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ABSTRACT. We study the problem of the (p-)capacity c¢p of a multi-
connected configuration Q@ = (G\E)\(UH;) when 8G and OF have given
potentials. Here  represents a nonhomogeneous medium and the H;,
which separate the different connected components of €2, represent perfect
conductors. By comparison with a similar configuration with spherical
symmetry, we give isoperimetric inequalities for ¢, and the unknown po-
tentials on H;.

1. INTRODUCTION

In a recent paper [6], V. Ferone gives an isoperimetric inequality for the
(p-)capacity ¢, of a configuration Q = (G\E)\(UH;), where ) represents a
nonhomogeneous isotropic medium, 0G and OF have given potentials respec-
tively equal to 0 and 1, and the H; have constant unknown potentials k;.
He shows that ¢, is not smaller than the (p-)capacity ¢, of a symmetrical
configuration which has no interior conductor such as H;. In this paper, we
complete Ferone’s result when {2 is multiconnected and the H; separate the
different connected component of 2, we show that ¢, > ¢, > c;, where ¢,
is the (p-)capacity of a natural symmetrized configuration (having inner con-
ductors). We also give isoperimetric estimates for the unknown potentials k;.
Our proof, which is different from Ferone’s one, uses the notion of relative
rearrangement introduced by J. Mossino and R. Temam [8] and developed in
[12, 13].

Let us now present the problem we want to study. Let 1 < p < 400,
let @ = QU---UQ,, where Q; (: = 1,...,n) has the form Q; = w;y1\
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w!, w; and w/ are regular bounded open sets in R (N > 2) such that: for
ie{l,...,n}, w; Cw, €wit1. Let Qo=wq, C; = w_; \w; (1 =1,...,n) (note
that C; may have empty interior), v; = Ow; and v, = 0w} (i =1,...,n+ 1).
Let A(z) = (a;j(2))i j=1,...,n be a symmetric matrix such that:

(L.1) (A(x)E,€) > a(z)|€)? for a.e x € Q and for every ¢ € RV,

where (-,-) denotes the scalar product in RY | | - | denotes the Euclidian norm
and a : @ — R is a (a.e.) positive function (a condition which can be found
in [9]) such that:

P —p N 1 1
(1.2) aeLz(Q),a2 ELT(Q)JZ—and1+—<p<N(1+—>.
D T T
We suppose that for every ¢,j € {1,...,N}:
(1.3) aija”t € L=(9Q).
Let W2P(€2) be the completion of C* (Q) for the norm:

1 1
|v||i;p—( / |v|pdz> +( / o [Vl dm) |
Q Q

We consider ) as a nonhomogeneous and anisotropic medium and we define
a generalized (p-)capacity of Q as the infimum of the following problem:

(1.4) inf{/ (AVU,V’U)% dx, v e H}
Q

where
[ veWlP(Q):v=1o0n~7},v="0o0n "y, and
| v =k; (undetermined constant) on 9C; = yillylfori=2,....n |~

In the following, denote by w; = ulg, and a; = alo, (i=1,...,n).
2. STUDY OF PROBLEM (1.4)

In this section we study the existence, uniqueness and characterization of
solution of problem (1.4).

THEOREM 2.1. Problem (1.4) admits one solution and one only.
PROOF. Let (u,) be a minimizing sequence:
(un) € H and J(up) — I =inf {J(v),v € H}
where
J(v) :/Q(AVqu)gdx.

We have due to the coerciveness condition in (1.1):

c> J(up) > / a® |Vu,|” dx (where ¢ is a constant)
Q
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hence, (u,) is bounded in H (by using Poincaré’s inequality) and then, up to
extraction of a subsequence, we can suppose that:

Up — U in Whr(Q).
But J is weakly l.s.c. Then
J(u) < liminf J(uy,) < lim J(up) =1 < J(u)

and then by the strict convexity of J and because H is closed we deduce that
u is the unique solution of the problem (1.4). O

REMARK 2.2. Let u be the solution of (1.4). It is classical that w is
characterized by the variational formulation:

(1.5) /Q (AVu, Vu) 2 ™! (AVu, V) dz = 0, Yo € Hy,

where
o v € WLEP(Q):v=0o0n+v] Uy, and
71 v =k (undetermined constant) on v; U~} for i =2,...,n

and then
(1.6) Au = div |(AVu, Vu)%fl AVu|l =0 in D'(Q).
We deduce then the following proposition:

PROPOSITION 2.3. Let u be the solution of (1.4), k1 = 1, kpy1 = 0 and
k; the value of u on v; U~ (i =2,...,n). Then we have:

A’U,i =0 mn D/(QZ)
up =1 on v
(1.7) up =0 N Yn+1
u; = k; (unprescribed constant) on i, 1=2,...,n
u; = ki1 (unprescribed constant) on vi11, i=1,...,n—1.

LEMMA 2.4. Let v; be the unique solution of the following problem:

inf {/ (AVqu)g dx, v € KZ}
Q;

where K; = {v e WLP(Q) : v=10n~], v=00ni41}. Then v; satisfy:

(1.8) / (AVv;, V;) 2 ! (AV;, V) do = 0, Yy € KD
Q;
where K9 = {v € WP(Q;) : v =00n~,U~it1}, and hence,
(1.9) Av; =0 in D'(Q;).
THEOREM 2.5. Let us setc, = [ (AVu, Vu)g dz, let u being the solution

Q
of the problem (1.4) and v; the function defined in Lemma 2.4. Then we have:
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a) ¢ >0,
b) ki#ki+17 Vi:l,...,n,
C) ui:(ki—kiﬂ)vi+ki+1,Vi=17...7n,

/ (AVv;, V) % dy
Qi

d) O<ki—ki+1:

I b
n o p—1
Z </ (AVv;, Vu;)? dx)
j=1 \"%
PROOF. a) If ¢, = 0 then u = constant on ; (i = 1,...,n) and by using

transmission conditions (because u € H) we obtain contradiction.
b) Suppose that: there exists j € {1,...,n} such that k; = k;j11. Let

w— kj iIl Qj
"1 u otherwise

Then

w;ﬁu,weHand/

(AVw, Vw)g de < / (AVu, Vu)% dz,
Q

Q
contradiction with w is the solution of the problem (1.4).

i — ki1 .
£ 1 (i =1,...,n). Then from (1.7) we have

C) Let w; = m

Awi =0 in D/ (Ql)
w;=1 on 7
w; =0 on  yit1

hence V; = W; and then U; = (kz - ki+1)vi + ki+1.

d) Let

constant otherwise

wiz{vi in < (i=1,...,n)
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be such that w; € H. Then w; — u € Hy and, by using (1.5), we have
cp = / (AVu;, Vui)%_l (AVu;, Vu;) dz,
Q;

and from c) we obtain the result.

e) By using Y (k; — kir1) = 1 and d).
i=1
i—1
f) By using k; =1— > (k; — kj+1), d) and e). O
j=1
REMARK 2.6. 0=Fk,t1 <k, <--- <k =1.
REMARK 2.7. If Green’s formula is valid, then we have for all i €
{2,...,n}, see [4]:

8u1 Ou;
= = dy = - - -
O < Cp /’Yi 8V‘A /’Y; aV‘A Y
/ 8’&" _/ 8u1‘,1d7
N 81/A e oA

aa—lil (AVu,Vu)%fl (AVu,v) and v be the normal to ; pointing
v
outside Q;_1 (1 =2,...,n+1).

n+1

where

3. INEQUALITIES

Let us recall some notions of rearrangement (see for example, [2, 5, 7, 8,
12, 13]). In this paper, we use only the Lebesgue measure on RY. Let |E| be
the measure of a measurable set E. Let u be a measurable function from
into R where Q is a measurable set in R,

The (unidimensional) decreasing rearrangement u,, of u is defined on Q* =
0, 192] by:

" (8):{ inf{aeR/|lu>al <s} ifs<|Q
* essinfq u if s = ||
where [u > a| = |{z € Q: u(z) > a}|
The increasing rearrangement of u, denoted u*, is defined by u*(s) =
u (| —s). The functions u, u, and u* satisfy |u > a| = Ju, > a| = [u* > af.
For v in L*(2) and for a measurable function u from © into R, we define
the function W on Q* by:

/ v(z)dx if lu=wu.(s)| =0
US>y (8)
W =
) s—lu>u.(s)|
/ v(z)dx —|—/ (v|p(s))«(0)do otherwise,
u>uy(s) 0
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where (v|p(s))« is the decreasing rearrangement of v restricted to P(s) =

aw
{z € Q: u(r) = u«s)}. The integrable function e denoted v, is called
S
the relative rearrangement of v with respect to u.

All the isoperimetric inequalities of this section are consequences of the
following theorem.

THEOREM 3.1. Let p’ be such that % + % =1, a, be the measure of the

unit ball in RN and v; (i = 1,...,n) be the function defined in Lemma 2.4.
Then for all t,t" such that 0 <t < t' <1 we have

/
p_

’ —p’ 4 P
t—t <N7P (aN) b </ (AV’Ui,V’Ui)2 dCC)
Q;

’ ’ ’

|vi >t _
<l 0 @) F (o> e
\

Vi >tl‘
From theorems 2.5 and 3.1 we deduce the following corollary.

COROLLARY 3.2. Leti € {1,...,n}. For allt and t' such that kiy1 <t <
t' < k; we have

ot <N (a)F ()
|’u.7;>t‘ p’ , !
(3.1) X/ (lwil + )Y ™" (a7) 2 (0 = Jui > t'|)do.
[ui>t'|
From (3.1), for t = k;11 and t' = k; we deduce:

COROLLARY 3.3.

’ /
P

’ —p/ ‘Qi| ol —p
ki — kipa S NP (%)_p(cp)?/ (Jwil + )77 (a7) 2 (0)do.
0

PRrROOF OF THEOREM 3.1. For 6 € [0, 1], let us set

v, if v; <@
Zi_("(”i‘e)_{ 6 if v >0

We have Z; — 0v; € K? and then by using (1.8) we obtain:

/ (AVv;, Vvi)%dz = 9/ (AVv;, VUz‘)%d:C
v; <0

Q;
hence,
4 (AVvi,Vvi)%dm = —/ (AVvi,Vvi)gdm.
dd J,, >0 Q

Moreover, by using (1.1), (1.2) and Holder’s inequality, we have for h > 0 :

1 1
1 1 4 [ 1 D P
—/ |V, | da < {—/ ai_gdm] {—/ a? |V |" d
h Jo<vi<otn h Jo<v,<o+n h Jo<v,<o+n
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1 1
1 4 »[1 » B
< [—/ ai%dz]p [—/ (AVvi,Vvi)gdz]
h Jocvi<o+n h Jo<vi<otn

and letting h tend to O,

1 1
d d » »’ d » P
- ilde < | —— i 7d - AV, Vu;)2d
p7] vi>9|VU| T ( p7] [J»Ga 2 x) ( p7] /vi>0( Vi, Vu;) :v)

= (—i/ ai_p;dx)p (/ (AVvi,Vvi)gd:v>
9 Jo,>0 @

On the other hand, by using the following formula of derivation (see [13]) we
have

==

4 a; 7 dz = W (v (0))vi (6)
d9 'Ui>9 ‘

d _r
where v;(6) = |v; > 0] and d—W = (a‘ E > is the relative rearrangement of
s .

3

’

a; 7 with respect to v;.
Hence,
d > y \7
-— Vil dz < (=W (1:(0))}(0)) (/ (AVv;, Vu;)2 dx) .
b Jy>0 Q

Moreover, classically, by using theorems of De Georgi and Fleming-Rishel (see
for example [7]) we have
d
df J,.~¢

Voilde > N () (] +14(8)) ™~
and then

N (o) ¥ (!l + (0) % < (“W (i (0)(0)7 ( [ avu, 0t dx) g
Hence, l

Y 2
1 < -N77 (ozN)T (/ (AVvi,Vvi)g dm)
Q;

< ()] + 24 (0)) % 7 W (0))1(0).

By integrating between ¢ and ¢’ we have
-t < N7V (ozN)% (/ (AVvi,Vvi)% d:c)
(o

€] T~
x / Loy (o) (lwil + o) 77 (ai ) (0)do
0 o
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and by using in [12, Theorem 3] we have

-t < N*(a );NL </ (AVv; Vv-)gdz>p
= N o 3 i

, = b\ 7
= N7 (ay) </Q (AVvi,Vvi)2dm>

2

(€]
X/O (1[ui(t/>,ui(t)](') (Jwil +-)

€2 , L
X ‘/O 1[071,1.(15),,)1.(,5/)] (U) (|wz| + Vi(t/) + o') (ar)T(U)dO’

/
’

= NV (ay) </Q (AVvi,Vvi)%dz

[T

’

l/i(t)—l/i(t/) , %7p/ —p
x / (lwi+ ) +0) " " (@) ¥ (o)do
0

Therefore,

p_

t'—t < N_p/(aN)iAI;l (/ (AVvi,Vvi)gdx)p
Q;

lvi>t] N
X (lwil + )77 (a}) 7 (o = |vi > t|)do
[vi >t/
for all ¢,# such that 0 <t <t < 1. O

4. SYMMETRIZED PROBLEM

Let i € {1,...,n+ 1}, let &; (resp. @) the ball of R centered at the
origin such that |@;| = |w;| (vesp. |@}| = |wi|). Let Ag = 1, Aj=@iy1\ @,
(t=1,....,n) and A = AU ---UA,. Let 7, = 9 w; and 7, = 9 &, for
i € {1,...,n + 1}. Let u be the normal to ¥; pointing outside A;—; (i =
1,...,n+1).

Let @ be the function defined by a(z) = a}(ay|z|Y —|w}]) in A;, where a}

is the increasing rearrangement of a;, i € {1,...,n}. We consider the symme-
trized problem defined as follows:
(4.1) inf {/ a |VV|Pde, Ve ﬁ}
A
where

~ VeEWIP(A) : V=1on%,V =0on 7, and
V = K, (undetermined constant) on 7, Uy} fori =2,...,n [~
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REMARK 4.1. As the function a, @ also satisfies (1.2) (with A instead
of Q), then from Theorem 2.1 the symmetrized problem (4.1) has unique
solution.

PROPOSITION 4.2. For j € {1,...,n}, let us set

’

. 19251
fj(a) = (lw” + 0) vor (a;) ’ (U) fOTU € [0, |Qj|]7Ij = / fj(U)dO’,
0
and V; be the solution of the following problem:
‘/j =0 on %jJ’»l
V=1 on %
where BV = —div(a? [VV[P">VV). Then we have
12;1
Q) Vi@ =) [ filsds  forz e A;.
ay oV —|w)|

b) = | o dy=N(ay)F (1)

ov v
ou’ Ou
REMARK 4.3. A similar computation shows that one has also
_ [ 9

Vi Op®

where — = a% |VV|P~? is the normal derivative.
W

dy = NP(a )% (1;)'77

that is Green’s formula is valid for V; and it follows from c) of Theorem 2.5
that it is also valid for U; (j = 1,...,n), where U; = UJA,; and U is the
solution of the symmetrized problem (4.1).

PROOF OF PROPOSITION 4.2. a) We have

ov;

(%c])'

N
o [ . »
=35 (@)% (ol = i IVWiP
With r = |z| we obtain

_ dvi\ P2
' (CVNTN - |wz/'|) (W)

d dV;
(B graitanr™ - i)

“odr

2V, N-1 dV;
+ o= Daf(ayr® — WD G + Tt — WD G )
and then
d‘/; N—-1 ’ N

=kr' 7 (@) (ayr
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where k is constant. Hence,

2

(ay) N |wit1| N _ !
viw [ S5 (@) (ay ™ — ol ds + "

where k' and k" are constants. With o = o, s — |w!| we have for z € A;,

‘Q I &lip/ 7p/

D=c[ el @) @do+D

oy |z N —|w]|

where C' and D are constants. 1
Since V; = 0 on ¥;41 and V; = 1 on 7/, we deduce that D = 0, C' = A

i
and then
1]

Ve =1 [ (o -+ 1)

MRS

/
P ’
=v —

(a*)% (0)do for allz € A;.

K2

N

aV; D o IV,
b) We have W = j;(ﬁ |VVil? ? oz, e Ui ' where /7 is the jth component of

i, then from a) we deduce

oV; -1 2
M—B:—Np (ay)™ Ha|” N ) pzxu
and ov
= [ g = NS (1)
(because [5, z;p/ dy = |w’| = |w!] and if z € §/ we have o, |z|V = |} = |w!]).

O

THEOREM 4.4 (Explicit resolution of symmetrized problem). Let us set
Cp = a’ |VU|% dxz where U being the solution of the symmetrized problem

A
(4.1), K; be the value of U on %;Uy! (i = 2,...,n) and U; = U|A; (i =
1,...,n), then we have:

i—1

-1
a) Ki=1-|> I ZIJ) . ied2,...,n};
Y I
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Proor. Using Theorem 2.5, Proposition 4.2 and Remark 4.3 we have:

L n P i—>p
a)(cp)ﬁ:Z( ~/8IL‘L/d> _Np 21]7
j=1
71 —1
i—1 9 i-p 1—1 n
b) K; =1- (g WZ( ~,a,1/] ) =1- z;g- |,
J:

J=1 j=1
i€{2,...,n};
c) forie{l,...,n} and z € A; we have:
U(x) = (Ki—Kiq1)Vi(r)+ K
= Ki— (K = Kit1)(1 = Vi(x))

S [N
= K;,—N7P (aN)T(cp) = <I —/ o /fi(a)da>

ayle

R S FL
= Ki—N_p (OéN) N (Cp)?/ fl(O')dO'
0
O

REMARK 4.5. For the symmetrized problem the inequality (3.1) becomes
an equality when ¢’ = K; and ¢t = U;(z). Actually, since a is strictly positive,
also is a; and it follows from the expression of U; given in Theorem 4.4 that
it is strictly decreasing along radii.

THEOREM 4.6 (isoperimetric inequalities). Let @ (resp. U) be the exten-
sion of u (resp. U) by 1 on wy (resp. 1), 0 on w;, 1 \Wny1 (Tesp. @), 41 \Wnt1)
and k; (resp. K;) on w\@; (resp. @\ @;). Fori € {1,...,n}, j € {1,...,i}
and ¢ € N; we have

Y _

2) (6) (k) — Ty la™)) <

b) (cp) 7 (L= uulayz[™)) < (&) 7 (1 -TUlx)),
in particular for 1 <j<i<n —|— 1 we have

&) (e) T (ks — ki) < (@) F (K, — K.),

) () (1-k) < @) F (1-K)),
and more particularly,

@) 7 (K; —TU(a)),

e) ¢p = Cp.
PROOF. a) Leti € {1,...,n} and x € A;. Then

a2l < |wisa] and T (ay |2Y) = ui (ay 2™ — |wi])

jwil <

hence
kit < Te(ay |2V) < ki
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We also have

Let je{l,...,n}. Ifj=14:
From (3.1) with #' = k; and t = U (v, |2|") we have
(p) 7 (ki = Tu(ary |2|™))

, L |ui>ﬂ*(06N|m|N)| o -»
<N F [ (il + )% @) F (o).
0

Since

lu; > g, (QN|I|N — |wiD]

Jui > T (ay |2|™)]

= Jui, > ui (ayleY — |wi)|

N

aylz|™ = |wil,

we deduce from the expression of U given in Theorem 4.4 that

= _ ~ =2
(ep) 7 (ki =y |2V)) < (&) 7 (Ki — U(a)).
Ifj<i:
By using the above, Corollary 3.3 and Theorem 4.4 we have

=’ _
(cp) ™ (kj = Tx(ay |2|™))
i1 , i
= 3 () b = ) + () F (ks =Ty al™)
m=j
i1 B
< Z ()7 (K — King1) +(6p) » (Ki = Ul2))
m=j
= (@) 7 (K; - Ul)).
b) It’s enough to take j =1 in a).
With 2 € 7/ we deduce c) from a) and d) from b) because o |[z|V = |w]
and (v, |[z|V) = u;, (0) = ki, we also have U(z) = K. O

’ /

5. COMPARISON WITH FERONE’S RESULT

In this section we consider the particular case where the matrix A = al,
I is the unit matrix. In this isotropic case, problem (1.4) reads

(5.1) inf {/ af |VolP da, v e H}
Q

Up to a change in the definition of a, this is exactly the problem studied by
Ferone (see [6]) who considers the following symmetrized problem:

(5.2) inf {/ (@8 (ay 2N = W) [VVPde, V € H}
A*
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where A* = D\&, D is the N-dimensional ball with center at the origin and
measure |[D| with D = wp41\ (C2 U ---UC,,) and

H*:{V e WP(A*) : V=1on7,V=0on 35}.

Note that A* has same measure as (2, it is an annulus bounded by two spheres
with center zero and inner sphere 71 . Also note that (5.2) is a capacity problem
but, unlike (5.1) or (4.1), it has no inner perfect conductor.

Let us denote by ¢, the infimum in (5.1) and by ¢ the infimum in (5.2).
The result obtained by Ferone (see [6]) is:

(5.3) cp = Cp

Asit is clear that (a)* = a*, (5.2) is also the symmetrized problem (in Ferone’s
sense) of (4.1) and the comparison (5.3) applied to problems (4.1) and (5.2)
gives:

THEOREM 5.1.

~ *
Cp 2 Cp-

REMARK 5.2. From theorems 4.6 and 5.1, we deduce ¢, > ¢, > c;. Thus,
in the particular isotropic case, we obtain a better comparison than Ferone’s
one, in addition we also obtain comparison for the unknown potentials k;.
Moreover, our symmetrized problem (4.1) is more natural than Ferone’s one.

REMARK 5.3. The proofs given in this paper differ from those given in
[6] since we apply technics of relative rearrangement.

6. THE PARTICULAR CASE a;(z) = ; (CONSTANT>0)

We still consider problem (1.4). In this section we suppose that the func-
tions a; (i = 1,...,n) are constant: a;(x) = §; > 0 in ;. In this case the
symmetrized problem (4.1) becomes completely explicit and, in addition to
the results already obtained in Theorem 4.6, we are able to get other isoperi-
metric inequalities. This is done below.

THEOREM 6.1 (Explicit resolution of the symmetrized problem when
ai(x) = B;). When a;(x) = B;, the explicit expression of K;, Zp given in
Theorem 4.4 are available with:

, —1 ! ! ’ ! ’
(B -2 +1)  B)F [l &4 | T 51 i N £ p

/

I; =
(ﬁj)Tp [log|wj+1| —log |w;|} otherwise,

moreover, the expression of U;(x) given in Theorem 4.4 is available with

cnvlal ¥ — ]|
/ fi(o)do
0
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replaced by:

, —1 ! o’ , /o ,
(B=v+1) B)F [lagla™F 2+ k1] if N £y

(B) = [log(ay |z|Y) — log |w}] otherwise.
PROOF. The proof is just computation. O
THEOREM 6.2 (Isoperimetric inequalities when a;(z) = ;). When

a;(z) = B, in addition to a), b), ¢), d) and e) in Theorem 4.6 we have:

f) for almost every x € w;, 4,

' dT, _ = dU.
0 < —(¢)77 E(aNIxIN) < ()7 I (aylz™)
_ ) N ) F(B) T (ayfa V)R ifzeQ
0 if v € Wi U(wp\w2) U+ U (g1 \@nt1)

and it follows
g) for every x,y in W1 with |x| < |y

p’ —p’

(ep) 7 (Welayl2|™) = Telay YY) < (&) (Ule) —Tly))
in particular,
h) forie{l,....,n},j€{i,....,n+1} and z € A;,

’
—p _

() F (@layl2l™) k) < @&)F (T - K;),
(cp) F Tulaglel¥) < @) FT

v U(z),
i) forie{l,...,n+1},

(Cp)%ki < (Ep)%Ki-

PRrROOF. f) Let s and s’ be such that |w}| < s’ < s < |wir1] and T (s) <
U.(s"). Let £ be such that 0 < & < U.(s") — U«(s).
With ¢ = 7. (s) and t' =, (s") —e in (3.1) and tending € to 0 we obtain

o’

()~ (9) < N (@) T () (0 F [ o Vo

(because |u; > t'| 2 &' — |wi| and |u; > t] < s — |w}i|) with s’ = s — 6, one gets
by letting 6 decrease to zero and by using Theorem 6.1,
ST SN () F ()T ()R =
and this for almost every s in J|w}| , |wit1][ (1 =1,...,n).
As @, and U, are constant in each connected component of the comple-
mentary of J|wi], |w2|[U- - U]|w,], |wnt1][, the proof of f) is complete.
We obtain g) by integration and h), i) easily follow. O
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