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Abstract. A second-metacyclic finite p-group is a finite p-group
which possesses a nonmetacyclic maximal subgroup, but all its subgroups
of index p2 are metacyclic. In this article we determine up to isomorphism
all second-metacyclic p-groups for odd primes p. There are ten such groups
of order p4, for each prime p ≥ 3, and two such groups of order 35.

1. Introduction

A second-metacyclic group is a group possessing a maximal nonmetacyclic
subgroup, but it’s second-maximal subgroups are all metacyclic. All second-
metacyclic finite 2-groups were determined in [1]. The aim of this article is
to determine all second-metacyclic finite p-groups for p > 2. We prove the
following

Theorem 1.1. Let G be a second-metacyclic finite p-group for some odd
prime p. Then either |G| = p4, or |G| = 35.

(1) If |G| = p4, then G is isomorphic to one of the following groups:

G1 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = [b, c]

= [b, d] = [c, d] = 1〉 ∼= Ep4 ,

G2 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = [a, c] = [b, c] = 1〉 ∼= Zp2 ×Ep2 ,

G3 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = [b, c]

= [b, d] = 1, [c, d] = a〉 = 〈b, c, d〉,
Z(G3) = 〈a, b〉, G′

3 = 〈a〉, f1(G3) = 1,
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G4 = 〈a, b, c, d | ap = bp = cp = 1, dp = a, [a, b] = [a, c] = [a, d] = [b, c]

= [b, d] = 1, [c, d] = a〉 = 〈b, c, d〉,
Z(G4) = 〈a, b〉, G′

4 = 〈a〉, f1(G4) = 〈a〉,
G5 = 〈a, b, c, d | ap = bp = cp = 1, dp = b, [a, b] = [a, c] = [a, d] = [b, c]

= [b, d] = 1, [c, d] = a〉 = 〈b, c, d〉,
Z(G5) = 〈a, b〉, G′

5 = 〈a〉, f1(G5) = 〈b〉,
G6 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = [b, c] = 1,

[b, d] = a, [c, d] = b〉 = 〈c, d〉,
Z(G6) = 〈a〉, G′

6 = 〈a, b〉, f1(G6) = 1,

G7 = 〈a, b, c, d | ap = bp = cp = 1, dp = a, [a, b] = [a, c] = [a, d] = [b, c] = 1,

[b, d] = a, [c, d] = b〉 = 〈c, d〉,
Z(G7) = 〈a〉, G′

7 = 〈a, b〉, f1(G7) = 〈a〉,
G8 = 〈a, b, c, d | ap = bp = cp = 1, dp = a, [a, b] = [a, c] = [a, d] = [b, d]

= [c, d] = 1, [b, c] = a〉 = 〈b, c, d〉,
Z(G8) = 〈d〉, G′

8 = 〈a〉, f1(G8) = 〈a〉,
G9 = 〈a, b, c, d | ap = bp = cp = 1, dp = a, [a, b] = [a, c] = [a, d] = [b, d] = 1,

[b, c] = a, [c, d] = b〉 = 〈c, d〉,
Z(G9) = 〈a〉, G′

9 = 〈a, b〉, f1(G9) = 〈a〉,
G10 = 〈a, b, c, d | ap = bp = cp = 1, dp = aσ , [a, b] = [a, c] = [a, d] = [b, d] = 1,

[b, c] = a, [c, d] = b〉 = 〈c, d〉,
σ − being the minimal quadratic nonresidue modulo p,

Z(G10) = 〈a〉, G′
10 = 〈a, b〉, f1(G10) = 〈a〉.

Here, the groups G1 − G7 contain an elementary abelian subgroup
〈a, b, c〉 ∼= Ep3 , and the groups G8 − G10 contain none such subgroup.
For these groups 〈a, b, c〉 ∼= Sp(p3), the special group of order p3.

(2) If |G| = 35, then G is isomorphic to one of the following groups of
maximal nilpotent class:

G11 = 〈a, b, c, d, f | a3 = b3 = 1, c3 = d3 = a, f3 = ab, [a, b] = [a, c] = [a, d]

= [a, f ] = [b, c] = [b, f ] = [c, f ] = 1, [b, d] = a2, [c, d] = b, [d, f ] = c〉
= 〈d, f〉, Z(G11) = 〈a〉, Z2(G11) = 〈a, b〉, G′

11 = 〈a, b, c〉.
Here, M = 〈a, b, c, f〉 is the unique abelian maximal subgroup of G11.

G12 = 〈a, b, c, d, f | a3 = b3 = 1, c3 = d3 = a, f3 = b, [a, b] = [a, c] = [a, d]

= [a, f ] = [b, c] = [b, f ] = 1, [b, d] = a2, [c, d] = b, [c, f ] = a2, [d, f ] = c〉
= 〈d, f〉, Z(G12) = 〈a〉, Z2(G12) = 〈a, b〉, G′

12 = 〈a, b, c〉.
G12 does not contain any abelian maximal subgroup.
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2. Notation and preliminaries

At the beginning we recall some definitions and known results.

Definition 2.1. A group G is metacyclic, G ∈ MC, if it possesses a
cyclic normal subgroup N such that the factorgroup G/N is also cyclic. We
say that G is proper metacyclic if G is metacyclic but not cyclic.

Definition 2.2. G is minimal nonmetacyclic, G ∈ MC1, if G is not
metacyclic, but all its maximal subgroups are metacyclic.

Definition 2.3. G is second-metacyclic group, G ∈ MC2, if it possesses
a nonmetacyclic maximal subgroup, but all its second-maximal subgroups are
metacyclic.

Proposition 2.4. If G is a proper metacyclic group of order |G| = 33,
then either

G = 〈x | x9 = 1〉 × 〈y | y3 = 1〉 ∼= Z9 × Z3, or

G = 〈x, y | x9 = y3 = 1, xy = x4〉,
for some x, y ∈ G, and it is f1(G) = 〈x3〉,Ω1(G) = 〈x3, y3〉 in both cases.

Proposition 2.5. If G is a p-group of order |G| = p2, then G is abelian
and |AutG|, the order of its automorphism group, is divisible by p, but not by
p2.

Proposition 2.6. For S ⊆ G, denote by 〈〈S〉〉 the normal closure of
S in G, that is the minimal normal subgroup of G containing S. For G =
〈a1, a2, ..., at〉 is G′ = 〈〈[ai, aj ] | 1 ≤ i < j ≤ t〉〉.

Theorem 2.7 (Blackburn [1], Huppert [3, III.14.2]). Let G be a p-group
of maximal class of order pn. Then for each k, 0 ≤ k ≤ n − 2, there exist
exactly one normal subgroup N of G of order pk and N = Zk(G) = Kn−k(G).

Theorem 2.8 (Blackburn [1], Huppert [3, III.11.11]). Let G be a p-group,
which is minimal nonmetacyclic. Then one of the following assertions holds:

(a) G is elementary abelian of order p3.
(b) It is p > 2 and G is nonabelian of exponent p and order p3.
(c) G is a 3-group of class 3 and of order 34.
(d) G is a 2-group with |G| ≤ 25.

Theorem 2.9 (Blackburn [1], Huppert [3, III.11.12]). Let p > 2 and
|G| = p5, and let all subgroups of order p3 in G be generated by two elements.
Then one of the following assertions holds:

(a) G is metacyclic.
(b) G is a 3-group of maximal class.
(c) The group Ω1(G) is of order p3 and exponent p and G/Ω1(G) is cyclic.
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Theorem 2.10. If G is a nonabelian p-group, possessing an abelian max-
imal subgroup, then |G| = p · |G′| · |Z(G)|.

Proof. Let A be a maximal subgroup of G which is abelian, and g ∈
G \A. The mapping ϕ : A → A,ϕ(a) = [a, g], is homomorphism with Imϕ =
G′,Kerϕ = Z(G), and thus A/Z(G) ∼= G′.

Therefore |A| = |G| : p = |Z(G)| · |G′| which yields to the above formula.

3. Proof of Theorem 1.1

Let G ∈ MC2, G being a p-group for some odd prime p. By definition
of MC2, the group G contains some maximal subgroup H ∈ MC1, and by
Theorem 2.8, H is of order p3 or 34. Therefore |G| = p4 or |G| = 35.

In representing groups by generator orders and commutators, we shall
omit, for brevity, those commutators of generators which equal 1 (that is for
pairs of commuting generators).

A. Case |G| = p4.
Obviously, for G′ = 1, G must contain a subgroup H isomorphic to Ep3

and exp(G) ≤ p2. Thus, in this case G is isomorphic either to

G1 = 〈a, b, c, d | ap = bp = cp = dp = 1〉 ∼= Ep4 , or

G2 = 〈a, b, c | ap2 = bp = cp = 1〉 ∼= Zp2 ×Ep2 .

In the following we assume that G′ > 1. By Theorem 2.8 either H ′ = 1 and
H = 〈a, b, c〉 ∼= Ep3 , or H ′ 6= 1 and H = 〈a, b, c | ap = bp = cp = 1, [b, c] =
a〉 ∼= Sp(p3).

A1. H ′ = 1 :
Now, G = 〈H, d | dp ∈ H〉. By Theorem 2.10, |G| = p · |G′| · |Z(G)| = p4

and so either |Z(G)| = p2, |G′| = p, or |Z(G)| = p, |G′| = p2.

A1.1 |Z(G)| = p2, |G′| = p :
Here, we may assume G′ = 〈a〉 < Z(G) = 〈a, b〉, with [c, d] = a.

Since [d, dp] = 1, it is dp ∈ Z(G) and we have, without loss, three differ-
ent possibilities: dp = 1, dp = aα 6= 1 and dp = b. But if dp = aα, then
[cα, d] = [c, d]α = aα, as [c, d] ∈ Z(G), and substituting aα for a and cα

for c, we get [c, d] = dp = a in this case. Thus we obtain three different
MC2-groups:

G3 = 〈H, d | dp = 1, [c, d] = a〉,
G4 = 〈H, d | dp = a, [c, d] = a〉,
G5 = 〈H, d | dp = b, [c, d] = a〉.

A1.2 |G′| = p2, |Z(G)| = p :
We may assume that Z(G) = 〈a〉 < G′ = 〈a, b〉. Denoting x = x〈a〉 for

x ∈ G, we see that (G/〈a〉)′ = G′/〈a〉 = 〈b〉 = Z(G/〈a〉), as |G/〈a〉| = p3 and
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G/〈a〉 is not abelian. Therefore, bd = aαb, α 6= 0 and cd = aγbβc, β 6= 0, as
b ∈ G′ \ Z(G). Substituting aα for a and aγbβ for b, we get

G = 〈a, b, c, d | dp ∈ Z(G), [b, d] = a, [c, d] = b〉.
We have two possibilities: dp = 1 or dp = aδ , δ 6= 0. If dp = 1, then we obtain

G6 = 〈a, b, c, d | dp = 1, [b, d] = a, [c, d] = b〉.
If dp = aδ , then for c′ = cδ, b′ = [c′, d] = [cδ , d] = [c, d]δ = bδ, a′ = [b′, d] =
[bδ, d] = [b, d]δ = aδ , and we get, after substituting a′, b′, c′ for a, b, c, the
group

G7 = 〈a, b, c, d | dp = a, [b, d] = a, [c, d] = b〉.
A2. H ∼= Sp(p3) and if M < G, then M � Ep3 :
Now, H = 〈a, b, c | ap = bp = cp = 1, [b, c] = a〉, Z(H) = 〈a〉.
Let K ≤ H,K C G, |K| = p2. Then K ∼= Ep2 and NG(K)/CG(K) =

G/CG(K) ≤ AutK. We may assume without loss that K = 〈a, b〉.
As p2 6 | |AutK|, by Proposition 2.5 it is |G/CG(K)| ≤ p and there exists

A,A < G, such that K < A ≤ CG(K) ≤ G and |A| = p3. Since K ≤ Z(A), A
is abelian. By assumption A � Ep3 and also A � Zp3 , as G is not metacyclic.
Thus A ∼= Zp2×Zp. From 〈a〉 char HCG it follows 〈a〉CG and so 〈a〉 ≤ Z(G).
Therefore a ∈ K, since otherwise 〈a〉×K ∼= Ep3 , contradicting our assumption.
Now, we may assume without loss that K = 〈a, b〉 = Ω1(A). Because of
f1(A) char A C G, it is f1(A) ≤ Z(G) too. But Z(H) = 〈a〉 only, and so
f1(A) = 〈a〉. Thus A = 〈a, b, d | dp = aα, α 6= 0〉, for some d ∈ A \K. The
group A is an abelian maximal subgroup in G, and by Theorem 2.10 it must
be either |Z(G)| = p2, |G′| = p, or |Z(G)| = p, |G′| = p2 again.

A2.1 |Z(G)| = p2, |G′| = p :
Now, Z(G) ≤ A because G is not abelian, and we may assume without

loss that d ∈ Z(G) = 〈a, d〉 = 〈d〉. Let γ be such that αγ ≡ 1 (mod p). Then
(dγ)p = (dp)γ = aαγ = a, and substituting d by dγ , we get the group

G8 = 〈a, b, c, d | dp = a, [b, c] = a〉.

A2.2 |Z(G)| = p, |G′| = p2 :
Now, Z(H) = 〈a〉 = Z(G) < G′. Since G/K is abelian, it is G′ ≤ K

and so G′ = K = 〈a, b〉. Clearly, [c, d] ∈ K \ 〈a〉, as G′ > 〈a〉. Substituting
b′ = [c, d] for b, and a′ = [b′, c] for a, we get

G = 〈a, b, c, d | ap = bp = cp = 1, [b, c] = a, [c, d] = b, dp = aα〉,
for some α 6= 1. Substituting c by c′ = cγ , γ 6= 0, we get [c′, d] = [cγ , d] =
bγaε = b′, for some ε, since (G/〈a〉)′ = 〈b, a〉/〈a〉 = Z(G/〈a〉), and so

[cγ , d] ≡ [c, d]γ ≡ bγ(mod 〈a〉). Now [b′, c′] = [bγaε, cγ ] = [bγ , cγ ] = aγ
2

= a′.
Substituting a′, b′, c′ for a, b, c we get

G = 〈a, b, c, d | ap = bp = cp = 1, [b, c] = a, [c, d] = b, dp = a
α

γ2 〉,



280 V. ĆEPULIĆ, O. PYLIAVSKA AND E. KOVAČ STRIKO

with γ 6= 0, arbitrarily choosable. If α ≡ τ 2 (mod p), for some τ, replacing γ
by τ we get

G9 = 〈a, b, c, d | ap = bp = cp = 1, [b, c] = a, [c, d] = b, dp = a〉.
Otherwise, α ≡ στ2, for some τ and, without loss, the minimal quadratic
nonresidue σ modulo p. Replacing again γ by τ we get the group

G10 = 〈a, b, c, d | ap = bp = cp = 1, [b, c] = a, [c, d] = b, dp = aσ〉,
σ being the minimal quadratic nonresidue modulo p.

B. CASE |G| = 35.
Now, G contains a maximal subgroup H ∈ MC1, |H | = 34. According to

Theorem 2.8 the group H is of maximal class. As H is not metacyclic, its
maximal subgroups cannot be cyclic. Thus, by Theorem 2.7 and Theorem 2.8,
for each L < H with |L| = 33, it is exp(L) = 32,f1(L) = Z(H) ∼= Z3,Ω1(L) =
H ′ = Φ(H) = Ω1(H) ∼= E9, since f1(L),Ω1(L) CH, as LCH. We set H ′ =
〈a, b | a3 = b3 = 1〉, Z(H) = 〈a〉 for some a, b ∈ H. Because of |AutE9| = 24 ·3,
we have |H/CH(H ′)| = 3, and the groupA = CH(H ′) = 〈a, b, c〉, where c ∈ A\
H ′, is abelian. Let K be an other maximal subgroup of H, K = 〈a, b, d〉. Now,
H = 〈A,K〉 = 〈a, b, c, d〉. If K is abelian, then 〈a, b〉 ≤ Z(H), a contradiction.
Thus K ′ = Z(H) = 〈a〉. We may assume without loss that c3 = d3 = a, as by
Theorem 2.7 and Proposition 2.4, f1(K) = 〈a〉 too. From H = 〈Φ(H), c, d〉
and [c, d] ∈ H ′ \Z(H), as H ′ > Z(H), it follows that we can set [c, d] = b and

[b, d] = aα, α ∈ {1, 2}. Now, (cd)3 = cd3cd
2

cd = cacbbaαcb = aα+1c3 = aα+2.
Since cd ∈ H \ Ω1(H), it is (cd)3 6= 1 implying α = 2. Therefore,

H = 〈a, b, c, d | a3 = b3 = 1, c3 = d3 = a, [b, d] = a2, [c, d] = b〉.
We proceed to determine G. Since |G| = 35 and all its subgroups of order
33 are metacyclic, we can apply Theorem 2.9. As there is none subgroup of
order 33 and exponent 3 in G, it follows that G is also of maximal class. Now,
Theorem 2.7 implies that Z(G) = Z(H) = 〈a〉, Z2(G) = H ′, G′ = Φ(G) =
CH(H ′) = A, as all these groups are characteristic in H, which is normal
in G. Moreover, Ω1(G) = H ′, as G ∈ MC2 and H ′ ∼= E9. Consider now,
M = CG(H ′) = 〈a, b, c, f〉, for some f ∈ G \ H. As Z(M) ≥ H ′ ∼= E9, and
all maximal subgroups of M, being of order 33, are metacyclic, M must also
be metacyclic, since otherwise it would be isomorphic to H, a contradiction
because of Z(H) ∼= Z3. If exp(M) = 33, then we may choose f such that
〈f〉 ∼= Z27 and there is some x ∈ 〈a, b〉 ≤ Z(M) such that x /∈ 〈f〉 and
therefore M = 〈f〉×〈x〉 ∼= Z27 ×Z3. Now, f1(M) = 〈f3〉CG, and 〈f3〉 ∼= Z9,
which contradicts Theorem 2.7, as Z2(G) ∼= E9. Therefore exp(M) = 32,
and M ∼= 〈x, y | x9 = y9 = 1, [x, y] ∈ 〈x3〉〉, for some x, y ∈ M. Now,
M ′ ≤ 〈x3〉 ∼= Z3 and M ′ C G, which implies M ′ ≤ 〈a〉. Since c3 = a, it is
〈c〉 > M ′ and so 〈c〉CM. Therefore, we may assume c = x, f = y and f1(M) =
〈a, b〉 implies f3 = aαbβ, with β ∈ {1, 2}. Because of G′ = 〈a, b, c〉 = Φ(G),
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it is G = 〈a, b, c, d, f〉 = 〈d, f〉, and G′ = 〈〈[d, f ]〉〉 the normal closure of
〈[d, f ]〉. Therefore [d, f ] ∈ A \H ′, since otherwise G′ = H ′, a contradiction.
Substituting f by f2, if necessary, and substituting c by [d, f ] we get again
[b, d] = a2 for these new generators. Moreover, [c, f ] = aγ , γ ∈ {0, 1, 2}
because [c, f ] ∈M ′ ≤ 〈a〉. Thus G can be written as:

G = 〈a, b, c, d, f | a3 = b3 = 1, c3 = d3 = a, f3 = aαbβ ,

[d, f ] = c, [c, d] = b, [c, f ] = aγ , [b, d] = a2〉.

Now,

[d, f3] = [d, f ][d, f2]f = [d, f ][d, f ]f [d, f ]f
2

= c · cf · cf2

= c · caγ · caγaγ = c3 = a,

and

[d, f3] = [d, aαbβ ] = [d, bβ] = [bβ, d]−1

= (b−β(bβ)d)−1 = (b−βbβa2β)−1 = aβ ,

implying β = 1 and therefore f3 = aαb.
Next, we calculate (df)3 and (d2f)3, which should both be different from

1 :

(df)3 = df3df
2

df = daαb · dccaγ · dc = d2(aαb)dc2aγdc

= aα+γd3(aαb)d
2

(c2)dc = aα+γ · a · ba · c2b2c = aα+γa2 · a = aα+γ ,

(d2f)3 = (d · df)3 = d(df)3d(df)2ddf = daα+γ · dc · caγb · dc
= aα+2γd3(c2b)dc = aα+2γ+1c2b2ba2c = aα+2γ+1.

Therefore, α + γ 6= 0 (mod 3), α + 2γ + 1 6= 0 (mod 3), which gives pos-
sibilities (α, γ) ∈ {(1, 0), (1, 1), (0, 2), (2, 2)}. In the case (α, γ) = (1, 0),
M ′ = CG(H ′) = 〈a, b, c, f〉′ = 1 and in other cases M ′ > 1. Replacing f
by f2, d by df, c by c2, b by a2b2, and a by a2, the case (α, γ) = (1, 1) goes
over in (α, γ) = (0, 2), and replacing d by df, c by a2c and b by a2b the case
(α, γ) = (2, 2) goes over in (α, γ) = (0, 2) as well. Thus there remain only the
cases (α, γ) = (1, 0) and (α, γ) = (0, 2), giving the groups

G11 = 〈a, b, c, d, f | a3 = b3 = 1, c3 = d3 = a, f3 = ab, [d, f ] = c, [c, d] = b,

[b, d] = a2〉

and

G12 = 〈a, b, c, d, f | a3 = b3 = 1, c3 = d3 = a, f3 = b, [d, f ] = c, [c, d] = b,

[c, f ] = a2, [b, d] = a2〉.

Our Theorem 1.1 is proved.
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V. Ćepulić
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