MORPHISMS OUT OF A SPLIT EXTENSION OF A HILBERT C^{*}-MODULE

Biserka Kolarec
University of Zagreb, Croatia

Abstract

Let us have a split extension W of a Hilbert C^{*}-module V by a Hilbert C^{*}-module Z. Like in the case of C^{*}-algebras (well known theorem of T. A. Loring), every morphism out of W, more precisely from W to an arbitrary Hilbert C^{*}-module U, can be described as a pair of morphisms from V and Z, respectively, into U that satisfies certain conditions. It turns out that besides the generalization of the Loring's condition, an additional condition has to be posed.

1. Preliminaries

A Hilbert C^{*}-module V over a C^{*}-algebra A (a Hilbert A-module) is a generalization of a Hilbert space in the sense that the "inner product" $(\cdot \mid \cdot): V \times V \rightarrow A$ defined on it takes values in a C^{*}-algebra A instead of the field of complex numbers \mathbb{C} (see $[3,6]) . V$ is said to be full if the (closed) ideal in A generated by elements $\left(v_{1} \mid v_{2}\right), v_{1}, v_{2} \in V$ is A.

When making quotients of a Hilbert C^{*}-module by its submodule, only the quotient of a Hilbert C^{*}-module by its ideal submodule is again a Hilbert C^{*}-module. What is an ideal submodule? The ideal submodule V_{I} of V associated to an ideal $I \subseteq A$ is $V_{I}=\{v b: v \in V, b \in I\}=\{v \in V:(v \mid x) \in$ $I, \forall x \in V\}$. Denote by $\Pi:\left.V \rightarrow V\right|_{V_{I}}, \pi:\left.A \rightarrow A\right|_{I}$ canonical quotient maps. $\left.V\right|_{V_{I}}$ has a natural Hilbert $\left.A\right|_{I}$-module structure with the operation of right multiplication and the inner product given by: $\Pi(v) \pi(a)=\Pi(v a)$, $\left(\Pi\left(v_{1}\right) \mid \Pi\left(v_{2}\right)\right)=\pi\left(\left(v_{1} \mid v_{2}\right)\right)$.

A sum of submodules V_{1}, V_{2} in V is $V_{1}+V_{2}=\left\{v_{1}+v_{2}: v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$; a sum is called direct and denoted by $V_{1} \dot{+} V_{2}$ if $V_{1} \cap V_{2}=\{0\}$. Further, a sum

[^0]is orthogonal and denoted by $V_{1} \oplus V_{2}$ if elements of V_{1} and V_{2} are mutually "orthogonal" i.e. if $\left(v_{1} \mid v_{2}\right)=0$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$.

A definition of an extension (see [1, 2]) of a Hilbert C^{*}-module is given inside of the category which objects are Hilbert C^{*}-modules and morphisms are given as follows: for a Hilbert A-module V and a Hilbert B-module W a map $\Phi: V \rightarrow W$ is a morphism (or a φ-morphism) of Hilbert C^{*} modules if there is a morphism (a *-homomorphism) $\varphi: A \rightarrow B$ of C^{*} algebras such that $\left(\Phi\left(v_{1}\right) \mid \Phi\left(v_{2}\right)\right)=\varphi\left(\left(v_{1} \mid v_{2}\right)\right)$ for all $v_{1}, v_{2} \in V$. An extension of a Hilbert A-module V is a triple (W, B, Φ) such that: W is a Hilbert B-module, $\Phi: V \rightarrow W$ is a φ-morphism for a morphism $\varphi: A \rightarrow B$ of C^{*}-algebras, $\varphi(A)$ is an ideal in a C^{*}-algebra B and $\Phi(V)$ is the ideal submodule of W associated to $\varphi(A)$ i.e. $\Phi(V)=W \varphi(A)$. So we have an exact sequence of Hilbert C^{*}-modules and morphisms of modules

and the corresponding exact sequence of underlying C^{*}-algebras

The latter is called split if there is a morphism $\sigma: C \rightarrow B$ such that $\pi \sigma=i d$. Then a C^{*}-algebra B actually splits i.e. $B=A \dot{+} \sigma(C)([6$, Proposition 3.1.3]). This sum is orthogonal if $\sigma(C)$ also sits as an ideal in B.

In the case of Hilbert C^{*}-modules an extension (W, B, Φ) (or W for short) of a Hilbert C^{*}-module V is said to be split if there is a morphism $\Sigma: Z \rightarrow W$ (that is, a σ-morphism for a morphism of C^{*}-algebras $\sigma: C \rightarrow B$) such that $\Pi \Sigma=i d$. We are going to deal with full Hilbert C^{*}-modules, because then the underlying exact sequence of C^{*}-algebras is split too.

Quite as it should be, a full split extension W of a full Hilbert C^{*}-module V really splits into the direct sum of $\Phi(V)$ and $\Sigma(Z)$ (a straightforward computation imitating the C^{*}-algebra case shows it). This sum is orthogonal if $\Sigma(Z)$ is the ideal submodule of W associated to the ideal $\sigma(C) \subseteq B$ when $B=\varphi(A) \oplus \sigma(C)(\Phi(V)$ is already the ideal submodule of W associated to the ideal $\varphi(A) \subseteq B$, assured by the fact that W is an extension of V):

$$
\begin{aligned}
(\Phi(V) \mid \Sigma(Z)) & =(W \varphi(A) \mid W \sigma(C))=\varphi(A)(W \mid W) \sigma(C) \\
& =\varphi(A) B \sigma(C) \subseteq \varphi(A) \sigma(C)=0
\end{aligned}
$$

It was T. A. Loring who described morphisms out of a split extension of a C^{*}-algebra by pairs of morphisms out of the ideal and the quotient algebra:

Theorem 1.1 ([4, 7.3.8]). Let us have a split extension (C) of a C^{*} algebra A and an arbitrary C^{*}-algebra D :

A morphism $\omega: B \rightarrow D$ is in a bijective correspondence with a pair of morphisms $(\theta, \psi)(\theta: A \rightarrow D, \psi: C \rightarrow D)$ such that for all $a \in A, c \in C$ we have

$$
\begin{equation*}
\psi(c) \theta(a)=\theta(\sigma(c) a) \tag{*}
\end{equation*}
$$

Here we solve the problem of describing morphisms out of a full extension of a full Hilbert C^{*}-module by pairs of morphisms out of an ideal submodule and a quotient module.

2. MAIN THEOREM

We want to generalize Theorem 1.1 to full Hilbert C^{*}-modules and morphisms of modules; there we have a diagram:

So, we have a full split extension (W, B, Φ) of a full Hilbert A-module V in which $\Phi: V \rightarrow W$ is an inclusion map and an arbitrary Hilbert D-module U. We want to establish a bijection between a morphism $\Omega: W \rightarrow U$ (an ω morphism for a morphism of C^{*}-algebras $\omega: B \rightarrow D$) and a pair of morphisms (Θ, Ψ) where $\Theta: V \rightarrow U$ is a θ-morphism for a morphism of C^{*}-algebras $\theta: A \rightarrow D$ and $\Psi: Z \rightarrow U$ is a ψ-morphism for a morphism $\psi: C \rightarrow D$. Here, the condition $\left(\mathrm{C}^{*}\right)$ naturally generalizes to:

$$
\begin{equation*}
(\Psi(z) \mid \Theta(v))=\theta((\Sigma(z) \mid v)), \quad v \in V, z \in Z \tag{1}
\end{equation*}
$$

(As V is an ideal submodule of W associated to an ideal $A \subseteq B,(\Sigma(z) \mid v) \in A$ for all $v \in V, z \in Z$.) It turns out that the condition (1) is not enough for a statement similar to the one in Theorem 1.1. Namely, "under" a diagram
(H) of Hilbert C^{*}-modules, we have a diagram (C) of C^{*}-algebras, but the condition (1) does not imply the condition (C^{*}) necessary for establishing a bijection between a morphism ω and a pair of morphisms (θ, ψ) on this C^{*}-algebra level.

Example 2.1. Let us rewrite (1) in an equivalent form $(\Theta(v) \mid \Psi(z))=$ $\theta((v \mid \Sigma(z)))$. We have $\theta((v \mid \Sigma(z))) \psi(c)=\theta((v \mid \Sigma(z)) \sigma(c))$; indeed

$$
\begin{aligned}
\theta((v \mid \Sigma(z))) \psi(c) & =(\Theta(v) \mid \Psi(z)) \psi(c)=(\Theta(v) \mid \Psi(z c)) \\
& =\theta((v \mid \Sigma(z c)))=\theta((v \mid \Sigma(z)) \sigma(c))
\end{aligned}
$$

However, elements of the form $(v \mid \Sigma(z)), v \in V, z \in Z$ do not generate a C^{*}-algebra A (so that we can conclude that $\left(\mathrm{C}^{*}\right)$ is valid): if we take that $\Sigma(Z)$ is an ideal submodule of W associated to an ideal $\sigma(C)$ in B and that $B=A \oplus \sigma(C)$, then the sum $V+\Sigma(Z)$ in a decomposition of W is orthogonal, i.e. $\{(v \mid \Sigma(z)): v \in V, z \in Z\}=\{0\}$.

If we have a diagram (H) of Hilbert C^{*}-modules and morphisms of modules with V full and underlying diagram (C) of C^{*}-algebras and morphisms of C^{*}-algebras, the condition $\left(\mathrm{C}^{*}\right)$ on morphisms of C^{*}-algebras is equivalent to the condition $\Theta(v) \psi(c)=\Theta(v \sigma(c)), v \in V, c \in C$ on morphisms of modules: we know that every $v \in V$ can be written as $v=v^{\prime} a, v^{\prime} \in V, a \in A$ (HewitCohen factorization [5, Proposition 2.31]) and therefore $\Theta(v) \psi(c)=\Theta(v \sigma(c))$ is equivalent to $\Theta(v a) \psi(c)=\Theta(v a \sigma(c))$. If we suppose that $\left(\mathrm{C}^{*}\right)$ is true, then $\Theta(v a) \psi(c)=\Theta(v a \sigma(c))$ follows immediately. On the other hand, if we have $\Theta(v) \psi(c)=\Theta(v \sigma(c))$ and V is a full Hilbert C^{*}-module, then

$$
\begin{aligned}
\theta((v \mid v)) \psi(c) & =(\Theta(v) \mid \Theta(v)) \psi(c)=(\Theta(v) \mid \Theta(v) \psi(c)) \\
& =(\Theta(v) \mid \Theta(v \sigma(c)))=\theta((v \mid v \sigma(c))) \\
& =\theta((v \mid v) \sigma(c))
\end{aligned}
$$

and so $\theta(a) \psi(c)=\theta(a \sigma(c))$ for all $a \in A, c \in C$.
EXAMPLE 2.2. Let us describe morphisms of modules that would be useful as counterexamples in what follows. As well as a C^{*}-algebra A itself can be reorganized to become a Hilbert A-module (with the inner product ($a_{1} \mid a_{2}$) = $a_{1}{ }^{*} a_{2}$; the corresponding norm is exactly a C^{*}-norm), a morphism of C^{*} algebras $\varphi: A \rightarrow B$ can be realized of as a morphism of modules over itself. More generally, if we take $v \in B$ such that $v^{*} v=1 \in B$, a morphism ψ : $A \rightarrow B$ given by $\psi(a)=v \varphi(a)$ (obviously not a morphism of C^{*}-algebras: not multiplicative nor a $*$-map) is a morphism of Hilbert C^{*}-modules.

Here comes an example of a full split extension of a full Hilbert C^{*}-module where $\left(\mathrm{C}^{*}\right)$ is satisfied, but (1) is not.

Example 2.3. Let us take a diagram

of C^{*}-algebras with $\theta: A \rightarrow B$ an identity map. Suppose that the condition $\left(\mathrm{C}^{*}\right)$ for morphisms of C^{*}-algebras is valid. Now understand all C^{*}-algebras as Hilbert C^{*}-modules and let morphisms of modules be given: $\Theta: A \rightarrow B$ by $\Theta(a)=v a$ for $v \in B$ such that $v^{*} v=1$ and $\Psi=\psi=\sigma, \Sigma=\sigma$. Now $\Theta(a) \psi(c)=\Theta(a \sigma(c))$ is obviously valid but (1) (it transforms to $\sigma(c)^{*} v a=$ $\left.\sigma(c)^{*} a\right)$ is not.

We conclude that for a case of Hilbert C^{*}-modules besides the condition (1) we ought to have a condition that would, on underlying C^{*}-algebras, ensure $\left(\mathrm{C}^{*}\right)$. It is the condition

$$
\begin{equation*}
\Psi(z) \theta(a)=\Theta(\Sigma(z) a), \quad z \in Z, a \in A \tag{2}
\end{equation*}
$$

Indeed, $\Sigma(z) a \in V$ for all $z \in Z, a \in A$ thanks to the fact that V is an ideal submodule of W associated to an ideal $A \subseteq B$. Having conditions (1) and (2) at hand, as well as supposing that a Hilbert C^{*}-module Z is full, we have $\left(\mathrm{C}^{*}\right):$ for all $z \in Z, a \in A$

$$
\begin{aligned}
\psi((z \mid z)) \theta(a) & =(\Psi(z) \mid \Psi(z)) \theta(a)=(\Psi(z) \mid \Psi(z) \theta(a)) \\
& \stackrel{(2)}{=}(\Psi(z) \mid \Theta(\Sigma(z) a)) \stackrel{(1)}{=} \theta((\Sigma(z) \mid \Sigma(z) a) \\
& =\theta((\Sigma(z) \mid \Sigma(z)) a)=\theta(\sigma((z \mid z)) a)
\end{aligned}
$$

One has to take care that conditions (2) and $\left(\mathrm{C}^{*}\right)$ are not equivalent to each other: the setting of the previous example is the appropriate one to show this. Namely, $\left(\mathrm{C}^{*}\right)$ is true, but (2) is not.

Theorem 2.4. Let V be a full Hilbert A-module, (W, B, Φ) a full split extension of V in which $\Phi: V \rightarrow W$ is an inclusion map, U an arbitrary Hilbert D-module. Then a morphism $\Omega: W \rightarrow U$ is in a bijective correspondence with a pair of morphisms (Θ, Ψ) where $\Theta: V \rightarrow U$ (a θ-morphism for a morphism of C^{*}-algebras $\theta: A \rightarrow D$) and $\Psi: Z \rightarrow U$ (a ψ-morphism for a morphism $\psi: C \rightarrow D)$ are such that for all $v \in V, z \in Z, a \in A$ we have

$$
\begin{gathered}
(\Psi(z) \mid \Theta(v))=\theta((\Sigma(z) \mid v)) \\
\Psi(z) \theta(a)=\Theta(\Sigma(z) a)
\end{gathered}
$$

Proof. We have the decomposition of W of the form $W=V \dot{+} \Sigma(Z)$. Suppose we have a pair of morphisms (Θ, Ψ) with given properties. Our
modules are taken to be full and so the underlying extension of a C^{*}-algebra A is split too. From the discussion preceding this theorem we know that given conditions ensure the condition $\left(\mathrm{C}^{*}\right)$ for morphisms of C^{*}-algebras. Therefore we can (by Theorem 1.1) associate a morphism $\omega: B \rightarrow D$ of C^{*}-algebras to the pair of morphisms (θ, ψ) (it is given by $\omega(a+\sigma(c))=\theta(a)+\psi(c))$. Let us define a map $\Omega: W \rightarrow U$ by $\Omega(w)=\Omega(v+\Sigma(z))=\Theta(v)+\Psi(z) . \Omega$ is an ω-morphism: if we take $v, v^{\prime} \in V, z, z^{\prime} \in Z$, then

$$
\begin{aligned}
& \left(\Omega(v+\Sigma(z)) \mid \Omega\left(v^{\prime}+\Sigma\left(z^{\prime}\right)\right)\right)=\left(\Theta(v)+\Psi(z) \mid \Theta\left(v^{\prime}\right)+\Psi\left(z^{\prime}\right)\right) \\
& \quad=\left(\Theta(v) \mid \Theta\left(v^{\prime}\right)\right)+\left(\Theta(v) \mid \Psi\left(z^{\prime}\right)\right)+\left(\Psi(z) \mid \Theta\left(v^{\prime}\right)\right)+\left(\Psi(z) \mid \Psi\left(z^{\prime}\right)\right) \\
& \quad=\theta\left(\left(v \mid v^{\prime}\right)\right)+\theta\left(\left(v \mid \Sigma\left(z^{\prime}\right)\right)\right)+\theta\left(\left(\Sigma(z) \mid v^{\prime}\right)\right)+\psi\left(\left(z \mid z^{\prime}\right)\right) \\
& \quad=\theta\left(\left(v \mid v^{\prime}\right)+\left(v \mid \Sigma\left(z^{\prime}\right)\right)+\left(\Sigma(z) \mid v^{\prime}\right)\right)+\psi\left(\left(z \mid z^{\prime}\right)\right) \\
& \quad=\omega\left(\left(\left(v \mid v^{\prime}\right)+\left(v \mid \Sigma\left(z^{\prime}\right)\right)+\left(\Sigma(z) \mid v^{\prime}\right)\right)+\sigma\left(\left(z \mid z^{\prime}\right)\right)\right) \\
& \quad=\omega\left(\left(v+\Sigma(z) \mid v^{\prime}+\Sigma\left(z^{\prime}\right)\right)\right)
\end{aligned}
$$

Now take an ω-morphism (for a morphism of C^{*}-algebras $\omega: B \rightarrow D$) $\Omega: W \rightarrow U$. We know that ω is in a bijective correspondence with a pair (θ, ψ) of morphisms of C^{*}-algebras where $\theta=\left.\omega\right|_{A}, \psi=\omega \sigma$. Let us define morphisms of modules in a similar way: $\Theta=\left.\Omega\right|_{V}, \Psi=\Omega \Sigma$. Obviously Θ is a θ-morphism, Ψ is a ψ-morphism. The pair (Θ, Ψ) satisfies the required conditions: for all $v \in V, z \in Z, a \in A$

$$
\begin{gathered}
(\Psi(z) \mid \Theta(v))=(\Omega(\Sigma(z)) \mid \Omega(v))=\omega((\Sigma(z) \mid v))=\theta((\Sigma(z) \mid v)) \\
\Psi(z) \theta(a)=\Omega(\Sigma(z)) \omega(a)=\Omega(\Sigma(z) a)=\Theta(\Sigma(z) a)
\end{gathered}
$$

The significance of this theorem comes to the sight when one assumes that a Hilbert C^{*}-module U is an extension of an arbitrarily taken Hilbert C^{*}-module. Then a morphism Ω becomes a morphism between extensions of Hilbert C^{*}-modules, they are in general not easy to describe.

References

[1] D. Bakić and B. Guljaš, Extensions of Hilbert C^{*}-modules, Houston J. of Math. 30 (2004), 537-558.
[2] D. Bakić and B. Guljaš, Extensions of Hilbert C^{*}-modules. II, Glas. Mat. Ser. III 38(58) (2003), 341-357.
[3] E. C. Lance, Hilbert C^{*}-modules. A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
[4] T. A. Loring, Lifting Solutions to Perturbing Problems in C^{*}-algebras, American Mathematical Society, Providence, 1997.
[5] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C^{*}-algebras, American Mathematical Society, Providence, 1998.
[6] N. E. Wegge-Olsen, K-theory and C^{*}-algebras. A Friendly Approach, The Clarendon Press, Oxford University Press, New York, 1993.
B. Kolarec

Department of Informatics and Mathematics
Faculty of Agriculture
University of Zagreb
Svetošimunska cesta 25, 10000 Zagreb
Croatia
E-mail: bkudelic@agr.hr
Received: 30.3.2006.
Revised: 26.5.2006.

[^0]: 2000 Mathematics Subject Classification. 46C50, 46L08.
 Key words and phrases. Hilbert C^{*}-module, ideal submodule, (split) extension, morphism.

