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ABSTRACT. A second-metacyclic finite p-group is a finite p-group
which possesses a nonmetacyclic maximal subgroup, but all its subgroups
of index p? are metacyclic. In this article we determine up to isomorphism
all second-metacyclic p-groups for odd primes p. There are ten such groups
of order p*, for each prime p > 3, and two such groups of order 3°.

1. INTRODUCTION

A second-metacyclic group is a group possessing a maximal nonmetacyclic
subgroup, but it’s second-maximal subgroups are all metacyclic. All second-
metacyclic finite 2-groups were determined in [1]. The aim of this article is
to determine all second-metacyclic finite p-groups for p > 2. We prove the
following

THEOREM 1.1. Let G be a second-metacyclic finite p-group for some odd
prime p. Then either |G| = p*, or |G| = 35.
(1) If |G| = p*, then G is isomorphic to one of the following groups:
G1 = {a,b,e,d|a? =bP =P =dP =1, ]a,b] = [a,c] = [a,d] = [, ]
=[b,d =[c,d] =1) = Epa,
Gy = (a,bc|a” =P =@ =1,[a,b] = [a,d = [b,c] = 1) = Z,» x Ep,
Gs = (a,b,c,d|a? =bP =P =dP =1, ]a,b] = [a,c] = [a,d] = [b, (]
= [b7d] = L[C,d] :a> = ,C,d>,
Z(Gs) = (a,b), Gy = (a), U:1(G3) =1,
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Gy = (a,b,c,d|a? =P =P =1,d° =a [a,b]:[ ,c] = [a,d] = [b, ]
=[b7d]=1 [c,d] =a) = (b,c
Z(Gy) = (a,b), Gy =(a), U:(G4 ):<a>u
Gs = (a,b,c,d|ap:bp:cp:1dp:b,[ bl = [a,c] = [a,d] = [b, ]
=[b,d] =1,[c,d] = a) = (b, c,d),
Z(Gs) = (a,b), G5 = (a), U1(G5) = (b),
Gs = (a,b,c,d|a? =bP =cP =dP =1,[a,b] = [a,c¢] = [a,d] =[b,c] =1,

[bv d] = a, [67 d] - b> < d>
Z(GG) = <a>7 G/G = <a7b>a Ul(GG) = 17
Gr = {(a,b,c,d|a? =b" =cP =1,d° = a,a,b] = [a,c] =[a,d] = [b,c] =1,
[b,d] = a,[c,d] =b) = (c,d),
Z(Gr) = {a), G7 = {a,b), U1(G7) = (a),
G8 = (a,b,c,d | a? =b’ =cl = ladp =a, [a7b] = [ ,C] = [a7d] = [bvd]
=le,d] =1,[b,c] = a) = (b,c,d),
Z(Gs) = (d), Gg = (a), U1(Gs) = (a),
Gy = {(a,b,c,d|a? =b" =P =1,d° = q,[a,
[b,c] = a,[c,d] =b) = (c,d),
Z(G9) = <a>7 Gé = <a7b>, Ul(G9) = (a),
GlO = (a,b,c,d | a’ =b =c’= ladp = aa, [&,b] = [a7d = [aad} = [b7d] = 15
[bv C] =a, [C7 d] = b> = <Ca d>7
o — being the minimal quadratic nonresidue modulo p,
Z(Go) = (a), Gio = (a,b), U1(G1o) = (a).
Here, the groups G1 — Gr contain an elementary abelian subgroup
(a,b,c) = E,s, and the groups Gg — G1g contain none such subgroup.
For these groups (a,b, c) = Sp(p?), the special group of order p®.
(2) If |G| = 3%, then G is isomorphic to one of the following groups of
mazximal nilpotent class:
G = (a,bc,d, f|a®=b>=1,c=d> =a, f3:ab [a,b] = [a,c] = [a,d]
=la, fl=[b,d =0 fl=lc fl=1[d =a*[cd =bd f]=c)
= (d,f), Z(Gu1) = (a), Z2(G11) = (a,b), G}y = (a,b,c).
Here, M = (a,b,c, f) is the unique abelian maximal subgroup of G11.
Gio = {(a,b,c,d, f|a®> =0 =1, =d® =a, f3=0,[a,b] = [a,c] = [a,d]
=la, f]=[b,d) = [b, f] =1,[b,d] = a® [c, d] =b,c,f]=a*[d, f]=¢)
= <d7 f>a Z(G12) = < >7 ZQ(G12> = <a7b>a 12 = <a” b7 C>'

G112 does not contain any abelian mazimal subgroup.

] [’C]:[a7d]:[bvd]:17
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2. NOTATION AND PRELIMINARIES
At the beginning we recall some definitions and known results.

DEFINITION 2.1. A group G is metacyclic, G € MC, if it possesses a
cyclic normal subgroup N such that the factorgroup G/N is also cyclic. We
say that G is proper metacyclic if G is metacyclic but not cyclic.

DEFINITION 2.2. G is minimal nonmetacyclic, G € MCy, if G is not
metacyclic, but all its maximal subgroups are metacyclic.

DEFINITION 2.3. G is second-metacyclic group, G € MCa, if it possesses
a nonmetacyclic maximal subgroup, but all its second-maximal subgroups are
metacyclic.

PROPOSITION 2.4. If G is a proper metacyclic group of order |G| = 32,
then either

G=(x|a”=1)x(y|y’=1)=Zy x Zs, or
G=(z,yla® =y’ =1a" =a"),
for some z,y € G, and it is U1(G) = (2®), Q1 (G) = (23, y3) in both cases.

PROPOSITION 2.5. If G is a p-group of order |G| = p?, then G is abelian
and |AutG)|, the order of its automorphism group, is divisible by p, but not by
p*.

PROPOSITION 2.6. For S C G, denote by ({(S)) the normal closure of

S in G, that is the minimal normal subgroup of G containing S. For G =
(a1,a9,...,a:) is G = ({[ai,a;] | 1 <i < j<t)).

THEOREM 2.7 (Blackburn [1], Huppert [3, 111.14.2]). Let G be a p-group
of mazximal class of order p™. Then for each k,0 < k < n — 2, there exist
ezactly one normal subgroup N of G of order p* and N = Z,(G) = K, _x(G).

THEOREM 2.8 (Blackburn [1], Huppert [3, III.11.11]). Let G be a p-group,
which is minimal nonmetacyclic. Then one of the following assertions holds:

(a) G is elementary abelian of order p3.

(b) It is p > 2 and G is nonabelian of exponent p and order p3.
(c) G is a 3-group of class 3 and of order 3*.

(d) G is a 2-group with |G| < 25.

THEOREM 2.9 (Blackburn [1], Huppert [3, 1I11.11.12]). Let p > 2 and
|G| = p°, and let all subgroups of order p® in G be generated by two elements.
Then one of the following assertions holds:

(a) G is metacyclic.
(b) G is a 3-group of maximal class.
(c) The group Q1(G) is of order p> and exponent p and G/ (G) is cyclic.
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THEOREM 2.10. If G is a nonabelian p-group, possessing an abelian mazx-
imal subgroup, then |G| =p-|G'|-|Z(G)|.

PROOF. Let A be a maximal subgroup of G which is abelian, and g €
G\ A. The mapping ¢ : A — A, ¢(a) = [a, g], is homomorphism with Im ¢ =
G, Kerp = Z(G), and thus 4/Z(G) =2 G'.

Therefore |A| = |G| : p = |Z(G)| - |G'| which yields to the above formula.

O

3. PROOF OF THEOREM 1.1

Let G € MC;, G being a p-group for some odd prime p. By definition
of MCy, the group G contains some maximal subgroup H € MCy, and by
Theorem 2.8, H is of order p® or 3%. Therefore |G| = p* or |G| = 3°.

In representing groups by generator orders and commutators, we shall
omit, for brevity, those commutators of generators which equal 1 (that is for
pairs of commuting generators).

A. Cask |G| = pt.
Obviously, for G’ = 1, G must contain a subgroup H isomorphic to Es
and exp(G) < p?. Thus, in this case G is isomorphic either to

Gi1={a,bc,d|a’? =P = =dP =1)=E

pt, OT
G2 = {(a,b,c| a?’ =P =P = 1) =2 Zype x Ep.

In the following we assume that G’ > 1. By Theorem 2.8 either H' = 1 and
H = (a,b,c) = Eps, or H # 1 and H = (a,b,c | a? = b =P =1,[b,c] =
a) = Sp(p®).

Al. H =1:

Now, G = (H,d | d’ € H). By Theorem 2.10, |G| =p-|G'| - |Z(G)| = p*
and so either |Z(G)| = p?,|G'| = p, or | Z(G)| = p, |G'| = p*.

ALL|Z(G)| = p* |G| = p:

Here, we may assume G' = (a) < Z(G) = (a,b), with [¢,d] = a.
Since [d,dP] = 1, it is dP € Z(G) and we have, without loss, three differ-
ent possibilities: dP = 1,dP = a® # 1 and dP = b. But if d? = a®, then

[c*,d] = [e,d]* = a%, as [¢,d] € Z(G), and substituting a* for a and ¢*
for ¢, we get [¢,d] = dP = a in this case. Thus we obtain three different
MCs-groups:

Gs = (H,d|d’ =1,[c,d] = a),

Gy=(H,d|d’ =a,|c,d] = a),

Gs=(H,d|d’ =b,[c,d] = a).

AL2 |G| =p%|Z(G)| =p
We may assume that Z(G) = (a) < G’ = (a,b). Denoting T = x(a) for

T € G, we see that (G/(a)) = G'/{a) = (b) = Z(G/{a)), as |G/{a)| = p* and

~



SECOND-METACYCLIC FINITE p-GROUPS FOR ODD PRIMES 279

G/(a) is not abelian. Therefore, b? = a®b,a # 0 and c? = a"b’¢, 8 # 0, as
be G\ Z(G). Substituting a® for a and a7b? for b, we get

G =(a,b,c,d| dP € Z(G),[b,d] = a,|c,d] = ).
We have two possibilities: dP =1 or d? = a’,§ # 0. If dP = 1, then we obtain
Ge = (a,b,c,d | d’ = 1,[b,d] = a,[c,d] = D).
If dP = a°, then for ¢ = b = [¢,d] = [¢’,d] = [c,d]’ =, a’ = [V,d] =
[b0,d] = [b,d]° = a°, and we get, after substituting a’,b’,¢’ for a,b,c, the

group
Gr = (a,b,c,d | d” =a,[b,d) = a,[c,d] =b).

A2. H = Sp(p®) and if M < G, then M 2 E,5 :

Now, H = {(a,b,c| a? =bP =c? =1,[b,c| = a), Z(H) = (a).

Let K < H,K < G,|K| = p%. Then K = E,» and Ng(K)/Ca(K) =
G/Cq(K) < AutK. We may assume without loss that K = (a,b).

As p? f |AutK|, by Proposition 2.5 it is |G/Cq(K)| < p and there exists
A, A < G, such that K < A < Cg(K) < G and |A| = p?. Since K < Z(A), A
is abelian. By assumption A 2 E,3 and also A 2 Z,3, as G is not metacyclic.
Thus A =2 Z,» X Z,. From (a) char H <G it follows (a) <G and so (a) < Z(G).
Therefore a € K, since otherwise (a) x K = E,3, contradicting our assumption.
Now, we may assume without loss that K = (a,b) = Q;(A). Because of
U1(A) char A< G, it is U1(A4) < Z(G) too. But Z(H) = (a) only, and so
U1(A) = (a). Thus A = (a,b,d | d? = a®*,a # 0), for some d € A\ K. The
group A is an abelian maximal subgroup in G, and by Theorem 2.10 it must
be either |Z(GQ)| = p?, |G'| = p, or |Z(G)| = p, |G’| = p? again.

A211Z(G)| =p |G| =p:

Now, Z(G) < A because G is not abelian, and we may assume without
loss that d € Z(G) = (a,d) = (d). Let vy be such that ary =1 (mod p). Then
(d7)P = (dP)Y = a™? = a, and substituting d by d7, we get the group

Gs = (a,b,c,d | d° = a,[b,c] = a).

A221Z(G)| =p,|G'| = p*:

Now, Z(H) = (a) = Z(G) < G'. Since G/K is abelian, it is G’ < K
and so G' = K = (a,b). Clearly, [c,d] € K \ (a), as G’ > (a). Substituting
b = [c,d] for b, and o' = [V, (] for a, we get

G ={a,b,c,d|a? =" =c’ =1,[b,¢] =a,[c,d] =b,dP = a®),
for some o # 1. Substituting ¢ by ¢’ = ¢7,v # 0, we get [¢/,d] = [¢7,d] =
bla® = ¥, for some e, since (G/{a)) = (b,a)/{a) = Z(G/{a)), and so
(7, d] = [e,d]” = b (mod (a)). Now [V, ] = [pas, ] = [b7,¢"] =¥ = d.
Substituting a’, V', ¢’ for a,b, c we get

G=(abed|a=b=c=1[bd=alcd=bd =a?),
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with 7 # 0, arbitrarily choosable. If o = 72 (mod p), for some 7, replacing ~y
by 7 we get

Gy = (a,b,c,d | a? =bP =P =1,[b,c] = a,[c,d] = b,d? = a).

Otherwise, & = o712, for some 7 and, without loss, the minimal quadratic
nonresidue o modulo p. Replacing again v by 7 we get the group

G1o = (a,b,c,d ‘ a? =b" =l = 17[b70] = a, [Cad} = bvdp = aa’>7
o being the minimal quadratic nonresidue modulo p.

B. CASE |G| = 35.

Now, G contains a maximal subgroup H € MCy, |H| = 3*. According to
Theorem 2.8 the group H is of maximal class. As H is not metacyclic, its
maximal subgroups cannot be cyclic. Thus, by Theorem 2.7 and Theorem 2.8,
for each L < H with |L| = 33, it is exp(L) = 32,01 (L) = Z(H) = Z3,Q1(L) =
H =®(H)=Q(H) = Ey, since U1(L), % (L)< H, as L < H. We set H' =
(a,b|a®=b*>=1),Z(H) = (a) for some a,b € H. Because of |AutEq| = 2*-3,
we have |H/Cy (H')| = 3, and the group A = Cy(H') = (a, b, ¢), where c € A\
H’, is abelian. Let K be an other maximal subgroup of H, K = (a, b, d). Now,
H = (A K) = (a,b,c,d). If K is abelian, then (a,b) < Z(H), a contradiction.
Thus K’ = Z(H) = (a). We may assume without loss that ¢ = d® = a, as by
Theorem 2.7 and Proposition 2.4, U1(K) = (a) too. From H = (®(H),c,d)
and [c,d] € H'\ Z(H), as H' > Z(H), it follows that we can set [c,d] = b and
[b,d] = a®, o € {1,2}. Now, (cd)® = cd3c® ¢! = cacbba®ch = a® 13 = a2,
Since c¢d € H \ Q1(H), it is (cd)?® # 1 implying o = 2. Therefore,

H={a,bc,d|a®=b°=1,c=d> =a,[b,d = a? [c,d] = ).

We proceed to determine G. Since |G| = 3% and all its subgroups of order
33 are metacyclic, we can apply Theorem 2.9. As there is none subgroup of
order 33 and exponent 3 in G, it follows that G is also of maximal class. Now,
Theorem 2.7 implies that Z(G) = Z(H) = (a), Z2(G) = H',G' = ®(G) =
Cy(H') = A, as all these groups are characteristic in H, which is normal
in G. Moreover, 1(G) = H', as G € MCy and H' 2 FEy. Consider now,
M = Cq(H') = {(a,b,c, f), for some f € G\ H. As Z(M) > H' = Ey, and
all maximal subgroups of M, being of order 33, are metacyclic, M must also
be metacyclic, since otherwise it would be isomorphic to H, a contradiction
because of Z(H) = Zz. If exp(M) = 33, then we may choose f such that
(f) = Zy7 and there is some = € (a,b) < Z(M) such that ¢ (f) and
therefore M = (f) x (x) = Zy7 x Z3. Now, U1(M) = (f3) <G, and (f3) = Z,,
which contradicts Theorem 2.7, as Z3(G) = Eg. Therefore exp(M) = 32,
and M = (z,y | 2° = ¢° = 1,[x,y] € (2?)), for some z,y € M. Now,
M’ < (23) =2 Z3 and M’ <t G, which implies M’ < {(a). Since ¢® = a, it is
(¢) > M’ and so (c)<<M. Therefore, we may assume ¢ = z, f = y and U1 (M) =
{a,b) implies f3 = a*b?, with B € {1,2}. Because of G’ = (a,b,c) = ®(Q),
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it is G = (a,b,c,d, f) = (d, f), and G’ = (([d, f])) the normal closure of
([d, f]). Therefore [d, f] € A\ H’, since otherwise G’ = H’, a contradiction.
Substituting f by f2, if necessary, and substituting ¢ by [d, f] we get again
[b,d] = a® for these new generators. Moreover, [c, f] = a?,vy € {0,1,2}
because [c, f] € M’ < (a). Thus G can be written as:

G = (a,be,d,fla®=b=1,=d=a,f>=a’,
[d, f] = c,[c,d] =b,[c, f] = a”, [b,d] = a?).
Now,
[, % = [d fld, 147 = [d, f1ld, f17d, )
= c¢.cf =c-ca”-caa) = =a,
and

4. = [da’] = [d,b°] = b, d) "
(b)) = (b0 = a?

3

implying 8 = 1 and therefore f3 = a®b.
Next, we calculate (df)® and (d? f)3, which should both be different from

1:
df)? = df*d”d’ =da®b-deca” - de = d(a”b)?cPa’de
= ao‘Jr'Yd?’(ao‘b)d2 ()l =a" -a-ba-*b?c=a""a?-a=a"",
(@f)? = (d-df)’= d(df)gd(df)zddf =da®" -dc-ca’b-dc

— aa+2'yd3 (czb)dc — aa+2'y+162b2ba20 — aa+2'y+1'

Therefore, a + v # 0 (mod 3),a 4+ 2y +1 # 0 (mod 3), which gives pos-
sibilities (o,v) € {(1,0),(1,1),(0,2),(2,2)}. In the case (a,y) = (1,0),
M = Cg(H') = (a,b,c,f) = 1 and in other cases M’ > 1. Replacing f
by f2, d by df, ¢ by ¢, b by a®b?, and a by a?, the case (a,7) = (1,1) goes
over in (a,~) = (0,2), and replacing d by df, ¢ by a?c and b by a?b the case
(o, y) = (2,2) goes over in (a,7y) = (0,2) as well. Thus there remain only the
cases (a,y) = (1,0) and (o, ) = (0,2), giving the groups

G = <a,b,c,d,f|a3:b3:1,03:d3:a,f3:ab,[d,f]:c,[c,d]:b,
[b,d] = a?)

and

G2 = <a,b7c,d,f|03:b3:1703:d3:a,f3:b,[d7f]:C7[C7d]:b,

[Cv f] = a2a [bad] = a2>'

Our Theorem 1.1 is proved.
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