LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE

Halit Gündoğan and Osman Keçííoğlu
Kırıkkale University, Turkey

Abstract

In this paper, a new matrix multiplication is defined in $\mathbb{R}_{n}^{m} \times \mathbb{R}_{p}^{n}$ by using Lorentzian inner product in \mathbb{R}^{n}, where \mathbb{R}_{n}^{m} is set of matrices of m rows and n columns. With this multiplication it has been shown that \mathbb{R}_{n}^{n} is an algebra with unit. By means of orthogonal matrices with respect to this multiplication, coordinate transformations are defined on n-dimensional Lorentz space L^{n}. As a special case, motions on L^{2} Lorentz plane are obtained.

1. Introduction

Let \mathbb{R}_{n}^{m} be the set of all $m \times n$ matrices. \mathbb{R}_{n}^{m} with the matrix addition and the scalar-matrix multiplication is a real vector space. More properties of the ordinary matrix multiplication can be found in [4].

Let L^{n} be the vector space \mathbb{R}^{n} provided with the Lorentzian inner product

$$
\langle x, y\rangle_{L}=-x_{1} y_{1}+\sum_{i=2}^{n} x_{i} y_{i} \text { for } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

In L^{n}, a vector x is said to be time-like if $\langle x, x\rangle_{L}<0$, space-like if $\langle x, x\rangle_{L}>0$ and light-like if $\langle x, x\rangle_{L}=0$ [6].

For $r \in \mathbb{R}^{+}$, the Lorentzian circle of radius r in L^{2} is defined in [1] by

$$
\left\{(x, y) \in L^{2} \mid-x^{2}+y^{2}=r^{2}\right\}=\{(r \sinh \theta, r \cosh \theta) \mid \theta \in \mathbb{R}\}
$$

See [7] for the hyperbolic angles defined on the Lorentz plane L^{2}.

[^0]
2. LORENTZIAN MATRIX MULTIPLICATION AND PROPERTIES

Let $A=\left[a_{i j}\right] \in \mathbb{R}_{n}^{m}$ and $B=\left[b_{j k}\right] \in \mathbb{R}_{p}^{n}$. Then we define a new matrix multiplication denoted by $" \cdot L$ " as

$$
A \cdot{ }_{L} B=\left[-a_{i 1} b_{1 k}+\sum_{j=2}^{n} a_{i j} b_{j k}\right]
$$

We call this multiplication as Lorentzian matrix multiplication and we simply say L-multiplication. Note that $A \cdot{ }_{L} B$ is an $m \times p$ matrix. Also note that if we let A_{i} to be i th row of A and B^{j} to be j th column of B then (i, j) entry of $A \cdot{ }_{L} B$ is $\left\langle A_{i}, B^{j}\right\rangle_{L}$. We denote \mathbb{R}_{n}^{m} with L-multiplication by L_{n}^{m}.

Theorem 2.1. The following statements are satisfied.
i) For every $A \in L_{n}^{m}, B \in L_{p}^{n}, C \in L_{r}^{p}, A \cdot{ }_{L}\left(B \cdot{ }_{L} C\right)=(A \cdot L B) \cdot{ }_{L} C$.
ii) For every $A \in L_{n}^{m}, B, C \in L_{p}^{n}, A \cdot{ }_{L}(B+C)=A \cdot{ }_{L} B+A \cdot{ }_{L} C$.
iii) For every $A, B \in L_{n}^{m}, C \in L_{p}^{n},(A+B) \cdot{ }_{L} C=A \cdot{ }_{L} C+B \cdot{ }_{L} C$.
iv) For every $k \in \mathbb{R}, A \in L_{n}^{m}, B \in L_{p}^{n}, k\left(A \cdot{ }_{L} B\right)=(k A) \cdot{ }_{L} B=A \cdot{ }_{L}(k B)$.

Definition 2.2. An $n \times n$ L-identity matrix according to L-multiplication, denoted by I_{n}, is defined by

$$
I_{n}=\left[\begin{array}{rrrr}
-1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]_{n \times n}
$$

Note that for every $A \in L_{n}^{m}, I_{m} \cdot{ }_{L} A=A \cdot{ }_{L} I_{n}=A$.
COROLLARY 2.3. L_{n}^{n} with L-multiplication is an algebra with unit.
Definition 2.4. An $n \times n$ matrix A is called L-invertible if there exists an $n \times n$ matrix B such that $A \cdot{ }_{L} B=B \cdot{ }_{L} A=I_{n}$. Then B is called the L-inverse of A and is denoted by A^{-1}.

Definition 2.5. The transpose of a matrix $A=\left[a_{i j}\right] \in L_{n}^{m}$ is denoted by A^{T} and defined as $A^{T}=\left[a_{j i}\right] \in L_{m}^{n}$.

Definition 2.6. A matrix $A \in L_{n}^{n}$ is called L-orthogonal matrix if $A^{-1}=$ A^{T}.

Definition 2.7. L-determinant of a matrix $A=\left[a_{i j}\right] \in \mathbb{R}_{n}^{n}$ is denoted by $\operatorname{det} A$ and defined as

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} s(\sigma) a_{\sigma(1) 1} a_{\sigma(2) 2} \cdots a_{\sigma(n) n}
$$

where S_{n} is the set of all permutations of the set $\{1,2, \ldots, n\}$ and $s(\sigma)$ is the sign of the permutation σ.

Theorem 2.8. For every $A, B \in L_{n}^{n}, \operatorname{det}\left(A \cdot{ }_{L} B\right)=-\operatorname{det} A \cdot \operatorname{det} B$.
Proof. Let $A=\left[a_{i j}\right], B=\left[b_{j k}\right]$ and $A \cdot{ }_{L} B=C$. Let us denote i th column of matrix A by A^{i} and k th column of matrix C by C^{k}. Then

$$
\begin{aligned}
C^{k}= & -b_{1 k} A^{1}+b_{2 k} A^{2}+\cdots+b_{n k} A^{n}, \quad 1 \leq k \leq n \\
\operatorname{det}\left(A \cdot{ }_{L} B\right)= & \operatorname{det}\left[-b_{11} A^{1}+b_{21} A^{2}+\cdots+b_{n 1} A^{n},\right. \\
& -b_{12} A^{1}+b_{22} A^{2}+\cdots+b_{n 2} A^{n}, \\
& \cdots, \\
& \left.-b_{1 n} A^{1}+b_{2 n} A^{2}+\cdots+b_{n n} A^{n}\right] \\
= & \sum_{\sigma \in S_{n}}-b_{\sigma(1) 1} b_{\sigma(2) 2} \cdots b_{\sigma(n) n} \operatorname{det}\left[A^{\sigma(1)}, A^{\sigma(2)}, \ldots, A^{\sigma(n)}\right] \\
= & -\sum_{\sigma \in S_{n}} s(\sigma) b_{\sigma(1) 1} b_{\sigma(2) 2} \cdots b_{\sigma(n) n} \operatorname{det}\left[A^{1}, A^{2}, \ldots, A^{n}\right] \\
= & -\operatorname{det} A \sum_{\sigma \in S_{n}} s(\sigma) b_{\sigma(1) 1} b_{\sigma(2) 2} \cdots b_{\sigma(n) n} \\
= & -\operatorname{det} A \cdot \operatorname{det} B
\end{aligned}
$$

3. Coordinate transformations in n-Dimensional Lorentz space

Recall that the transformation which preserves the distance between two points is called a rigid transformation [5]. Let A be an $n \times n$ matrix and d be a vector in L^{n}. Let us consider the function

$$
f: L^{n} \longrightarrow L^{n}, \quad f(x)=A \cdot{ }_{L} x+d
$$

The function f must preserve distance in L^{n} to be a rigid transformation. Let p, q be any two points in L^{n}. Recall the distance between the points p and q is

$$
d(p, q)=\|p-q\|=\sqrt{\langle p-q, p-q\rangle_{L}}=\sqrt{(p-q)^{T} \cdot{ }_{L}(p-q)}
$$

Then

$$
\begin{aligned}
d(f(p), f(q)) & =\|f(p)-f(q)\| \\
& =\sqrt{\langle f(p)-f(q), f(p)-f(q)\rangle_{L}} \\
& =\sqrt{(f(p)-f(q))^{T} \cdot{ }_{L}(f(p)-f(q))} \\
& =\sqrt{((A p+d)-(A q+d))^{T} \cdot{ }_{L}((A p+d)-(A q+d))} \\
& =\sqrt{(p-q)^{T} \cdot{ }_{L} A^{T} \cdot{ }_{L} A \cdot{ }_{L}(p-q)} .
\end{aligned}
$$

Thus,

$$
d(f(p), f(q))=d(p, q) \Longleftrightarrow A^{T} \cdot{ }_{L} A=I_{n} \Longleftrightarrow A \text { is } L \text {-orthogonal matrix. }
$$

We summarize this result in the following theorem.
Theorem 3.1. Let A be an $n \times n$ matrix and d be a vector in L^{n}. Let us consider the function $f: L^{n} \longrightarrow L^{n}, f(x)=A \cdot L x+d$. If the matrix A is an L-orthogonal matrix, then the function f is a rigid transformation.

Observe that $\operatorname{det} A=\mp 1$ for L-orthogonal matrix A. We call L-orthogonal matrices with $\operatorname{det} A=-1$ rotations and L-orthogonal matrices with $\operatorname{det} A=1$ reflections.

Here we consider the special case $n=2$. In [2,3], the rotations on the Lorentz plane L^{2} have been discussed by means of the ordinary matrix multiplication. We now develop the motions on the Lorentz plane L^{2} by using L-multiplication.

Let $p(x, y)$ be a point on the Lorentzian circle centered at the origin with radius r on the Lorentz plane L^{2}. Then

$$
\left\{\begin{array}{l}
x=r \sinh \varphi \\
y=r \cosh \varphi
\end{array}\right.
$$

If the point p is revolved about the origin with the rotation angle θ to the point p^{\prime}, then the coordinates of $p^{\prime}\left(x^{\prime}, y^{\prime}\right)$ can be written as

$$
\left\{\begin{array}{l}
x^{\prime}=r \sinh (\varphi+\theta) \\
y^{\prime}=r \cosh (\varphi+\theta)
\end{array}\right.
$$

Thus, we have the following rotation equations

$$
\left\{\begin{array}{l}
x^{\prime}=x \cosh \theta+y \sinh \theta \\
y^{\prime}=x \sinh \theta+y \cosh \theta
\end{array} .\right.
$$

These equations can be re-written in the form of a matrix equation as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-\cosh \theta & \sinh \theta \\
-\sinh \theta & \cosh \theta
\end{array}\right] \cdot L\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

If

$$
A=\left[\begin{array}{cc}
-\cosh \theta & \sinh \theta \\
-\sinh \theta & \cosh \theta
\end{array}\right],
$$

then the matrix A is L-orthogonal and $\operatorname{det} A=-1$. Consequently, the function

$$
f: L^{2} \longrightarrow L^{2}, \quad f(x)=A \cdot{ }_{L} x
$$

corresponds to a rotation about the origin with the hyperbolic angle θ in L^{2} and denoted by $R(\theta)$.

Theorem 3.2. The function $R(\theta)$ transforms the time-like vectors to time-like vectors, the space-like vectors to space-like vectors and the light-like vectors to light-like vectors in L^{2}.

Proof. Let $x=\left(x_{1}, x_{2}\right) \in L^{2}$. Then

$$
(R(\theta))(x)=A \cdot{ }_{L} x=\left(x_{1} \cosh \theta+x_{2} \sinh \theta, x_{1} \sinh \theta+x_{2} \cosh \theta\right)
$$

Thus $\left\langle A \cdot{ }_{L} x, A \cdot{ }_{L} x\right\rangle_{L}=-x_{1}^{2}+x_{2}^{2}=\langle x, x\rangle_{L}$.
If

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then the matrix B is L-orthogonal. The function

$$
g: L^{2} \longrightarrow L^{2}, \quad g(x)=B \cdot{ }_{L} x
$$

is a reflection according to y-axis in L^{2}. Notice that $\operatorname{det} B=1$.
Let matrix S be $A \cdot L B \cdot{ }_{L} A^{T}$. Then

$$
S=\left[\begin{array}{cc}
\cosh 2 \theta & \sinh 2 \theta \\
\sinh 2 \theta & \cosh 2 \theta
\end{array}\right]
$$

Note that S is L-orthogonal and $\operatorname{det} S=+1$. Thus we can give the following theorem.

Theorem 3.3. The function $h: L^{2} \longrightarrow L^{2}, h(x)=S \cdot{ }_{L} x$ corresponds to the reflection according to a space-like line which has the hyperbolic angle θ with respect to y-axis at origin in L^{2}. Also, the function $-h$ corresponds to the reflection according to a time-like line which has the hyperbolic angle θ with respect to x-axis at origin in L^{2}.

Proof. Let l be a space-like line which has a hyperbolic angle θ with respect to y-axis at the origin on the Lorentzian plane L^{2}. The reflection of the point $p(x, y)$ according to the line l is

$$
h(p)=q=(-x \cosh 2 \theta+y \sinh 2 \theta,-x \sinh 2 \theta+y \cosh 2 \theta) .
$$

Let space-like vector $\vec{n}=(a, b)$ be directrix of the line l. Then

$$
\cosh 2 \theta=\frac{a^{2}+b^{2}}{-a^{2}+b^{2}}, \quad \sinh 2 \theta=\frac{2 a b}{-a^{2}+b^{2}}
$$

Thus,

$$
h(p)=q=\frac{1}{-a^{2}+b^{2}}\left(-a^{2} x-b^{2} x+2 a b y,-2 a b x+a^{2} y+b^{2} y\right)
$$

The vector $\overrightarrow{p q}$ is perpendicular to the vector \vec{n} and $d(p, l)=d(q, l)$.
Analogously, the reflection according to the time-like line can be proven.

Corollary 3.4. 1) If the functions $h_{i}: L^{2} \longrightarrow L^{2}, i=1,2, h_{i}(x)=$ $S_{i} \cdot{ }_{L} x$ are reflections with respect to space-like lines (or time-like lines) which have the hyperbolic angles θ_{i} at origin in L^{2}, then the function $h: L^{2} \longrightarrow L^{2}$, $h(x)=\left(S_{1} \cdot{ }_{L} S_{2}\right) x$ corresponds to rotation about the origin with the hyperbolic angle $2\left(\theta_{1}-\theta_{2}\right)$.
2) If one of the h_{1}, h_{2} is reflection according to space-like line with hyperbolic angle θ_{1} and the other one is reflection according to time-like line with hyperbolic angle θ_{2}, then $h(x)=-\left(S_{1} \cdot{ }_{L} S_{2}\right) \cdot{ }_{L} x$ for each $x \in L^{2}$.

Proof. 1) Since

$$
S_{1} \cdot L S_{2}=\left[\begin{array}{ll}
-\cosh 2\left(\theta_{1}-\theta_{2}\right) & \sinh 2\left(\theta_{1}-\theta_{2}\right) \\
-\sinh 2\left(\theta_{1}-\theta_{2}\right) & \cosh 2\left(\theta_{1}-\theta_{2}\right)
\end{array}\right]
$$

we have $h(x)=\left(R\left(2\left(\theta_{1}-\theta_{2}\right)\right)\right)(x)$.
2) Analogously, by Theorem 3.3.

Corollary 3.5. Let

$$
A=\left[\begin{array}{cc}
-\cosh \theta & \sinh \theta \\
-\sinh \theta & \cosh \theta
\end{array}\right]
$$

and p be a vector in L^{2}. Then the motion in L^{2} can be given by the function

$$
f: L^{2} \longrightarrow L^{2}, \quad f(x)=A \cdot{ }_{L} x+p
$$

The function f corresponds to the pure translation when $A=I_{2}$ and the pure rotation when $p=0$.

References

[1] G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math. Monthly 91 (1984), 543-549.
[2] G. S. Birman and K. Nomizu, The Gauss-Bonnet theorem for 2-dimensional spacetimes, Michigan Math. J. 31 (1984), 77-81.
[3] A. A. Ergin, On the 1-parameter Lorentzian motions, Comm. Fac. Sci. Univ. Ankara Ser. A Math. Statist. 40 (1991), 59-66.
[4] S. Lang, Linear Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1971.
[5] J. M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990.
[6] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, Inc., New York, 1983.
[7] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.
H. Gündoğan

Department of Mathematics, Kırıkkale University
Kırıkkale
Turkey
E-mail: hagundogan@hotmail.com
O. Keçilioğlu

Department of Mathematics, Kırıkkale University
Kırıkkale
Turkey
E-mail: kecilioglu@kku.edu.tr
Received: 16.12.2005.
Revised: 1.3.2006.

[^0]: 2000 Mathematics Subject Classification. 51M05, 53A17.
 Key words and phrases. Lorentz space, rotation, reflection.

