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ABSTRACT. In this paper, a new matrix multiplication is defined in
R7 x R} by using Lorentzian inner product in R™, where R is set of
matrices of m rows and n columns. With this multiplication it has been
shown that R} is an algebra with unit. By means of orthogonal matrices
with respect to this multiplication, coordinate transformations are defined
on n-dimensional Lorentz space L™. As a special case, motions on L2
Lorentz plane are obtained.

1. INTRODUCTION

Let R be the set of all m x n matrices. R} with the matrix addition
and the scalar-matrix multiplication is a real vector space. More properties
of the ordinary matrix multiplication can be found in [4].

Let L™ be the vector space R™ provided with the Lorentzian inner product

n
(@,y), =~z + Y wiyi for o= (21,22, ..., 20), ¥ = (Y1, Y2, -, Yn)-
=2

In L", a vector z is said to be time-like if (z,z), < 0, space-like if
(x,z), > 0 and light-like if (z,z), =0 [6].
For r € RT, the Lorentzian circle of radius 7 in L? is defined in [1] by

{(z,y) € L*|-2* + y* =1} = {(rsinh6,rcosh) | € R}
See [7] for the hyperbolic angles defined on the Lorentz plane L? .
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2. LORENTZIAN MATRIX MULTIPLICATION AND PROPERTIES

Let A = [a;;] € R} and B = [bjx] € R}). Then we define a new matrix
multiplication denoted by ” -1, 7 as

n
AL B=|=anbix + Y _ aijbjk
j=2
We call this multiplication as Lorentzian matrix multiplication and we simply
say L-multiplication. Note that A -; B is an m X p matrix. Also note that if
we let A; to be ith row of A and B’ to be jth column of B then (i, ) entry
of A-; Bis (4, Bj>L. We denote R with L-multiplication by L.

THEOREM 2.1. The following statements are satisfied.

i) Forevery Ac L}, Be Ly, CeLl, A-, (B-LC)=(A-LB)-.C.
ii) For every A€ L}, B,C €Ly, AL (B+C)=A-rB+A.-C.
iii) For every A,Be L;',CelLy, (A+B)-.C=A-1C+B-C.
iv) Foreveryk € R, Ac L)', Be Ly, k(A-LB) = (kA)-L B=A-(kB).

DEFINITION 2.2. Annxn L-identity matrix according to L-multiplication,
denoted by I, is defined by

-1 0 0
0 1 0

In = .
0 0 1

nxn

Note that for every A € L), I, - A=A-p I, = A.
COROLLARY 2.3. L7 with L-multiplication is an algebra with unit.

DEFINITION 2.4. An n X n matriz A is called L-invertible if there exists
an n X n matrix B such that A-p B = B- A = 1,. Then B is called the
L-inverse of A and is denoted by A=1.

DEFINITION 2.5. The transpose of a matriz A = [a;;] € L is denoted by
AT and defined as AT = [a;;] € LT,.

DEFINITION 2.6. A matriz A € L is called L-orthogonal matriz if A=1 =
AT,

DEFINITION 2.7. L-determinant of a matriz A = [a;;] € R is denoted by
det A and defined as

det A = Z 5(0)ag(1)100(2)2 * * * Ao(n)ns
Uesn

where Sy, is the set of all permutations of the set {1,2,...,n} and s(o) is the
sign of the permutation o.
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THEOREM 2.8. For every A,B € L7, det(A - B) = —det A - det B.

PROOF. Let A = [a;;], B = [bjx] and A -, B = C. Let us denote ith
column of matrix A by A* and kth column of matrix C by C*. Then
CF = by A+ b A%+ + b A", 1<k<n.
det(A- B) = det[—by A" + by A% + - + b, A™,
—biaA' + by A% 4 - 4 b A”,
_blnAA1 + b2nA2 +--+ bnnAn]
> “bo1)1ba@z  bo(nyn det[A7H), A7) A7)

oESy
= — Z S(O’)bg(l)lba(g)Q s bo(n)n det[Al, A2, cee An]
g€ESy,
= —detA Z S(U)ba(l)1b0(2)2 c ba(n)n
gESy
= —det A-detB.

O

3. COORDINATE TRANSFORMATIONS IN n-DIMENSIONAL LORENTZ SPACE

Recall that the transformation which preserves the distance between two
points is called a rigid transformation [5]. Let A be an n x n matrix and d be
a vector in L™. Let us consider the function

f:L"—L"  flx)=A-pxz+d.
The function f must preserve distance in L™ to be a rigid transformation. Let

P, q be any two points in L™. Recall the distance between the points p and ¢
is

dp.q)=lp—all = \/o—a.p -0, = /-7 ().

=
~
)
=
=
=
~—
~—
|

1f(») — f(D)l

V(Ap +d) — (Ag + d)T -1 ((Ap+d) — (Aq + d))

\/(p—q)T-LAT-LA-L(p—Q)-

Thus,
d(f(p), f(q)) = d(p,q) <= AT -, A =1, <= A is L-orthogonal matrix.
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We summarize this result in the following theorem.

THEOREM 3.1. Let A be an n X n matriz and d be a vector in L™. Let us
consider the function f: L™ — L™, f(x) = A-p x +d. If the matriz A is an
L-orthogonal matriz, then the function f is a rigid transformation.

Observe that det A = F1 for L-orthogonal matrix A. We call L-ortho-
gonal matrices with det A = —1 rotations and L-orthogonal matrices with
det A = 1 reflections.

Here we consider the special case n = 2. In [2, 3], the rotations on
the Lorentz plane L? have been discussed by means of the ordinary matrix
multiplication. We now develop the motions on the Lorentz plane L? by using
L-multiplication.

Let p(x,y) be a point on the Lorentzian circle centered at the origin with
radius 7 on the Lorentz plane L?. Then

x = rsinh ¢
y = rcoshy

If the point p is revolved about the origin with the rotation angle 6 to the
point p’, then the coordinates of p'(z’,y’) can be written as

a’ = rsinh(¢ + 0)
y' = rcosh(p + 0)
Thus, we have the following rotation equations

a' =z coshd + ysinh 6
y' = xsinh 0 + y cosh

These equations can be re-written in the form of a matrix equation as
' | _ | —coshf sinhf | x
y | | —sinh® coshd | F |y |-

A —coshf sinhf
" | —sinhf# cosh6 |’

then the matrix A is L-orthogonal and det A = —1. Consequently, the func-
tion

If

f:L?—1?% flx)=Apx

corresponds to a rotation about the origin with the hyperbolic angle 6 in L?
and denoted by R(0).

THEOREM 3.2. The function R(0) transforms the time-like vectors to
time-like vectors, the space-like vectors to space-like vectors and the light-like
vectors to light-like vectors in L2.
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PROOF. Let = (z1,22) € L?. Then
(R(9))(x) = AL © = (z1 cosh 0 + x2 sinh 0, 1 sinh 6 + x5 cosh 9).
Thus (A-p 2, A-px), = —af+ 23 = (z,2),. O

If
10
v=[o 1]

then the matrix B is L-orthogonal. The function
g:L> — L% g&)=B-Lx

is a reflection according to y-axis in L2. Notice that det B = 1.
Let matrix S be A1, B -1, AT. Then

| cosh26 sinh26
| sinh20 cosh20 |-

Note that S is L-orthogonal and det S = +1. Thus we can give the following
theorem.

THEOREM 3.3. The function h : L?> — L? h(z) = S -, & corresponds
to the reflection according to a space-like line which has the hyperbolic angle
0 with respect to y-axis at origin in L2. Also, the function —h corresponds
to the reflection according to a time-like line which has the hyperbolic angle 0
with respect to x-axis at origin in L2.

PROOF. Let | be a space-like line which has a hyperbolic angle 6 with
respect to y-axis at the origin on the Lorentzian plane L2. The reflection of
the point p(x,y) according to the line [ is

h(p) = ¢ = (—x cosh 20 + y sinh 26, —x sinh 26 + y cosh 26).
Let space-like vector 7 = (a,b) be directrix of the line /. Then
a? + b? 2ab

cosh 20 = m, sinh 20 = m

1
hp)=a= =50

The vector pq is perpendicular to the vector 7 and d(p,1) = d(q,1).
Analogously, the reflection according to the time-like line can be proven.
O

(—a’xz — b2z + 2aby, —2abz + o’y + by).

COROLLARY 3.4. 1) If the functions h; : L? — L% i = 1,2, hi(z) =
Si -1 x are reflections with respect to space-like lines (or time-like lines) which
have the hyperbolic angles 0; at origin in L?, then the function h : L? — L2,
h(z) = (S1-L S2)x corresponds to rotation about the origin with the hyperbolic
angle 2(61 — 62).
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2) If one of the hi,he is reflection according to space-like line with hyper-
bolic angle 61 and the other one is reflection according to time-like line with
hyperbolic angle 02, then h(x) = —(S1 -1 S2) -1 « for each x € L?.

PRrOOF. 1) Since

Sy 1 Sy — - cosh2(01 - 92) sinh2(91 — 92)
VEP27 0 _sinh2(6; — 62) cosh2(6y —62) |’

we have h(z) = (R(2(01 — 62)))(x).
2) Analogously, by Theorem 3.3. O

COROLLARY 3.5. Let

A |~ coshf sinhé
"~ | —sinh# cosh6

and p be a vector in L. Then the motion in L? can be given by the function
f:L?— L% f(x)=A-px+p.

The function f corresponds to the pure translation when A = I and the pure
rotation when p = 0.
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