ISOPERIMETRIC INEQUALITIES FOR AN ELECTROSTATIC PROBLEM

L. Boukrim and T. Mekkaoui
Université My Ismaïl, F. S. T. Errachidia, Morocco

Abstract

We study the problem of the (p-)capacity c_{p} of a multiconnected configuration $\Omega=(G \backslash E) \backslash\left(\cup H_{i}\right)$ when ∂G and ∂E have given potentials. Here Ω represents a nonhomogeneous medium and the H_{i}, which separate the different connected components of Ω, represent perfect conductors. By comparison with a similar configuration with spherical symmetry, we give isoperimetric inequalities for c_{p} and the unknown potentials on H_{i}.

1. Introduction

In a recent paper [6], V. Ferone gives an isoperimetric inequality for the (p-)capacity c_{p} of a configuration $\Omega=(G \backslash E) \backslash\left(\cup H_{i}\right)$, where Ω represents a nonhomogeneous isotropic medium, ∂G and ∂E have given potentials respectively equal to 0 and 1 , and the H_{i} have constant unknown potentials k_{i}. He shows that c_{p} is not smaller than the (p -)capacity c_{p}^{*} of a symmetrical configuration which has no interior conductor such as H_{i}. In this paper, we complete Ferone's result when Ω is multiconnected and the H_{i} separate the different connected component of Ω, we show that $c_{p} \geqslant \widetilde{c}_{p} \geqslant c_{p}^{*}$, where \widetilde{c}_{p} is the (p -)capacity of a natural symmetrized configuration (having inner conductors). We also give isoperimetric estimates for the unknown potentials k_{i}. Our proof, which is different from Ferone's one, uses the notion of relative rearrangement introduced by J. Mossino and R. Temam [8] and developed in [12, 13].

Let us now present the problem we want to study. Let $1<p<+\infty$, let $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{n}$, where $\Omega_{i}(i=1, \ldots, n)$ has the form $\Omega_{i}=\omega_{i+1} \backslash$

[^0]$\overline{\omega_{i}^{\prime}}, \omega_{i}$ and ω_{i}^{\prime} are regular bounded open sets in $\mathbb{R}^{N}(N \geq 2)$ such that: for $i \in\{1, \ldots, n\}, \omega_{i} \subset \omega_{i}^{\prime} \Subset \omega_{i+1}$. Let $\Omega_{0}=\omega_{1}, C_{i}=\overline{\omega_{i}^{\prime}} \backslash \omega_{i}(i=1, \ldots, n)$ (note that C_{i} may have empty interior), $\gamma_{i}=\partial \omega_{i}$ and $\gamma_{i}^{\prime}=\partial \omega_{i}^{\prime}(i=1, \ldots, n+1)$. Let $A(x)=\left(a_{i j}(x)\right)_{i, j=1, \ldots, N}$ be a symmetric matrix such that:
\[

$$
\begin{equation*}
(A(x) \xi, \xi) \geqslant a(x)|\xi|^{2} \quad \text { for a.e } x \in \Omega \text { and for every } \xi \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

\]

where (\cdot, \cdot) denotes the scalar product in $\mathbb{R}^{N},|\cdot|$ denotes the Euclidian norm and $a: \Omega \rightarrow \mathbb{R}$ is a (a.e.) positive function (a condition which can be found in [9]) such that:

$$
\begin{equation*}
a \in L^{\frac{p}{2}}(\Omega), a^{\frac{-p}{2}} \in L^{r}(\Omega), r \geqslant \frac{N}{p} \text { and } 1+\frac{1}{r}<p<N\left(1+\frac{1}{r}\right) \tag{1.2}
\end{equation*}
$$

We suppose that for every $i, j \in\{1, \ldots, N\}$:

$$
\begin{equation*}
a_{i j} a^{-1} \in L^{\infty}(\Omega) \tag{1.3}
\end{equation*}
$$

Let $W_{a}^{1, p}(\Omega)$ be the completion of $C^{1}(\bar{\Omega})$ for the norm:

$$
\|v\|_{a}^{1, p}=\left(\int_{\Omega}|v|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega} a^{\frac{p}{2}}|\nabla v|^{p} d x\right)^{\frac{1}{p}}
$$

We consider Ω as a nonhomogeneous and anisotropic medium and we define a generalized (p-)capacity of Ω as the infimum of the following problem:

$$
\begin{equation*}
\inf \left\{\int_{\Omega}(A \nabla v, \nabla v)^{\frac{p}{2}} d x, v \in H\right\} \tag{1.4}
\end{equation*}
$$

where

$$
H=\left\{\begin{array}{l}
v \in W_{a}^{1, p}(\Omega): v=1 \text { on } \gamma_{1}^{\prime}, v=0 \text { on } \gamma_{n+1} \text { and } \\
v=k_{i} \text { (undetermined constant) on } \partial C_{i}=\gamma_{i} \cup \gamma_{i}^{\prime} \text { for } i=2, \ldots, n
\end{array}\right\} .
$$

In the following, denote by $u_{i}=\left.u\right|_{\Omega_{i}}$ and $a_{i}=\left.a\right|_{\Omega_{i}}(i=1, \ldots, n)$.

2. Study of problem (1.4)

In this section we study the existence, uniqueness and characterization of solution of problem (1.4).

Theorem 2.1. Problem (1.4) admits one solution and one only.
Proof. Let $\left(u_{n}\right)$ be a minimizing sequence:

$$
\left(u_{n}\right) \in H \text { and } J\left(u_{n}\right) \rightarrow I=\inf \{J(v), v \in H\}
$$

where

$$
J(v)=\int_{\Omega}(A \nabla v, \nabla v)^{\frac{p}{2}} d x
$$

We have due to the coerciveness condition in (1.1):

$$
c \geq J\left(u_{n}\right) \geqslant \int_{\Omega} a^{\frac{p}{2}}\left|\nabla u_{n}\right|^{p} d x \quad \text { (where } c \text { is a constant) }
$$

hence, $\left(u_{n}\right)$ is bounded in H (by using Poincaré's inequality) and then, up to extraction of a subsequence, we can suppose that:

$$
u_{n} \rightharpoonup u \quad \text { in } \quad W_{a}^{1, p}(\Omega)
$$

But J is weakly l.s.c. Then

$$
J(u) \leqslant \liminf _{n \rightarrow \infty} J\left(u_{n}\right) \leqslant \lim _{n \rightarrow \infty} J\left(u_{n}\right)=I \leqslant J(u)
$$

and then by the strict convexity of J and because H is closed we deduce that u is the unique solution of the problem (1.4).

Remark 2.2. Let u be the solution of (1.4). It is classical that u is characterized by the variational formulation:

$$
\begin{equation*}
\int_{\Omega}(A \nabla u, \nabla u)^{\frac{p}{2}-1}(A \nabla u, \nabla \phi) d x=0, \forall \phi \in H_{0} \tag{1.5}
\end{equation*}
$$

where

$$
H_{0}=\left\{\begin{array}{l}
v \in W_{a}^{1, p}(\Omega): v=0 \text { on } \gamma_{1}^{\prime} \cup \gamma_{n+1} \text { and } \\
v=k_{i} \text { (undetermined constant) on } \gamma_{i} \cup \gamma_{i}^{\prime} \text { for } i=2, \ldots, n
\end{array}\right\}
$$

and then

$$
\begin{equation*}
\mathcal{A} u=\operatorname{div}\left[(A \nabla u, \nabla u)^{\frac{p}{2}-1} A \nabla u\right]=0 \quad \text { in } D^{\prime}(\Omega) \tag{1.6}
\end{equation*}
$$

We deduce then the following proposition:
Proposition 2.3. Let u be the solution of (1.4), $k_{1}=1, k_{n+1}=0$ and k_{i} the value of u on $\gamma_{i} \cup \gamma_{i}^{\prime}(i=2, \ldots, n)$. Then we have:

$$
\begin{cases}\mathcal{A} u_{i}=0 & \text { in } D^{\prime}\left(\Omega_{i}\right) \tag{1.7}\\ u_{1}=1 & \text { on } \gamma_{1}^{\prime} \\ u_{n}=0 & \text { on } \gamma_{n+1} \\ u_{i}=k_{i} \text { (unprescribed constant) } & \text { on } \gamma_{i}^{\prime}, \quad i=2, \ldots, n \\ u_{i}=k_{i+1} \text { (unprescribed constant) } & \text { on } \gamma_{i+1}, \quad i=1, \ldots, n-1\end{cases}
$$

Lemma 2.4. Let v_{i} be the unique solution of the following problem:

$$
\inf \left\{\int_{\Omega_{i}}(A \nabla v, \nabla v)^{\frac{p}{2}} d x, v \in K_{i}\right\}
$$

where $K_{i}=\left\{v \in W_{a_{i}}^{1, p}\left(\Omega_{i}\right): v=1\right.$ on $\gamma_{i}^{\prime}, v=0$ on $\left.\gamma_{i+1}\right\}$. Then v_{i} satisfy:

$$
\begin{equation*}
\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}-1}\left(A \nabla v_{i}, \nabla \varphi\right) d x=0, \forall \varphi \in K_{i}^{0} \tag{1.8}
\end{equation*}
$$

where $K_{i}^{0}=\left\{v \in W_{a_{i}}^{1, p}\left(\Omega_{i}\right): v=0\right.$ on $\left.\gamma_{i}^{\prime} \cup \gamma_{i+1}\right\}$, and hence,

$$
\begin{equation*}
\mathcal{A} v_{i}=0 \quad \text { in } \quad D^{\prime}\left(\Omega_{i}\right) \tag{1.9}
\end{equation*}
$$

TheOrem 2.5. Let us set $c_{p}=\int_{\Omega}(A \nabla u, \nabla u)^{\frac{p}{2}} d x$, let u being the solution of the problem (1.4) and v_{i} the function defined in Lemma 2.4. Then we have:
a) $c_{p}>0$,
b) $\quad k_{i} \neq k_{i+1}, \quad \forall i=1, \ldots, n$,
c) $\quad u_{i}=\left(k_{i}-k_{i+1}\right) v_{i}+k_{i+1}, \forall i=1, \ldots, n$,
d) $0<k_{i}-k_{i+1}=\left(\frac{\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x}{c_{p}}\right)^{\frac{-1}{p-1}}, \forall i=1, \ldots, n$,
e) $c_{p}=\left[\sum_{i=1}^{n}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{-1}{p-1}}\right]^{-(p-1)}$,
f) $\quad k_{i}=1-\left(c_{p}\right)^{\frac{1}{p-1}} \sum_{j=1}^{i-1}\left(\int_{\Omega_{j}}\left(A \nabla v_{j}, \nabla v_{j}\right)^{\frac{p}{2}} d x\right)^{\frac{-1}{p-1}}$

$$
=1-\frac{\sum_{j=1}^{i-1}\left(\int_{\Omega_{j}}\left(A \nabla v_{j}, \nabla v_{j}\right)^{\frac{p}{2}} d x\right)^{\frac{-1}{p-1}}}{\sum_{j=1}^{n}\left(\int_{\Omega_{j}}\left(A \nabla v_{j}, \nabla v_{j}\right)^{\frac{p}{2}} d x\right)^{\frac{-1}{p-1}}} .
$$

Proof. a) If $c_{p}=0$ then $u=$ constant on $\Omega_{i}(i=1, \ldots, n)$ and by using transmission conditions (because $u \in H$) we obtain contradiction.
b) Suppose that: there exists $j \in\{1, \ldots, n\}$ such that $k_{j}=k_{j+1}$. Let

$$
w=\left\{\begin{array}{cc}
k_{j} & \text { in } \Omega_{j} \\
u & \text { otherwise }
\end{array} .\right.
$$

Then

$$
w \neq u, w \in H \text { and } \int_{\Omega}(A \nabla w, \nabla w)^{\frac{p}{2}} d x<\int_{\Omega}(A \nabla u, \nabla u)^{\frac{p}{2}} d x
$$

contradiction with u is the solution of the problem (1.4).
c) Let $w_{i}=\frac{u_{i}-k_{i+1}}{k_{i}-k_{i+1}}(i=1, \ldots, n)$. Then from (1.7) we have

$$
\left\{\begin{array}{lll}
\mathcal{A} w_{i}=0 & \text { in } & D^{\prime}\left(\Omega_{i}\right) \\
w_{i}=1 & \text { on } & \gamma_{i}^{\prime} \\
w_{i}=0 & \text { on } & \gamma_{i+1}
\end{array}\right.
$$

hence $v_{i}=w_{i}$ and then $u_{i}=\left(k_{i}-k_{i+1}\right) v_{i}+k_{i+1}$.
d) Let

$$
w_{i}=\left\{\begin{array}{ll}
v_{i} & \text { in } \Omega_{i} \\
\text { constant } & \text { otherwise }
\end{array}(i=1, \ldots, n)\right.
$$

be such that $w_{i} \in H$. Then $w_{i}-u \in H_{0}$ and, by using (1.5), we have

$$
c_{p}=\int_{\Omega_{i}}\left(A \nabla u_{i}, \nabla u_{i}\right)^{\frac{p}{2}-1}\left(A \nabla u_{i}, \nabla v_{i}\right) d x
$$

and from c) we obtain the result.
e) By using $\sum_{i=1}^{n}\left(k_{i}-k_{i+1}\right)=1$ and d).
f) By using $k_{i}=1-\sum_{j=1}^{i-1}\left(k_{j}-k_{j+1}\right)$, d) and e).

REMARK 2.6. $0=k_{n+1}<k_{n}<\cdots<k_{1}=1$.
REmark 2.7. If Green's formula is valid, then we have for all $i \in$ $\{2, \ldots, n\}$, see [4]:

$$
\begin{aligned}
0<c_{p} & =-\int_{\gamma_{1}^{\prime}} \frac{\partial u_{1}}{\partial \nu^{\mathcal{A}}} d \gamma=-\int_{\gamma_{i}^{\prime}} \frac{\partial u_{i}}{\partial \nu^{\mathcal{A}}} d \gamma=\cdots \\
& =-\int_{\gamma_{n+1}} \frac{\partial u_{n}}{\partial \nu^{\mathcal{A}}} d \gamma=-\int_{\gamma_{i}} \frac{\partial u_{i-1}}{\partial \nu^{\mathcal{A}}} d \gamma
\end{aligned}
$$

where $\frac{\partial u}{\partial \nu^{\mathcal{A}}}=(A \nabla u, \nabla u)^{\frac{p}{2}-1}(A \nabla u, \nu)$ and ν be the normal to γ_{i} pointing outside $\Omega_{i-1}(i=2, \ldots, n+1)$.

3. Inequalities

Let us recall some notions of rearrangement (see for example, $[2,5,7,8$, $12,13]$). In this paper, we use only the Lebesgue measure on \mathbb{R}^{N}. Let $|E|$ be the measure of a measurable set E. Let u be a measurable function from Ω into \mathbb{R} where Ω is a measurable set in \mathbb{R}^{N}.

The (unidimensional) decreasing rearrangement u_{*} of u is defined on $\overline{\Omega^{*}}=$ $[0,|\Omega|]$ by:

$$
u_{*}(s)= \begin{cases}\inf \{\alpha \in \mathbb{R} /|u>\alpha| \leqslant s\} & \text { if } s<|\Omega| \\ \operatorname{essinf}_{\Omega} u & \text { if } s=|\Omega|\end{cases}
$$

where $|u>\alpha|=|\{x \in \Omega: u(x)>\alpha\}|$.
The increasing rearrangement of u, denoted u^{*}, is defined by $u^{*}(s)=$ $u_{*}(|\Omega|-s)$. The functions u, u_{*} and u^{*} satisfy $|u>\alpha|=\left|u_{*}>\alpha\right|=\left|u^{*}>\alpha\right|$.

For v in $L^{1}(\Omega)$ and for a measurable function u from Ω into \mathbb{R}, we define the function \mathcal{W} on $\overline{\Omega^{*}}$ by:
$\mathcal{W}(s)= \begin{cases}\int_{u>u_{*}(s)} v(x) d x & \text { if }\left|u=u_{*}(s)\right|=0 \\ \int_{u>u_{*}(s)} v(x) d x+\int_{0}^{s-\left|u>u_{*}(s)\right|}\left(\left.v\right|_{P(s)}\right)_{*}(\sigma) d \sigma & \text { otherwise, }\end{cases}$
where $\left(\left.v\right|_{P(s)}\right)_{*}$ is the decreasing rearrangement of v restricted to $P(s)=$ $\left\{x \in \Omega: u(x)=u_{*}(s)\right\}$. The integrable function $\frac{d \mathcal{W}}{d s}$ denoted $v_{*_{u}}$ is called the relative rearrangement of v with respect to u.

All the isoperimetric inequalities of this section are consequences of the following theorem.

Theorem 3.1. Let p^{\prime} be such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1, \alpha_{N}$ be the measure of the unit ball in \mathbb{R}^{N} and $v_{i}(i=1, \ldots, n)$ be the function defined in Lemma 2.4. Then for all t, t^{\prime} such that $0 \leqslant t \leqslant t^{\prime} \leqslant 1$ we have

$$
\begin{aligned}
& t^{\prime}-t \leqslant N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{\left|v_{i}>t^{\prime}\right|}^{\left|v_{i}>t\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}\left(\sigma-\left|v_{i}>t^{\prime}\right|\right) d \sigma
\end{aligned}
$$

From theorems 2.5 and 3.1 we deduce the following corollary.
Corollary 3.2. Let $i \in\{1, \ldots, n\}$. For all t and t^{\prime} such that $k_{i+1} \leqslant t \leqslant$ $t^{\prime} \leqslant k_{i}$ we have

$$
\begin{align*}
t^{\prime}-t \leqslant & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(c_{p}\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{\left|u_{i}>t^{\prime}\right|}^{\left|u_{i}>t\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}\left(\sigma-\left|u_{i}>t^{\prime}\right|\right) d \sigma \tag{3.1}
\end{align*}
$$

From (3.1), for $t=k_{i+1}$ and $t^{\prime}=k_{i}$ we deduce:
Corollary 3.3.

$$
k_{i}-k_{i+1} \leqslant N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(c_{p}\right)^{\frac{p^{\prime}}{p}} \int_{0}^{\left|\Omega_{i}\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma
$$

Proof of Theorem 3.1. For $\theta \in[0,1]$, let us set

$$
Z_{i}=\theta-\left(v_{i}-\theta\right)_{-}= \begin{cases}v_{i} & \text { if } v_{i}<\theta \\ \theta & \text { if } v_{i} \geqslant \theta\end{cases}
$$

We have $Z_{i}-\theta v_{i} \in K_{i}^{0}$ and then by using (1.8) we obtain:

$$
\int_{v_{i}<\theta}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x=\theta \int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x
$$

hence,

$$
\frac{d}{d \theta} \int_{v_{i}>\theta}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x=-\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x
$$

Moreover, by using (1.1), (1.2) and Hölder's inequality, we have for $h>0$:
$\frac{1}{h} \int_{\theta<v_{i} \leqslant \theta+h}\left|\nabla v_{i}\right| d x \leqslant\left[\frac{1}{h} \int_{\theta<v_{i} \leqslant \theta+h} a_{i}^{-\frac{p^{\prime}}{2}} d x\right]^{\frac{1}{p^{\prime}}}\left[\frac{1}{h} \int_{\theta<v_{i} \leqslant \theta+h} a_{i}^{\frac{p}{2}}\left|\nabla v_{i}\right|^{p} d x\right]^{\frac{1}{p}}$

$$
\leq\left[\frac{1}{h} \int_{\theta<v_{i} \leqslant \theta+h} a_{i}^{-\frac{p^{\prime}}{2}} d x\right]^{\frac{1}{p^{\prime}}}\left[\frac{1}{h} \int_{\theta<v_{i} \leqslant \theta+h}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right]^{\frac{1}{p}}
$$

and letting h tend to 0 ,

$$
\begin{aligned}
-\frac{d}{d \theta} \int_{v_{i}>\theta}\left|\nabla v_{i}\right| d x & \leqslant\left(-\frac{d}{d \theta} \int_{v_{i}>\theta} a_{i}^{-\frac{p^{\prime}}{2}} d x\right)^{\frac{1}{p^{\prime}}}\left(-\frac{d}{d \theta} \int_{v_{i}>\theta}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}} \\
& =\left(-\frac{d}{d \theta} \int_{v_{i}>\theta} a_{i}^{-\frac{p^{\prime}}{2}} d x\right)^{\frac{1}{p}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}} .
\end{aligned}
$$

On the other hand, by using the following formula of derivation (see [13]) we have

$$
\frac{d}{d \theta} \int_{v_{i}>\theta} a_{i}^{-\frac{p^{\prime}}{2}} d x=\mathcal{W}^{\prime}\left(\nu_{i}(\theta)\right) \nu_{i}^{\prime}(\theta)
$$

where $\nu_{i}(\theta)=\left|v_{i}>\theta\right|$ and $\frac{d \mathcal{W}}{d s}=\left(a_{i}^{-\frac{p^{\prime}}{2}}\right)_{* v_{i}}$ is the relative rearrangement of $a_{i}^{-\frac{p^{\prime}}{2}}$ with respect to v_{i}.

Hence,

$$
-\frac{d}{d \theta} \int_{v_{i}>\theta}\left|\nabla v_{i}\right| d x \leqslant\left(-\mathcal{W}^{\prime}\left(\nu_{i}(\theta)\right) \nu_{i}^{\prime}(\theta)\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}
$$

Moreover, classically, by using theorems of De Georgi and Fleming-Rishel (see for example [7]) we have

$$
-\frac{d}{d \theta} \int_{v_{i}>\theta}\left|\nabla v_{i}\right| d x \geqslant N\left(\alpha_{N}\right)^{\frac{1}{N}}\left(\left|\omega_{i}^{\prime}\right|+\nu_{i}(\theta)\right)^{1-\frac{1}{N}}
$$

and then
$N\left(\alpha_{N}\right)^{\frac{1}{N}}\left(\left|\omega_{i}^{\prime}\right|+\nu_{i}(\theta)\right)^{1-\frac{1}{N}} \leqslant\left(-\mathcal{W}^{\prime}\left(\nu_{i}(\theta)\right) \nu_{i}^{\prime}(\theta)\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}$.
Hence,

$$
\begin{aligned}
1 \leqslant & -N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times\left(\left|\omega_{i}^{\prime}\right|+\nu_{i}(\theta)\right)^{\frac{p^{\prime}}{N}-p^{\prime}} \mathcal{W}^{\prime}\left(\nu_{i}(\theta)\right) \nu_{i}^{\prime}(\theta)
\end{aligned}
$$

By integrating between t and t^{\prime} we have

$$
\begin{aligned}
t^{\prime}-t \leqslant & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{0}^{\left|\Omega_{i}\right|} 1_{\left[\nu_{i}\left(t^{\prime}\right), \nu_{i}(t)\right]}(\sigma)\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{-\frac{p^{\prime}}{2}}\right)_{*_{v_{i}}}(\sigma) d \sigma
\end{aligned}
$$

and by using in [12, Theorem 3] we have

$$
\begin{aligned}
t^{\prime}-t \leqslant & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{0}^{\left|\Omega_{i}\right|}\left(1_{\left[\nu_{i}\left(t^{\prime}\right), \nu_{i}(t)\right]}(\cdot)\left(\left|\omega_{i}^{\prime}\right|+\cdot\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\right)_{*}^{*}(\sigma)\left(a_{i}^{-\frac{p^{\prime}}{2}}\right)_{*}(\sigma) d \sigma \\
= & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{0}^{\left|\Omega_{i}\right|} 1_{\left.\left[0, \nu_{i}(t)-\nu_{i}\left(t^{\prime}\right)\right]\right]}(\sigma)\left(\left|\omega_{i}^{\prime}\right|+\nu_{i}\left(t^{\prime}\right)+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma \\
= & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{0}^{\nu_{i}(t)-\nu_{i}\left(t^{\prime}\right)}\left(\left|\omega_{i}^{\prime}\right|+\nu_{i}\left(t^{\prime}\right)+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
t^{\prime}-t \leqslant & N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\int_{\Omega_{i}}\left(A \nabla v_{i}, \nabla v_{i}\right)^{\frac{p}{2}} d x\right)^{\frac{p^{\prime}}{p}} \\
& \times \int_{\left|v_{i}>t^{\prime}\right|}^{\left|v_{i}>t\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}\left(\sigma-\left|v_{i}>t^{\prime}\right|\right) d \sigma
\end{aligned}
$$

for all t, t^{\prime} such that $0 \leqslant t \leqslant t^{\prime} \leqslant 1$.

4. Symmetrized problem

Let $i \in\{1, \ldots, n+1\}$, let $\widetilde{\omega}_{i}\left(\right.$ resp. $\left.\widetilde{\omega}_{i}^{\prime}\right)$ the ball of \mathbb{R}^{N} centered at the origin such that $\left|\widetilde{\omega}_{i}\right|=\left|\omega_{i}\right|$ (resp. $\left.\left|\widetilde{\omega}_{i}^{\prime}\right|=\left|\omega_{i}^{\prime}\right|\right)$. Let $\Lambda_{0}=\widetilde{\omega}_{1}, \Lambda_{i}=\widetilde{\omega}_{i+1} \mid \overline{\widetilde{\omega}_{i}^{\prime}}$ $(i=1, \ldots, n)$ and $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{n}$. Let $\widetilde{\gamma}_{i}=\partial \widetilde{\omega}_{i}$ and $\widetilde{\gamma}_{i}^{\prime}=\partial \widetilde{\omega}_{i}^{\prime}$ for $i \in\{1, \ldots, n+1\}$. Let μ be the normal to $\widetilde{\gamma}_{i}$ pointing outside $\Lambda_{i-1}(i=$ $1, \ldots, n+1)$.

Let \widetilde{a} be the function defined by $\widetilde{a}(x)=a_{i}^{*}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)$ in Λ_{i}, where a_{i}^{*} is the increasing rearrangement of $a_{i}, i \in\{1, \ldots, n\}$. We consider the symmetrized problem defined as follows:

$$
\begin{equation*}
\inf \left\{\int_{\Lambda} \widetilde{a}^{\frac{p}{2}}|\nabla V|^{p} d x, V \in \widetilde{H}\right\} \tag{4.1}
\end{equation*}
$$

where

$$
\widetilde{H}=\left\{\begin{array}{l}
V \in W_{a}^{1, p}(\Lambda): V=1 \text { on } \widetilde{\gamma}_{1}^{\prime}, V=0 \text { on } \widetilde{\gamma}_{n+1} \text { and } \\
V=K_{i}(\text { undetermined constant }) \text { on } \widetilde{\gamma}_{i} \cup \widetilde{\gamma}_{i}^{\prime} \text { for } i=2, \ldots, n
\end{array}\right\}
$$

Remark 4.1. As the function a, \widetilde{a} also satisfies (1.2) (with Λ instead of Ω), then from Theorem 2.1 the symmetrized problem (4.1) has unique solution.

Proposition 4.2. For $j \in\{1, \ldots, n\}$, let us set

$$
f_{j}(\sigma)=\left(\left|\omega_{j}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{j}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) \text { for } \sigma \in\left[0,\left|\Omega_{j}\right|\right], I_{j}=\int_{0}^{\left|\Omega_{j}\right|} f_{j}(\sigma) d \sigma,
$$

and V_{j} be the solution of the following problem:

$$
\begin{cases}\mathcal{B} V_{j}=0 & \text { in } \Lambda_{j} \\ V_{j}=0 & \text { on } \widetilde{\gamma}_{j+1} \\ V_{j}=1 & \text { on } \widetilde{\gamma}_{j}^{\prime}\end{cases}
$$

where $\mathcal{B} V=-\operatorname{div}\left(\widetilde{a}^{\frac{p}{2}}|\nabla V|^{p-2} \nabla V\right)$. Then we have
a) $\quad V_{j}(x)=\left(I_{j}\right)^{-1} \int_{\alpha_{N}|x|^{N}-\left|\omega_{j}^{\prime}\right|}^{\left|\Omega_{j}\right|} f_{j}(s) d s \quad$ for $x \in \Lambda_{j}$,
b) $\quad-\int_{\tilde{\gamma}_{j}^{\prime}} \frac{\partial V_{j}}{\partial \mu^{\mathcal{B}}} d \gamma=N^{p}\left(\alpha_{N}\right)^{\frac{p}{N}}\left(I_{j}\right)^{1-p}$

$$
\text { where } \frac{\partial V}{\partial \mu^{\mathcal{B}}}=\widetilde{a}^{\frac{p}{2}}|\nabla V|^{p-2} \frac{\partial V}{\partial \mu}, \frac{\partial V}{\partial \mu} \text { is the normal derivative. }
$$

REmARK 4.3. A similar computation shows that one has also

$$
-\int_{\widetilde{\gamma}_{j}} \frac{\partial V_{j}}{\partial \mu^{\mathcal{B}}} d \gamma=N^{p}\left(\alpha_{N}\right)^{\frac{p}{N}}\left(I_{j}\right)^{1-p}
$$

that is Green's formula is valid for V_{j} and it follows from c) of Theorem 2.5 that it is also valid for $U_{j}(j=1, \ldots, n)$, where $U_{j}=U \mid \Lambda_{j}$ and U is the solution of the symmetrized problem (4.1).

Proof of proposition 4.2. a) We have

$$
-\mathcal{B} V_{i}=\sum_{j=1}^{N} \frac{\partial}{\partial x_{j}}\left(\left(a_{i}^{*}\right)^{\frac{p}{2}}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)\left|\nabla V_{i}\right|^{p-2} \frac{\partial V_{i}}{\partial x_{j}}\right) .
$$

With $r=|x|$ we obtain

$$
\begin{aligned}
-\mathcal{B} V_{i}= & (-1)^{p}\left(a_{i}^{*}\right)^{\frac{p}{2}-1}\left(\alpha_{N} r^{N}-\left|\omega_{i}^{\prime}\right|\right)\left(\frac{d V_{i}}{d r}\right)^{p-2} \\
& \times\left(\frac{p}{2} \frac{d}{d r} a_{i}^{*}\left(\alpha_{N} r^{N}-\left|\omega_{i}^{\prime}\right|\right) \frac{d V_{i}}{d r}\right. \\
& \left.\quad+(p-1) a_{i}^{*}\left(\alpha_{N} r^{N}-\left|\omega_{i}^{\prime}\right|\right) \frac{d^{2} V_{i}}{d r^{2}}+\frac{N-1}{r} a_{i}^{*}\left(\alpha_{N} r^{N}-\left|\omega_{i}^{\prime}\right|\right) \frac{d V_{i}}{d r}\right)
\end{aligned}
$$

and then

$$
\mathcal{B} V_{i}=0 \Longleftrightarrow \frac{d V_{i}}{d r}=k r^{\frac{N-1}{1-p}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}\left(\alpha_{N} r^{N}-\left|\omega_{i}^{\prime}\right|\right)
$$

where k is constant. Hence,
where k^{\prime} and $k^{\prime \prime}$ are constants. With $\sigma=\alpha_{N} s^{N}-\left|\omega_{i}^{\prime}\right|$ we have for $x \in \Lambda_{i}$,

$$
V_{i}(x)=C \int_{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|}^{\left|\Omega_{i}\right|}\left(\sigma+\left|\omega_{i}^{\prime}\right|\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma+D
$$

where C and D are constants.
Since $V_{i}=0$ on $\widetilde{\gamma}_{i+1}$ and $V_{i}=1$ on $\widetilde{\gamma}_{i}^{\prime}$, we deduce that $D=0, C=\frac{1}{I_{i}}$ and then

$$
V_{i}(x)=\frac{1}{I_{i}} \int_{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|}^{\left|\Omega_{i}\right|}\left(\sigma+\left|\omega_{i}^{\prime}\right|\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma \quad \text { for all } x \in \Lambda_{i}
$$

b) We have $\frac{\partial V_{i}}{\partial \mu^{\mathcal{B}}}=\sum_{j=1}^{N} \widetilde{a}^{\frac{p}{2}}\left|\nabla V_{i}\right|^{p-2} \frac{\partial V_{i}}{\partial x_{j}} \mu^{j}$ where μ^{j} is the j th component of μ, then from a) we deduce

$$
\frac{\partial V_{i}}{\partial \mu^{\mathcal{B}}}=-N^{p-1}\left(\alpha_{N}\right)^{\frac{p}{N}-1}|x|^{-N}\left(I_{i}\right)^{1-p} \sum_{j=1}^{N} x_{j} \mu^{j}
$$

and

$$
-\int_{\widetilde{\gamma}_{i}^{\prime}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}}} d \gamma=N^{p}\left(\alpha_{N}\right)^{\frac{p}{N}}\left(I_{i}\right)^{1-p}
$$

(because $\int_{\widetilde{\gamma}_{i}^{\prime}} x_{j} \mu^{j} d \gamma=\left|\widetilde{\omega}_{i}^{\prime}\right|=\left|\omega_{i}^{\prime}\right|$ and if $x \in \widetilde{\gamma}_{i}^{\prime}$ we have $\alpha_{N}|x|^{N}=\left|\widetilde{\omega}_{i}^{\prime}\right|=\left|\omega_{i}^{\prime}\right|$).

Theorem 4.4 (Explicit resolution of symmetrized problem). Let us set $\widetilde{c}_{p}=\int_{\Lambda} \widetilde{a}^{\frac{p}{2}}|\nabla U|^{\frac{p}{2}} d x$ where U being the solution of the symmetrized problem (4.1), K_{i} be the value of U on $\widetilde{\gamma}_{i} \cup \widetilde{\gamma}_{i}^{\prime}(i=2, \ldots, n)$ and $U_{i}=U \mid \Lambda_{i}(i=$ $1, \ldots, n)$, then we have:
a) $K_{i}=1-\left(\sum_{j=1}^{i-1} I_{j}\right)\left(\sum_{j=1}^{n} I_{j}\right)^{-1}, \quad i \in\{2, \ldots, n\} ;$
b) $\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}=N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}} \sum_{j=1}^{n} I_{j} ;$
c) for $i \in\{1, \ldots, n\}$ and $x \in \Lambda_{i}$,

$$
U_{i}(x)=K_{i}-N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\widetilde{c}_{p}\right)^{\frac{p^{\prime}}{p}} \int_{0}^{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma
$$

Proof. Using Theorem 2.5, Proposition 4.2 and Remark 4.3 we have:
a) $\left(\widetilde{c}_{p}\right)^{\frac{-1}{1-p}}=\sum_{j=1}^{n}\left(-\int_{\widetilde{\gamma}_{j}^{\prime}} \frac{\partial V_{j}}{\partial \mu^{\mathcal{B}}} d \gamma\right)^{\frac{-1}{1-p}}=N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}} \sum_{j=1}^{n} I_{j} ;$
b) $K_{i}=1-\left(\widetilde{c}_{p}\right)^{\frac{1}{1-p}} \sum_{j=1}^{i-1}\left(-\int_{\tilde{\gamma}_{j}^{\prime}} \frac{\partial V_{j}}{\partial \mu^{\mathcal{B}}} d \gamma\right)^{\frac{-1}{1-p}}=1-\left(\sum_{j=1}^{i-1} I_{j}\right)\left(\sum_{j=1}^{n} I_{j}\right)^{-1}$, $i \in\{2, \ldots, n\}$;
c) for $i \in\{1, \ldots, n\}$ and $x \in \Lambda_{i}$ we have:

$$
\begin{aligned}
U_{i}(x) & =\left(K_{i}-K_{i+1}\right) V_{i}(x)+K_{i+1} \\
& =K_{i}-\left(K_{i}-K_{i+1}\right)\left(1-V_{i}(x)\right) \\
& =K_{i}-N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\widetilde{c}_{p}\right)^{\frac{1}{1-p}}\left(I_{i}-\int_{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|}^{\left|\Omega_{i}\right|} f_{i}(\sigma) d \sigma\right) \\
& =K_{i}-N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\widetilde{c}_{p}\right)^{\frac{p^{\prime}}{p}} \int_{0}^{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma .
\end{aligned}
$$

Remark 4.5. For the symmetrized problem the inequality (3.1) becomes an equality when $t^{\prime}=K_{i}$ and $t=U_{i}(x)$. Actually, since a is strictly positive, also is a_{i}^{*} and it follows from the expression of U_{i} given in Theorem 4.4 that it is strictly decreasing along radii.

Theorem 4.6 (isoperimetric inequalities). Let \bar{u} (resp. \bar{U}) be the extension of u (resp. U) by 1 on ω_{1} (resp. $\widetilde{\omega}_{1}$), 0 on $\omega_{n+1}^{\prime} \backslash \overline{\omega_{n+1}}$ (resp. $\widetilde{\omega}_{n+1}^{\prime} \backslash \overline{\widetilde{\omega}_{n+1}}$) and $k_{i}\left(\right.$ resp. $\left.K_{i}\right)$ on $\omega_{i}^{\prime} \backslash \overline{\omega_{i}}\left(\right.$ resp. $\left.\widetilde{\omega}_{i}^{\prime} \backslash \overline{\widetilde{\omega}_{i}}\right)$. For $i \in\{1, \ldots, n\}, j \in\{1, \ldots, i\}$ and $x \in \bar{\Lambda}_{i}$ we have
a) $\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{j}-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{j}-\bar{U}(x)\right)$,
b) $\left(c_{p}\right)^{\frac{-p}{p}}\left(1-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}(1-\bar{U}(x))$,
in particular for $1 \leqslant j \leqslant i \leqslant n+1$ we have
c) $\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{j}-k_{i}\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{j}-K_{i}\right)$,
d) $\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(1-k_{i}\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(1-K_{i}\right)$,
and more particularly,
e) $c_{p} \geqslant \widetilde{c}_{p}$.

Proof. a) Let $i \in\{1, \ldots, n\}$ and $x \in \bar{\Lambda}_{i}$. Then

$$
\left|\omega_{i}^{\prime}\right| \leqslant \alpha_{N}|x|^{N} \leqslant\left|\omega_{i+1}\right| \text { and } \bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)=u_{i_{*}}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)
$$

hence

$$
k_{i+1} \leqslant \bar{u}_{*}\left(\alpha_{N}|x|^{N}\right) \leqslant k_{i} .
$$

We also have

$$
K_{i+1} \leqslant \bar{U}(x) \leqslant K_{i}
$$

Let $j \in\{1, \ldots, n\}$. If $j=i$:
From (3.1) with $t^{\prime}=k_{i}$ and $t=\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)$ we have

$$
\begin{aligned}
& \left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{i}-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \\
& \quad \leqslant N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}} \int_{0}^{\left|u_{i}>\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p^{\prime}}{N}-p^{\prime}}\left(a_{i}^{*}\right)^{\frac{-p^{\prime}}{2}}(\sigma) d \sigma
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|u_{i}>\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right| & =\left|u_{i}>u_{i_{*}}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)\right| \\
& =\left|u_{i_{*}}>u_{i_{*}}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)\right| \\
& \leqslant \alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|
\end{aligned}
$$

we deduce from the expression of U given in Theorem 4.4 that

$$
\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{i}-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{i}-\bar{U}(x)\right)
$$

If $j<i$:
By using the above, Corollary 3.3 and Theorem 4.4 we have

$$
\begin{aligned}
&\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{j}-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \\
&=\sum_{m=j}^{i-1}\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{m}-k_{m+1}\right)+\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(k_{i}-\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)\right) \\
& \leqslant \sum_{m=j}^{i-1}\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{m}-K_{m+1}\right)+\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{i}-\bar{U}(x)\right) \\
& \quad=\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(K_{j}-\bar{U}(x)\right)
\end{aligned}
$$

b) It's enough to take $j=1$ in a).

With $x \in \widetilde{\gamma}_{i}^{\prime}$ we deduce c) from a) and d) from b) because $\alpha_{N}|x|^{N}=\left|\omega_{i}^{\prime}\right|$ and $\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)=u_{i_{*}}(0)=k_{i}$, we also have $\bar{U}(x)=K_{i}$.

5. Comparison with Ferone's result

In this section we consider the particular case where the matrix $A=a I$, I is the unit matrix. In this isotropic case, problem (1.4) reads

$$
\begin{equation*}
\inf \left\{\int_{\Omega} a^{\frac{p}{2}}|\nabla v|^{p} d x, v \in H\right\} \tag{5.1}
\end{equation*}
$$

Up to a change in the definition of a, this is exactly the problem studied by Ferone (see [6]) who considers the following symmetrized problem:

$$
\begin{equation*}
\inf \left\{\int_{\Lambda^{*}}\left(a^{*}\right)^{\frac{p}{2}}\left(\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|\right)|\nabla V|^{p} d x, V \in H^{*}\right\} \tag{5.2}
\end{equation*}
$$

where $\Lambda^{*}=\widetilde{D} \backslash \widetilde{\omega}_{1}^{\prime}, \widetilde{D}$ is the N -dimensional ball with center at the origin and measure $|D|$ with $D=\omega_{n+1} \backslash\left(C_{2} \cup \cdots \cup C_{n}\right)$ and

$$
H^{*}=\left\{V \in W_{a^{*}}^{1, p}\left(\Lambda^{*}\right): V=1 \text { on } \widetilde{\gamma}_{1}^{\prime}, V=0 \text { on } \partial \widetilde{D}\right\}
$$

Note that Λ^{*} has same measure as Ω, it is an annulus bounded by two spheres with center zero and inner sphere $\widetilde{\gamma}_{1}^{\prime}$. Also note that (5.2) is a capacity problem but, unlike (5.1) or (4.1), it has no inner perfect conductor.

Let us denote by c_{p} the infimum in (5.1) and by c_{p}^{*} the infimum in (5.2). The result obtained by Ferone (see [6]) is:

$$
\begin{equation*}
c_{p} \geqslant c_{p}^{*} \tag{5.3}
\end{equation*}
$$

As it is clear that $(\tilde{a})^{*}=a^{*},(5.2)$ is also the symmetrized problem (in Ferone's sense) of (4.1) and the comparison (5.3) applied to problems (4.1) and (5.2) gives:

Theorem 5.1.

$$
\tilde{c}_{p} \geqslant c_{p}^{*}
$$

REmark 5.2. From theorems 4.6 and 5.1, we deduce $c_{p} \geqslant \widetilde{c}_{p} \geqslant c_{p}^{*}$. Thus, in the particular isotropic case, we obtain a better comparison than Ferone's one, in addition we also obtain comparison for the unknown potentials k_{i}. Moreover, our symmetrized problem (4.1) is more natural than Ferone's one.

Remark 5.3. The proofs given in this paper differ from those given in [6] since we apply technics of relative rearrangement.

6. The particular case $a_{i}(x)=\beta_{i}$ (CONSTANT $\left.>0\right)$

We still consider problem (1.4). In this section we suppose that the functions $a_{i}(i=1, \ldots, n)$ are constant: $a_{i}(x)=\beta_{i}>0$ in Ω_{i}. In this case the symmetrized problem (4.1) becomes completely explicit and, in addition to the results already obtained in Theorem 4.6, we are able to get other isoperimetric inequalities. This is done below.

Theorem 6.1 (Explicit resolution of the symmetrized problem when $\left.a_{i}(x)=\beta_{i}\right)$. When $a_{i}(x)=\beta_{i}$, the explicit expression of K_{i}, \tilde{c}_{p} given in Theorem 4.4 are available with:
$I_{j}= \begin{cases}\left(\frac{p^{\prime}}{N}-p^{\prime}+1\right)^{-1}\left(\beta_{j}\right)^{\frac{-p^{\prime}}{2}}\left[\left|\omega_{j+1}\right|^{\frac{p^{\prime}}{N}-p^{\prime}+1}-\left|\omega_{j}^{\prime}\right|^{\frac{p^{\prime}}{N}-p^{\prime}+1}\right] & \text { if } N \neq p \\ \left(\beta_{j}\right)^{\frac{-p^{\prime}}{2}}\left[\log \left|\omega_{j+1}\right|-\log \left|\omega_{j}^{\prime}\right|\right] & \text { otherwise, }\end{cases}$
moreover, the expression of $U_{i}(x)$ given in Theorem 4.4 is available with

$$
\int_{0}^{\alpha_{N}|x|^{N}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma
$$

replaced by:

$$
\begin{cases}\left(\frac{p^{\prime}}{N}-p^{\prime}+1\right)^{-1}\left(\beta_{i}\right)^{\frac{-p^{\prime}}{2}}\left[\left(\alpha_{N}|x|^{N}\right)^{\frac{p^{\prime}}{N}-p^{\prime}+1}-\left|\omega_{i}^{\prime}\right|^{\frac{p^{\prime}}{N}}-p^{\prime}+1\right] & \text { if } N \neq p \\ \left(\beta_{i}\right)^{\frac{-p^{\prime}}{2}}\left[\log \left(\alpha_{N}|x|^{N}\right)-\log \left|\omega_{i}^{\prime}\right|\right] & \text { otherwise }\end{cases}
$$

Proof. The proof is just computation.
ThEOREM 6.2 (Isoperimetric inequalities when $\left.a_{i}(x)=\beta_{i}\right)$. When $a_{i}(x)=\beta_{i}$, in addition to $\left.\left.\left.a\right), b\right), c\right)$, d) and e) in Theorem 4.6 we have:
f) for almost every $x \in \omega_{n+1}^{\prime}$,

$$
\begin{aligned}
0 & \leqslant-\left(c_{p}\right)^{\frac{-p^{\prime}}{p}} \frac{d \bar{u}_{*}}{d s}\left(\alpha_{N}|x|^{N}\right) \leqslant-\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}} \frac{d \bar{U}_{*}}{d s}\left(\alpha_{N}|x|^{N}\right) \\
& =\left\{\begin{array}{lr}
N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(\beta_{i}\right)^{\frac{-p^{\prime}}{2}}\left(\alpha_{N}|x|^{N}\right)^{\frac{p^{\prime}}{N}}-p^{\prime} \\
0 & \text { if } x \in \omega_{1}^{\prime} \cup\left(\omega_{2}^{\prime} \backslash \bar{\omega}_{2}\right) \cup \cdots \cup\left(\omega_{n+1}^{\prime} \backslash \bar{\omega}_{n+1}\right)
\end{array}\right.
\end{aligned}
$$

and it follows
g) for every x, y in $\overline{\widetilde{\omega}_{n+1}}$ with $|x| \leqslant|y|$

$$
\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)-\bar{u}_{*}\left(\alpha_{N}|y|^{N}\right)\right) \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}(\bar{U}(x)-\bar{U}(y))
$$

in particular,
h) for $i \in\{1, \ldots, n\}, j \in\{i, \ldots, n+1\}$ and $x \in \bar{\Lambda}_{i}$,

$$
\begin{aligned}
\left(c_{p}\right)^{\frac{-p^{\prime}}{p}}\left(\bar{u}_{*}\left(\alpha_{N}|x|^{N}\right)-k_{j}\right) & \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}}\left(\bar{U}(x)-K_{j}\right) \\
\left(c_{p}\right)^{\frac{-p^{\prime}}{p}} \bar{u}_{*}\left(\alpha_{N}|x|^{N}\right) & \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}} \bar{U}(x)
\end{aligned}
$$

i) for $i \in\{1, \ldots, n+1\}$,

$$
\left(c_{p}\right)^{\frac{-p^{\prime}}{p}} k_{i} \leqslant\left(\widetilde{c}_{p}\right)^{\frac{-p^{\prime}}{p}} K_{i}
$$

Proof. f) Let s and s^{\prime} be such that $\left|\omega_{i}^{\prime}\right| \leqslant s^{\prime} \leqslant s \leqslant\left|\omega_{i+1}\right|$ and $\bar{u}_{*}(s)<$ $\bar{u}_{*}\left(s^{\prime}\right)$. Let ε be such that $0<\varepsilon \leqslant \bar{u}_{*}\left(s^{\prime}\right)-\bar{u}_{*}(s)$.

With $t=\bar{u}_{*}(s)$ and $t^{\prime}=\bar{u}_{*}\left(s^{\prime}\right)-\varepsilon$ in (3.1) and tending ε to 0 we obtain

$$
\bar{u}_{*}\left(s^{\prime}\right)-\bar{u}_{*}(s) \leqslant N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(c_{p}\right)^{\frac{p^{\prime}}{p}}\left(\beta_{i}\right)^{\frac{-p^{\prime}}{2}} \int_{s^{\prime}}^{s} \sigma^{\frac{p^{\prime}}{N}-p^{\prime}} d \sigma
$$

(because $\left|u_{i}>t^{\prime}\right| \geqslant s^{\prime}-\left|\omega_{i}^{\prime}\right|$ and $\left|u_{i}>t\right| \leqslant s-\left|\omega_{i}^{\prime}\right|$) with $s^{\prime}=s-\theta$, one gets by letting θ decrease to zero and by using Theorem 6.1,

$$
-\frac{d \bar{u}_{*}}{d s} \leqslant N^{-p^{\prime}}\left(\alpha_{N}\right)^{\frac{-p^{\prime}}{N}}\left(c_{p}\right)^{\frac{p^{\prime}}{p}}\left(\beta_{i}\right)^{\frac{-p^{\prime}}{2}} s^{\frac{p^{\prime}}{N}-p^{\prime}}=-\frac{d \bar{U}_{*}}{d s}
$$

and this for almost every s in $]\left|\omega_{i}^{\prime}\right|,\left|\omega_{i+1}\right|[(i=1, \ldots, n)$.
As \bar{u}_{*} and \bar{U}_{*} are constant in each connected component of the complementary of $]\left|\omega_{1}^{\prime}\right|,\left|\omega_{2}\right|[\cup \cdots \cup]\left|\omega_{n}^{\prime}\right|,\left|\omega_{n+1}\right|[$, the proof of $f)$ is complete.

We obtain g) by integration and h), i) easily follow.

References

[1] A. Alvino and G. Trombetti, Isoperimetric inequalities connected with torsion problem and capacity, Boll. Un. Mat. Ital. B (6), 4 (1985), 773-787.
[2] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, Mass.London, 1980.
[3] L. Boukrim, Inégalités isopérimétriques pour un problème d'électrostatique, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 435-438.
[4] L. Boukrim, Inégalités isopérimétriques pour certains problèmes de conductivité dans desmilieux non homogènes, Doctoral Thesis, Université Paris-Sud, Orsay, France, 1994.
[5] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries I. Elliptic equations, Pitman, Boston, 1985.
[6] V. Ferone, Symmetrization results in electrostatic problems, Ricerche Mat. 37 (1988), 359-370.
[7] J. Mossino, Inégalités Isopérimétriques et Applications en Physique, Hermann, Paris, 1984.
[8] J. Mossino and R. Temam, Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J. 48 (1981), 475-495.
[9] M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerateelliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1-122.
[10] G. Pólya, Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math. 6 (1948), 267-277.
[11] G. Pólya and G. Szegő, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951.
[12] J. M. Rakotoson, Some properties of the relative rearrangement, J. Math. Anal. Appl. 135 (1988), 488-500.
[13] J. M. Rakotoson and R. Temam, Relative rearrangement in quasilinear elliptic variational inequalities, Indiana Univ. Math. J 36 (1987), 757-810.
L. Boukrim

Université My Ismaïl. F. S. T. Errachidia
Département de Mathématiques
BP 509 Boutalamine Errachidia
Morocco
E-mail: boukrim05@yahoo.fr
T. Mekkaoui

Université My Ismaïl. F. S. T. Errachidia
Département de Mathématiques
BP 509 Boutalamine Errachidia
Morocco
E-mail: toufik_mekkaoui@yahoo.fr
Received: 9.11.2005.
Revised: 10.5.2006.

[^0]: 2000 Mathematics Subject Classification. 26D10, 46B35, 35J65.
 Key words and phrases. Isoperimetric inequality, rearrangement, nonlinear ellipitc PDE's.

