem 4.2.7]) has showed that there exists a pair M < Γ of finite
groups such that

(M1) M ≤ Z(Γ) ∩ Γ′.
(M2) Γ/M ∼= G.
(M3) If a pair M0 ≤ Γ0 satisfies (M1) and (M2), then |Γ| ≥ |Γ0|, or, what is

the same, |M | ≥ |M0|.
A group M in the Schur’s theorem is determined uniquely up to isomor-

phism (see, for example, [BZ, Chapter 6]) and is called the Schur multiplier of
G; we write M = M(G). A group Γ satisfying (M1)–(M3), is called a repre-
sentation group of G (in [Kar], this group is termed a covering group). In most
cases, a group G has > 1 representation groups5. In particular, all represen-
tation groups of given finite group have the same order. For a comprehensive
treatment of questions related to Schur multipliers and representation groups,
see fundamental monograph [Kar, Part II].

There is another definition of M(G) in terms of cohomology groups [Kar,
Theorem 4.2.6] which is used in most cases to find M(G). But below we use
the definition given above.

It follows from Burnside’s theorem [Isa1, Theorem 9.13] that if Γ is a
representation group of G, then the sets of prime divisors of |G| and |Γ| coin-
cide, so that, all representation groups of a p-group are also p-groups. Schur
has computed the multiplier of an arbitrary abelian group (see, for example,
[Kar, Theorem 10.7.1]). There are few p-groups for which all representation

4It is not true that all representation groups of abelian p-groups rank 2 are metacyclic.

Indeed, if G is abelian of type (pm, p), m ≥ 1, then Γ = 〈a, b | apm
= bp = cp = 1, c =

[a, b], [a, c] = [b, c] = 1〉 is a nonmetacyclic representation group of G. Moreover, each
abelian p-group of rank 2 and order > p2 has a nonmetacyclic representation group.

5For example, the dihedral group D2n of order 2n has three nonisomorphic representa-
tion groups: D2n+1 , Q2n+1 , the generalized quaternion group of order 2n+1, and SD2n+1 ,

the semidihedral group of order 2n+1; see below.
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groups are known (however, Schur gave an upper estimate for the number of
representation groups of an abelian p-group; see [Kar, Theorem 4.4.4]).

With such small prerequisites, we are ready to prove the following

Theorem 10. Let G be a nonabelian metacyclic p-group. Then all rep-
resentation groups of G are also metacyclic.6

Proof. If Γ is a representation group of G, then there is in Z(Γ) ∩ Γ′

a subgroup M ∼= M(G) such that Γ/M ∼= G. Since G is nonabelian, we get
M < Γ′. Since Γ/M ∼= G is metacyclic, it follows that Γ is also metacyclic
(Lemma 8(c)).

According to Isaacs’ letter on January 10, 2006, he also proved Theorem
10. His proof is based on the following

Lemma 11 (Isaacs). Let G be a p-group and let Z < G′ be G-invariant
of order p. If G/Z is metacyclic, then G is metacyclic.

Proof. Let U be normal in G with U/Z cyclic and G/U cyclic. Note
that |U/Z| > p since G/Z is not abelian. We want to show that U is cyclic.
Otherwise, U has a subgroup W of order p and different from Z.

Now let 〈xU〉 = G/U . Since U is abelian and normal in G and G/U
is cyclic, we see that G′ = [U, x] is isomorphic to U/CU (x) (Lemma 8(d)).
But Z is contained in CU (x) and U/Z is cyclic, and hence G′ is cyclic as
an epimorphic image of U/Z. Since Z is in cyclic subgroup G′, we see that
W is not in G′. Thus WZ/Z is not contained in G′/Z. But WZ/Z is the
unique subgroup of order p in U/Z, and it follows that G′/Z intersects U/Z
trivially. But G/U is abelian, so G′ < U , and thus G′/Z is trivial, contrary
to noncommutativity of G/Z.

It appears that lemmas 8(c) and 11 are equivalent (however, their proofs
are based on different ideas). Indeed, Lemma 11 follows from Lemma 8(c)
immediately. Now, assuming that Lemma 11 holds, we deduce Lemma 8(c).
To this end, we use induction on |G|. Let R be a G-invariant subgroup of
index p in G′. Assuming that G/R is metacyclic, we want to prove that G
is also metacyclic. Let Z ≤ R be a G-invariant subgroup of order p. Write
Ḡ = G/Z. Since |Ḡ| < |G|, Ḡ is metacyclic, by induction in Ḡ. In that case,
G is metacyclic, by Lemma 11. In particular, the Isaacs’ proof is the third one
of [Bla1, Theorem 2.3] (the first proof, due to Hall, is reproduced in [Bla1],
the second proof is presented in [Ber2, Theorem 2]).

The fact that Schur multipliers of metacyclic p-groups are cyclic, is known,
their orders are also computed (the proof of this is fairly involved and uses
a nontrivial cohomological machinery; see [Kar, Theorem 10.1.25]). It seems
that the main assertion of Theorem 10 on representation groups is new.

6In particular, M(G), the Schur multiplier of G, is cyclic.
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It follows from Theorem 10 that representation groups of dihedral group
of order 2n coincide with three 2-groups of maximal class and order 2n+1,
and Schur multipliers of generalized quaternion and semidihedral groups are
trivial. Indeed, if G is one of our groups of order 2n and Γ of one of its
representation groups, then |Γ : Γ′| = 4, and our claim follows from Taussky’s
theorem and the classification of 2-groups with cyclic subgroup of index 2.
The same result follows from Theorem 10, without appealing to Taussky’s
theorem. Indeed, by Theorem 10, Γ is metacyclic so Γ′ is cyclic of index 4 in
Γ. However, Γ′ = Φ(Γ) = f1(Γ) so Γ has a cyclic subgroup of index 2.

Let G = Mpn = 〈a, b | apn−1

= bp = 1, ab = a1+pn−2〉, where n > 2 and
n > 3 for p = 2. We claim that M(G) = {1}. Indeed, let Γ be a representation
group of G and let M ≤ Γ′ ∩ Z(Γ) be such that M ∼= M(G) and Γ/M ∼= G.
Then Γ/M contains two distinct cyclic subgroups A/M and B/M of index p.
Obviously, A and B are abelian, and so A ∩B = Z(Γ), hence |Γ : Z(Γ)| = p2,
and we conclude that Γ is minimal nonabelian. Then |Γ′| = p so M = {1}
since M < Γ′.

Problem 1. Let G be a group of order pm, m > n ≥ 3. Find all possible
numbers of normal subgroups N of G such that G/N is of maximal class and
order pn.7

Problem 2. Let G be a group of order pm, m > n = 2k+1 > 3. Find all
possible numbers of normal subgroups N of G such that G/N is extraspecial
of order pn. (For k = 1, see Remark 7.)

Problem 3. Describe the representation groups of abelian p-groups.

Problem 4. Describe Schur multipliers and representation groups of (a)
nonmetacyclic minimal nonabelian p-groups, (b) p-groups of maximal class.
Describe the representation groups of extraspecial p-groups (multipliers of
extraspecial p-groups are described; see [Kar, Theorem 11.8.23]).
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