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FINITE NONABELIAN 2-GROUPS IN WHICH ANY TWO
NONCOMMUTING ELEMENTS GENERATE A SUBGROUP
OF MAXIMAL CLASS

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We determine here the structure of the title groups. It
turns out that such a group G is either quasidihedral or G=HZ(G), where
H is of maximal class or extraspecial and U1(Z(G)) < Z(H). This solves a
problem stated by Berkovich. The corresponding problem for p > 2 is open
but very difficult since the p-groups of maximal class are not classified for
p>2.

1. INTRODUCTION AND KNOWN RESULTS

We determine here the structure of all finite nonabelian 2-groups in which
any two noncommuting elements generate a subgroup of maximal class. More
precisely, we prove the following result.

THEOREM 1.1. Let G be a finite nonabelian 2-group in which any two
noncommuting elements generate a subgroup of maximal class. Then one of
the following holds:

(a) |G : H2(G)| = 2 and H3(G) is noncyclic (i.e., G is quasidihedral but
not dihedral);
(b) G = HZ(G), where H is of mazimal class and U1(Z(G)) < Z(H);
(¢) G = HZ(G), where H is extraspecial of order > 2° and U1(Z(Q)) <
Z(H).
Conversely, each group in (a), (b) and (c) satisfies the assumption of the
theorem.

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite 2-groups, 2-groups of maximal class, minimal non-
abelian 2-groups, quasidihedral 2-groups, Hughes Hj-subgroups.

271



272 Z. JANKO

We consider here only finite p-groups and our notation is standard. In
particular, a 2-group S is quasidihedral if S has an abelian subgroup 7' of
exponent > 2 so that |S : T'| = 2 and there is an involution in S — 7" which
inverts each element in 7. It turns out that 7" is a characteristic subgroup of

S.

We state three known results which are used in the proof of Theorem 1.1.

PROPOSITION 1.2 (Berkovich [1, Lemma 4.2]). Let G be a p-group with
|G'| = p. Then G = (A1 % Ag x ... x A.)Z(G) (* denotes a central product),

where Ay, Aa, ..., As are minimal nonabelian subgroups.

PROPOSITION 1.3 (Berkovich [1, §58] and Kazarin [2]). Let G be a non-
abelian 2-group all of whose cyclic subgroups of composite order are normal
in G. Then we have either |G : Ho(G)| = 2 (and then G is quasidihedral) or
|G'| = 2 and the Frattini subgroup ®(G) is cyclic.

PROPOSITION 1.4 (Janko [3, Proposition 2.3]). A 2-group is of mazximal
class if and only if G is dihedral, semidihedral or generalized quaternion.

From Proposition 1.4 follows at once that if G = (a,b) is a 2-group of
maximal class, then at least one of @ and b is of order < 4 and G possesses
exactly one involution z (where (z) = Z(QG)) which is a square in G. We shall
use freely this remark in the proof of Theorem 1.1.

2. PROOF OF THEOREM 1.1

Let G be a nonabelian 2-group in which any two noncommuting elements
generate a subgroup of maximal class. We may assume that G is not of
maximal class.

(i) First we assume that exp(G) > 4. Suppose for a moment that each
element of order > 8 lies in Z(G). Let z,y € G with [z,y] # 1. Since (z,y) is
of maximal class, we have in our case (x,y) = Dsg or (z,y) = Qs. Let k be an
element of order 8 so that here k € Z(G). But then kx and ky are elements of
order 8 with [kz, ky] = [z,y] # 1 and therefore (kx, ky) is of maximal class, a
contradiction. We have proved that GG possesses a cyclic subgroup A of order
> 8 such that A £ Z(G).

It is easy to see that any cyclic subgroup X of order > 8 is normal in G.
Indeed, let g € G so that g either centralizes X or (X, g) is of maximal class
in which case g normalizes X.

Let y € G be such that [A,y] # 1 and so (A,y) is of maximal class.
Then (A,y) contains a subgroup of maximal class (B,y) of order 2%, where
B =(b) 2 Cs, B< A, and y? € Q1(B) = (). We know that B is normal
in G. Set M = Cg(B) so that G/M # {1} is elementary abelian of order
< 4. If G/M = E4, then there is | € G — M such that (2 € M, [? centralizes
B and b' = bz. But then (b,1)’ = (z) and so (b, 1) is not of maximal class, a
contradiction. Thus |G : M| = 2.
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For each x € G — M, 2? € (z). Indeed, [b,z] # 1 and so (b,x) is of
maximal class and therefore 22 € Q;(B) = (z). Consider G = G/(z). Then
all elements in G — M are involutions which implies that M/(z) is abelian and
foreachm e M, m¥y =m™ 125, e =0, 1.

Suppose that M is nonabelian. Then M’ = (z) and let m,n € M with
[m,n] = z. In that case (since (m,n) is of maximal class), (m,n) = Dg or
2 @s. But then bm and bn are elements of order 8 with [bm, bn] = [m,n] = 2z
and so (bm,bn) is of maximal class, a contradiction. Hence M is abelian. If
M is cyclic, then (M,y) = G is of maximal class, a contradiction. Thus, M
is noncyclic abelian.

If all elements in G — M are involutions, then Hy(G) = M and we have
obtained a group in part (a) of our theorem.

We may assume that not all elements in G — M are involutions and so
we may suppose y2> = z. Let t be any involution in M — (z) and assume
that ¢ is a square in M, i.e., there is k € M such that k2 = ¢. Since kY =
k=12¢ (e = 0,1), (y, k) is nonabelian. In that case (y, k) is of maximal class
containing two distinct involutions z and ¢ which are squares in (y, k), a
contradiction. We have proved that M is abelian of type (2%,2,...,2), s > 3.
Setting E = Q1(M), we get M = (V')E, where o(V/) = 25, |E| > 4, and
BYNE = Q1((t))) = (z) since z is the unique involution in M which is a
square in M. Since (b)Y = (b')7127 (n = 0,1), H = (b, y) is of maximal
class and G = HE. For each t € E, we have either tY =t or t¥ =tz. If y
centralizes E, then E = Z(G). If y does not centralize E, then Ey = Cg(y)
is of index 2 in E. Let v be an element of order 4 in (b’) and let u € E — Ey.
In that case

(vu)? = v~ (uz) = (v2)(uz) = vu and (vu)? = z,

and so Z(G) = Ep(vu) with U1(Z(G)) = (z). In any case we get G = HZ(G),
Z(G) > Z(H) = (z), and U1(Z(G)) < (z). We have obtained a group in part
(b) of our theorem.

(ii) We examine now the case exp(G) = 4. Let () be a cyclic subgroup
of order 4 and y € G. Then either [z,y] = 1 or (z,y) = Dg or Q. In any
case y normalizes (z) and so each cyclic subgroup of order 4 is normal in G.
We may use Proposition 1.3. It follows that either |G : H3(G)| = 2 (and we
get a group of part (a) of our theorem) or |G'| = 2 and ®(G) is cyclic.

Suppose that we are in the second case. Since GG does not possess elements
of order 8, we have |®(G)| = 2 and then ®(G) = G’. The fact |G’'| = 2 implies
that G = Hy* Hy*...x H,Z(G), where H; (i = 1,...,n) is minimal nonabelian
(Proposition 1.2). In our case H; =& Dg or Qs and so H = Hy x Hy* ...« H,, is
extraspecial. Also, ®(G) = G' = H' = Z(H) implies that U1(Z(G)) < Z(H).
If n = 1, we have obtained a group of part (b) of our theorem and so we may
assume that n > 1. In that case |H| > 2° and we have obtained a group of
part (c) of our theorem.
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It is necessary to prove only for groups (b) and (c) of our theorem that
any two noncommuting elements generate a group of maximal class. Indeed,
let h1z1 and hozo be any noncommuting elements in GG, where hy, ho € H and
21,29 € Z(G) Then [hlzl,hQZ’Q] = [hl,hz] 7é 1 and so Hy = <h1,h2> < H
is a group of maximal class with Hj > Z(H). On the other hand, a 2-group
(h1,ha) is of maximal class if and only if [h1, ho] # 1, ([h1, h2]) is normal in
Hy and h?,h3 € ([h1, hz]). Hence Hy; = (h121, haz2) is of maximal class since
[hlzl, h222] = [hl, hg] 75 1, hlzl and hQZQ normalize <[h121, h222]> = <[h1, h2]>
and (h121)?, (hez2)? are contained in ([h1, ho]) (noting that 27,23 € Z(H) <
Hj = Hy).
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