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Abstract. In this paper, a new matrix multiplication is defined in
Rm

n × Rn
p by using Lorentzian inner product in Rn, where Rm

n is set of
matrices of m rows and n columns. With this multiplication it has been
shown that Rn

n is an algebra with unit. By means of orthogonal matrices
with respect to this multiplication, coordinate transformations are defined
on n-dimensional Lorentz space Ln. As a special case, motions on L2

Lorentz plane are obtained.

1. Introduction

Let Rmn be the set of all m × n matrices. Rmn with the matrix addition
and the scalar-matrix multiplication is a real vector space. More properties
of the ordinary matrix multiplication can be found in [4].

Let Ln be the vector space Rn provided with the Lorentzian inner product

〈x, y〉L = −x1y1 +

n∑

i=2

xiyi for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

In Ln, a vector x is said to be time-like if 〈x, x〉L < 0, space-like if
〈x, x〉L > 0 and light-like if 〈x, x〉L = 0 [6].

For r ∈ R+, the Lorentzian circle of radius r in L2 is defined in [1] by
{
(x, y) ∈ L2

∣∣−x2 + y2 = r2
}

= {(r sinh θ, r cosh θ) | θ ∈ R}

See [7] for the hyperbolic angles defined on the Lorentz plane L2 .
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2. Lorentzian matrix multiplication and properties

Let A = [aij ] ∈ Rmn and B = [bjk] ∈ Rnp . Then we define a new matrix
multiplication denoted by ” ·L ” as

A ·L B =


−ai1b1k +

n∑

j=2

aijbjk


 .

We call this multiplication as Lorentzian matrix multiplication and we simply
say L-multiplication. Note that A ·L B is an m× p matrix. Also note that if
we let Ai to be ith row of A and Bj to be j th column of B then (i, j) entry
of A ·L B is

〈
Ai, B

j
〉
L
. We denote Rmn with L-multiplication by Lmn .

Theorem 2.1. The following statements are satisfied.

i) For every A ∈ Lmn , B ∈ Lnp , C ∈ Lpr , A ·L (B ·L C) = (A ·L B) ·L C.
ii) For every A ∈ Lmn , B, C ∈ Lnp , A ·L (B + C) = A ·L B +A ·L C.
iii) For every A,B ∈ Lmn , C ∈ Lnp , (A+B) ·L C = A ·L C +B ·L C.
iv) For every k ∈ R, A ∈ Lmn , B ∈ Lnp , k(A ·LB) = (kA) ·LB = A ·L (kB).

Definition 2.2. An n×n L-identity matrix according to L-multiplication,
denoted by In, is defined by

In =




−1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1




n×n

.

Note that for every A ∈ Lmn , Im ·L A = A ·L In = A.

Corollary 2.3. Lnn with L-multiplication is an algebra with unit.

Definition 2.4. An n× n matrix A is called L-invertible if there exists
an n × n matrix B such that A ·L B = B ·L A = In. Then B is called the
L-inverse of A and is denoted by A−1.

Definition 2.5. The transpose of a matrix A = [aij ] ∈ Lmn is denoted by
AT and defined as AT = [aji] ∈ Lnm.

Definition 2.6. A matrix A ∈ Lnn is called L-orthogonal matrix if A−1 =
AT .

Definition 2.7. L-determinant of a matrix A = [aij ] ∈ Rnn is denoted by
detA and defined as

detA =
∑

σ∈Sn

s(σ)aσ(1)1aσ(2)2 · · · aσ(n)n,

where Sn is the set of all permutations of the set {1, 2, . . . , n} and s(σ) is the
sign of the permutation σ.
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Theorem 2.8. For every A,B ∈ Lnn, det(A ·L B) = − detA · detB.

Proof. Let A = [aij ] , B = [bjk] and A ·L B = C. Let us denote ith
column of matrix A by Ai and kth column of matrix C by Ck. Then

Ck = −b1kA1 + b2kA
2 + · · · + bnkA

n, 1 ≤ k ≤ n.

det(A ·L B) = det[−b11A1 + b21A
2 + · · · + bn1A

n,

−b12A1 + b22A
2 + · · · + bn2A

n,

. . . ,

−b1nA1 + b2nA
2 + · · · + bnnA

n]

=
∑

σ∈Sn

−bσ(1)1bσ(2)2 · · · bσ(n)n det[Aσ(1), Aσ(2), . . . , Aσ(n)]

= −
∑

σ∈Sn

s(σ)bσ(1)1bσ(2)2 · · · bσ(n)n det[A1, A2, . . . , An]

= − detA
∑

σ∈Sn

s(σ)bσ(1)1bσ(2)2 · · · bσ(n)n

= − detA · detB.

3. Coordinate transformations in n-dimensional Lorentz space

Recall that the transformation which preserves the distance between two
points is called a rigid transformation [5]. Let A be an n×n matrix and d be
a vector in Ln. Let us consider the function

f : Ln −→ Ln, f(x) = A ·L x+ d.

The function f must preserve distance in Ln to be a rigid transformation. Let
p, q be any two points in Ln. Recall the distance between the points p and q
is

d(p, q) = ‖p− q‖ =
√
〈p− q, p− q〉L =

√
(p− q)T ·L (p− q).

Then

d(f(p), f(q)) = ‖f(p) − f(q)‖
=

√
〈f(p) − f(q), f(p) − f(q)〉L

=
√

(f(p) − f(q))T ·L (f(p) − f(q))

=
√

((Ap+ d) − (Aq + d))T ·L ((Ap+ d) − (Aq + d))

=
√

(p− q)T ·L AT ·L A ·L (p− q).

Thus,

d(f(p), f(q)) = d(p, q) ⇐⇒ AT ·L A = In ⇐⇒ A is L-orthogonal matrix.
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We summarize this result in the following theorem.

Theorem 3.1. Let A be an n×n matrix and d be a vector in Ln. Let us
consider the function f : Ln −→ Ln, f(x) = A ·L x+ d. If the matrix A is an
L-orthogonal matrix, then the function f is a rigid transformation.

Observe that detA = ∓1 for L-orthogonal matrix A. We call L-ortho-
gonal matrices with detA = −1 rotations and L-orthogonal matrices with
detA = 1 reflections.

Here we consider the special case n = 2. In [2, 3], the rotations on
the Lorentz plane L2 have been discussed by means of the ordinary matrix
multiplication. We now develop the motions on the Lorentz plane L2 by using
L-multiplication.

Let p(x, y) be a point on the Lorentzian circle centered at the origin with
radius r on the Lorentz plane L2. Then

{
x = r sinhϕ
y = r coshϕ

.

If the point p is revolved about the origin with the rotation angle θ to the
point p′, then the coordinates of p′(x′, y′) can be written as

{
x′ = r sinh(ϕ+ θ)
y′ = r cosh(ϕ+ θ)

.

Thus, we have the following rotation equations
{
x′ = x cosh θ + y sinh θ
y′ = x sinh θ + y cosh θ

.

These equations can be re-written in the form of a matrix equation as
[
x′

y′

]
=

[
− cosh θ sinh θ
− sinh θ cosh θ

]
·L
[
x
y

]
.

If

A =

[
− cosh θ sinh θ
− sinh θ cosh θ

]
,

then the matrix A is L-orthogonal and detA = −1. Consequently, the func-
tion

f : L2 −→ L2, f(x) = A ·L x
corresponds to a rotation about the origin with the hyperbolic angle θ in L2

and denoted by R(θ).

Theorem 3.2. The function R(θ) transforms the time-like vectors to
time-like vectors, the space-like vectors to space-like vectors and the light-like
vectors to light-like vectors in L2.



LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON L2 333

Proof. Let x = (x1, x2) ∈ L2. Then

(R(θ))(x) = A ·L x = (x1 cosh θ + x2 sinh θ, x1 sinh θ + x2 cosh θ).

Thus 〈A ·L x,A ·L x〉L = −x2
1 + x2

2 = 〈x, x〉L.

If

B =

[
1 0
0 1

]
,

then the matrix B is L-orthogonal. The function

g : L2 −→ L2, g(x) = B ·L x
is a reflection according to y-axis in L2. Notice that detB = 1.

Let matrix S be A ·L B ·L AT . Then

S =

[
cosh 2θ sinh 2θ
sinh 2θ cosh 2θ

]
.

Note that S is L-orthogonal and detS = +1. Thus we can give the following
theorem.

Theorem 3.3. The function h : L2 −→ L2, h(x) = S ·L x corresponds
to the reflection according to a space-like line which has the hyperbolic angle
θ with respect to y-axis at origin in L2. Also, the function −h corresponds
to the reflection according to a time-like line which has the hyperbolic angle θ
with respect to x-axis at origin in L2.

Proof. Let l be a space-like line which has a hyperbolic angle θ with
respect to y-axis at the origin on the Lorentzian plane L2. The reflection of
the point p(x, y) according to the line l is

h(p) = q = (−x cosh 2θ + y sinh 2θ,−x sinh 2θ + y cosh 2θ).

Let space-like vector −→n = (a, b) be directrix of the line l. Then

cosh 2θ =
a2 + b2

−a2 + b2
, sinh 2θ =

2ab

−a2 + b2
.

Thus,

h(p) = q =
1

−a2 + b2
(−a2x− b2x+ 2aby,−2abx+ a2y + b2y).

The vector −→pq is perpendicular to the vector −→n and d(p, l) = d(q, l).
Analogously, the reflection according to the time-like line can be proven.

Corollary 3.4. 1) If the functions hi : L2 −→ L2, i = 1, 2, hi(x) =
Si ·L x are reflections with respect to space-like lines (or time-like lines) which
have the hyperbolic angles θi at origin in L2, then the function h : L2 −→ L2,
h(x) = (S1 ·LS2)x corresponds to rotation about the origin with the hyperbolic
angle 2(θ1 − θ2).
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2) If one of the h1, h2 is reflection according to space-like line with hyper-
bolic angle θ1 and the other one is reflection according to time-like line with
hyperbolic angle θ2, then h(x) = −(S1 ·L S2) ·L x for each x ∈ L2.

Proof. 1) Since

S1 ·L S2 =

[
− cosh2(θ1 − θ2) sinh 2(θ1 − θ2)
− sinh 2(θ1 − θ2) cosh 2(θ1 − θ2)

]
,

we have h(x) = (R(2(θ1 − θ2)))(x).
2) Analogously, by Theorem 3.3.

Corollary 3.5. Let

A =

[
− cosh θ sinh θ
− sinh θ cosh θ

]

and p be a vector in L2. Then the motion in L2 can be given by the function

f : L2 −→ L2, f(x) = A ·L x+ p.

The function f corresponds to the pure translation when A = I2 and the pure
rotation when p = 0.

References

[1] G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math.
Monthly 91 (1984), 543-549.

[2] G. S. Birman and K. Nomizu, The Gauss-Bonnet theorem for 2-dimensional spacetimes,
Michigan Math. J. 31 (1984), 77-81.

[3] A. A. Ergin, On the 1-parameter Lorentzian motions, Comm. Fac. Sci. Univ. Ankara

Ser. A1 Math. Statist. 40 (1991), 59-66.
[4] S. Lang, Linear Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don

Mills, Ont. 1971.
[5] J. M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge,

1990.
[6] B. O’Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic

Press, Inc., New York, 1983.
[7] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.

H. Gündoğan
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