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Abstract. We continue our study of n–fold hyperspace suspen-
sions. We show that n–fold hyperspace suspensions of contractible continua
are contractible. We prove that n–fold hyperspace suspensions are zero–
dimensional aposyndetic. We also show that hereditarily indecomposable
continua have unique n–fold hyperspace suspensions.

1. Introduction

The notion of n–fold hyperspace suspension was introduced in [12]. This
concept is a natural extension of the notion of hyperspace suspension intro-
duced by Nadler [18].

Our purpose is to continue the study of the properties of the n–fold hy-
perspace suspensions. We present two results on hyperspaces, namely, The-
orem 3.1, Theorem 3.2 which are of interest. Our main results are Theo-
rem 5.1, Theorem 6.1 and Theorem 7.1. Other results such as Theorem 4.1,
Theorem 4.3 and Theorem 4.4 are of independent interest.

2. Definitions

If (Z, d) is a metric space, then givenA ⊂ Z and ε > 0, the open ball about
A of radius ε is denoted by Vdε (A), the interior of A is denoted by IntZ(A), and
the closure of A is denoted by ClZ(A). A map means a continuous function.
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A continuum is a nonempty compact, connected metric space. A subcon-
tinuum is a continuum contained in a space Z. A continuum X is said to be
indecomposable provided that it cannot be written as the union of two of its
proper subcontinua. A continuum is hereditarily indecomposable if all of its
subcontinua are indecomposable.

A subcontinnuum A is a retract of the continuum X provided that there
exists a map r : X → A such that r(a) = a for each a ∈ A, the map r is called
a retraction. The subcontinuum A is said to be a strong deformation retract
of the continuum X provided that there exists a map H : X × [0, 1] → X
such that H(x, 0) = x, H(x, 1) = r(x) and H(a, t) = a for each x ∈ X , each
a ∈ A and each t ∈ [0, 1], where r is a retraction, the map H is called a strong
deformation retraction.

A subcontinuum A of a continuum X is said to be a Z–set if for every
ε > 0, there exists a map f : X → (X \ A) such that d(x, f(x)) < ε for each
x ∈ X .

An arc is any space homeomorphic to [0, 1]. The symbol Q denotes the
Hilbert cube.

Given a continuum X we consider the following hyperspaces:

2X = {A ⊂ X | A is nonempty and closed}
and

Cn(X) = {A ∈ 2X | A has at most n components},
where n is a positive integer. Cn(X) is called the n–fold hyperspace of X .
These spaces are topologized with the Hausdorff metric defined as follows:

HX (A,B) = inf{ε > 0 | A ⊂ Vdε (B) and B ⊂ Vdε (A)},
HX always denotes the Hausdorff metric on the n–fold hyperspace of a con-
tinuum X . When n = 1, we write C(X) instead of C1(X).

The symbol Fn(X) denotes the n–fold symmetric product of X ; that is:

Fn(X) = {A ∈ Cn(X) | A has at most n points}.
Note that, by definition, Fn(X) ⊂ Cn(X). It is known that Cn(X) is an
arcwise connected continuum (for n = 1, see [17, (1.12)]; for n ≥ 2, see [10,
3.1]).

An order arc in Cn(X) is an arc α : [0, 1] → Cn(X) such that if 0 ≤ s <
t ≤ 1 then α(s) ⊂ α(t) and α(s) 6= α(t).

By the n–fold hyperspace suspension of a continuum X , which is denoted
by HSn(X), we mean the quotient space:

HSn(X) = Cn(X)/Fn(X)

with the quotient topology. The fact thatHSn(X) is a continuum follows from
[19, 3.10]. Notice that HS1(X) corresponds to the hyperspace suspension
HS(X) defined by Nadler in [18].
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Notation 2.1. Given a continuum X , qnX : Cn(X) → HSn(X) denotes
the quotient map. Also, let F nX denote the point qnX(Fn(X)).

Remark 2.2. Note that the sets HSn(X) \ {FnX} and HSn(X) \
{qnX(X), FnX} are homeomorphic to Cn(X)\Fn(X) and Cn(X)\({X}∪Fn(X)),
respectively, using the appropriate restriction of qnX .

3. A result of n–fold hyperspaces

In [11, 4.13] it was shown that for a continuum X which is an absolute
retract, F1(X) is a strong deformation retract of Cn(X). We prove, under the
same hypothesis, that Fn(X) is a strong deformation retract of Cn(X).

A continuum X is said to be an absolute retract provided that for any
metric space Z and any embedding h : X → Z, h(X) is a retract of Z.

The proof of the following theorem is similar to the proof of [7, 2.5]. We
include the details for the convenience of the reader.

Theorem 3.1. If X is an absolute retract, then Fn(X) is a strong defor-

mation retract of 2X .

Proof. Since X is an absolute retract, Fn(X) is an absolute retract [6,
p. 316]. Hence, Fn(X) × Q is homeomorphic to Q [2, 44.1 and 22.1]. Let
q0 ∈ Q. Since {q0} is a Z–set in Q [2, (ii), p. 2], it follows that Fn(X)×{q0}
is a Z–set in Fn(X)×Q, and since {q0} is a strong deformation retract of Q,
it follows that Fn(X)×{q0} is a strong deformation retract of Fn(X)×Q. Let
h : (Fn(X)×Q)× [0, 1] → Fn(X)×Q be a strong deformation retraction from
Fn(X)×Q onto Fn(X)×{q0}. By [17, (16.18)], C(X) is contractible. Thus,
F1(X) is a Z–set in C(X) [7, 2.4]. Hence, Fn(X) is a Z–set in 2X [14, 2.2].
By [17, (1.97)], 2X is homeomorphic to Q. Let f : Fn(X) → Fn(X) × {q0}
be the homeomorphism given by f(A) = (A, q0). By Anderson’s homeomor-
phism extension theorem [8, 11.9.1], f can be extended to a homeomorphism
F : 2X → Fn(X) ×Q. It follows that the map

H : 2X × [0, 1] → 2X

given by
H(A, t) = F−1 (h (F (A), t))

is a strong deformation retraction from 2X onto Fn(X).

As a consequence of Theorem 3.1, we have:

Theorem 3.2. If X is an absolute retract and n is a positive integer,

then Fn(X) is a strong deformation retraction of Cn(X).

Proof. Since X is an absolute retract, there exists a strong deformation
retraction H : 2X × [0, 1] → 2X from 2X onto Fn(X) by Theorem 3.1.

Since X is locally connected, Cn(X) is an absolute retract [20, Théorème
IIm]. Hence, there exists a retraction r : 2X → Cn(X). Thus, the map r ◦
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(
H |Cn(X)×[0,1]

)
: Cn(X) × [0, 1] → Cn(X) is a strong deformation retraction

from Cn(X) onto Fn(X).

As consequence of Theorem 5.2 and Theorem 3.2 we obtain:

Corollary 3.3. IfX is an absolute retract, thenHSn(X) is contractible.

Proof. Since X is an absolute retract, Fn(X) is a strong deformation
retraction of Cn(X) (Theorem 3.2). Therefore, the result follows from Theo-
rem 5.2.

4. General properties

We continue our study of n–fold hyperspace suspensions by noting that
if m < n, then the m–fold hyperspace suspension of a continuum may be
embedded in its n–fold hyperspace suspension.

Theorem 4.1. Let X be a continuum. Let n and m be positive integers

such that n > m. Then HSm(X) may be embedded in HSn(X).

Proof. Let im,n : Cm(X) → Cn(X) be the inclusion map. Observe that
im,n is a relation preserving map [4, p. 16]. Now let hm,n : HSm(X) →
HSn(X) be given by

hm,n(χ) =

{
FnX if χ = FmX ;

qnX

(
im,n

(
(qmX )−1 (χ)

))
if χ 6= FmX .

Note that hm,n is continuous by [4, 4.3, p. 126]. It is clear that hm,n is one–
to–one. Since the spaces are compacta, hm,n is an embedding. Therefore,
HSm(X) may be embedded in HSn(X).

Question 4.1. For what continua X does the natural embedding in the
proof of Theorem 4.1 embed HSm(X) as a retract of HSn(X)? In particular,
what about the case when X is S1?

More generally, we ask the following:

Question 4.2. For what continua X can HSm(X) be embedded in
HSn(X) as a retract (m < n)?

Remark 4.2. Let us note that a positive answer to Question 4.1 when
X is S1, shows that HS1(S1), which is homeomorphic to a 2–sphere, would
be a retract of HSn(S1). Hence, HSn(S1) would not be contractible for any
positive integer n, compare with Corollary 3.3.

The following two theorems are used in the proof of Theorem 7.1.

Theorem 4.3. Let X be a continuum and let n be a positive integer. If

χ ∈ HSn(X)\{qnX(X), FnX}, then HSn(X)\{qnX(X), χ} is arcwise connected.
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Proof. Let χ′ ∈ HSn(X) \ {qnX(X), FnX , χ}. We show that there is an
arc joining χ′ and FnX contained in HSn(X) \ {qnX(X), χ}. Let A1, . . . , Ak be

the components of (qnX)
−1

(χ′).

Suppose that (qnX)−1 (χ′) \ (qnX)−1 (χ) 6= ∅. Let a1 ∈ (qnX)−1 (χ′) \
(qnX)

−1
(χ). Without loss of generality, we assume that a1 ∈ A1. For

each j ∈ {2, . . . , k}, let aj ∈ Aj . By [17, (1.8)], there exists an order arc

α : [0, 1] → Cn(X) such that α(0) = {a1, . . . , ak} and α(1) = (qnX)
−1

(χ′). Note

that, by construction, {X, (qnX)
−1

(χ)}∩α([0, 1]) = ∅. Hence, qnX ◦α : [0, 1] →
HSn(X) is an arc such that qnX ◦ α(0) = F nX and qnX ◦ α(1) = χ′ and
{qnX(X), χ} ∩ (qnX ◦ α([0, 1])) = ∅.

Next, suppose that (qnX )
−1

(χ′) ⊂ (qnX)
−1

(χ). For each j ∈ {1, . . . , k},
let aj ∈ Aj . By [17, (1.8)], there exists an order arc β : [0, 1] → Cn(X) such

that β(0) = {a1, . . . , ak} and β(1) = (qnX)−1 (χ′). Again, by construction,

{X, (qnX )
−1

(χ)}∩β([0, 1]) = ∅. Thus, qnX ◦β : [0, 1] → HSn(X) is an arc such
that qnX ◦ β(0) = F nX , qnX ◦ β(1) = χ′ and {qnX(X), χ} ∩ (qnX ◦ β([0, 1])) = ∅.

Therefore, HSn(X) \ {qnX(X), χ} is arcwise connected.

Theorem 4.4. Let X be a continuum and let n be a positive integer. If

χ ∈ HSn(X) \ {FnX} is such that HSn(X) \ {FnX , χ} is not arcwise connected,

then (qnX )
−1

(χ) ∈ C(X).

Proof. Suppose there exists χ ∈ HSn(X) \ {FnX} such that HSn(X) \
{FnX , χ} is not arcwise connected. This implies that Cn(X) \ ({(qnX)

−1
(χ)} ∪

Fn(X)) is not arcwise connected. Since Cn(X) \ Fn(X) is arcwise connected
(by [10, 6.2] and the fact that singletons do not arcwise disconnect Cn(X)), we

have that Cn(X) \ {(qnX)
−1

(χ)} is not arcwise connected. Thus, (qnX)
−1

(χ) ∈
C(X) [10, 6.2].

5. Contractibility

We give a sufficient condition for a continuum to have its n–fold hyper-
space suspensions contractible.

Theorem 5.1. Let X be a continuum and let n be a positive integer. If

X is contractible, then HSn(X) is contractible.

Proof. Let R : X × [0, 1] → X be such that R(x, 0) = x and R(x, 1) = q
for every x ∈ X and some q ∈ X . Define G : Cn(X) × [0, 1] → Cn(X) by
G(A, t) = R(A × {t}). Note that G(A, 0) = A, G(A, 1) = {q} for every
A ∈ Cn(X) and if A ∈ Fn(X), then G(A, t) ∈ Fn(X) for each t ∈ [0, 1].

Let

K : HSn(X) × [0, 1] → HSn(X)
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be given by

K(χ, t) =

{
FnX if χ = FnX ;

qnX

(
G
(
(qnX)

−1
(χ), t

))
if χ 6= FnX .

Note that K is continuous by [4, 4.3, p. 126]. Observe also that

K(χ, 0) = χ

and

K(χ, 1) = F nX

for each χ ∈ HSn(X). Therefore, HSn(X) is contractible.

We omit the proof of the following theorem because it is similar to the
one given in Theorem 5.1.

Theorem 5.2. Let X be a continuum and let n be a positive integer. If

Fn(X) is a strong deformation retract of Cn(X), then HSn(X) is contractible.

Question 5.1. What continua X have the property that HSn(X) is
contractible for each positive integer n?

Theorem 5.3. If X is a locally connected continuum and n is a positive

integer, then HSn(X) \ {FnX} is contractible.

Proof. Since X is locally connected, we assume that X has a convex
metric ρ ([1, 16]). Without loss of generality, we assume that diam(X) ≤ 1.
Let Kρ : [0, 1]× Cn(X) → Cn(X) be given by

Kρ(t, A) = {x ∈ X | ρ(x, y) ≤ t for some y ∈ A}.
Kρ is continuous [17, (0.65.3)(f)], Kρ(0, A) = A and Kρ(1, A) = X .

Note that Kρ ([0, 1] × Cn(X) \ Fn(X)) ⊂ Cn(X)\Fn(X). Hence, Cn(X)\
Fn(X) is contractible. Therefore, HSn(X) \ {FnX} is contractible by Re-
mark 2.2.

6. Aposyndesis

In [12, 4.4] it was shown that n–fold hyperspace suspensions are finitely
aposyndetic. Next theorem extends this result to zero–dimensional aposyn-
desis.

A continuum X is said to be zero–dimensional aposyndetic provided that
for each zero–dimensional closed subset Z of X and each point x ∈ X \ Z,
there exists a subcontinuum W of X such that x ∈ IntX(W ) ⊂W ⊂ X \ Z.

Theorem 6.1. Let X be a continuum and let n be a positive integer.

Then HSn(X) is zero–dimensional aposyndetic.
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Proof. Since HSn(X) is locally connected at qnX (X) and at F nX ,
HSn(X) is zero–dimensional aposyndetic at qnX(X) and at F nX .

Let χ ∈ HSn(X) \ {qnX(X), FnX}, and let Z be a zero–dimensional closed
subset of HSn(X) such that χ 6∈ Z . Since Z is closed and χ 6∈ Z , there exists
ε > 0 such that

ClCn(X)

(
VH
ε

(
(qnX )

−1
(χ)
))

∩ Fn(X) = ∅

and

ClHSn(X)

(
qnX

(
VH
ε

(
(qnX)

−1
(χ)
)))

∩ Z = ∅.

Let Z ′ = Z \ {F nX}. Then dim(Z ′) ≤ 0 and VH
ε

(
(qnX )

−1
(χ)
)
∩

(qnX)−1 (Z ′) = ∅. By [15, Theorem 7], there exists a subcontinuum M of

Cn(X) such that (qnX )
−1

(χ) ∈ IntCn(X)(M) and M∩ (qnX)
−1

(Z ′) = ∅1. Note
that M may be constructed in such a way that Fn(X) ∩ M = ∅. Hence,
qnX (M) is a subcontinuum of HSn(X) such that χ ∈ IntHSn(X) (qnX (M))
and qnX (M) ∩ Z ′ = ∅. Since M ∩ Fn(X) = ∅, FnX 6∈ qnX (M). Thus,
qnX (M) ∩ Z = ∅. Therefore, HSn(X) is zero–dimensional aposyndetic.

7. Hereditarily indecomposable continua

In [5, 8.5] it was shown that hereditarily indecomposable continua have
unique hyperspace suspension. We prove that hereditarily indecomposable
continua have unique for n–fold hyperspace suspensions.

Theorem 7.1. Let X be a hereditarily indecomposable continuum, and

let n ≥ 2 be a positive integer. If Y is a continuum such that HSn(Y ) is

homeomorphic to HSn(X), then Y is homeomorphic to X .

Proof. Let h : HSn(X) → HSn(Y ) be a homeomorphism. Observe
that h({qnX(X), FnX}) = {qnY (Y ), FnY } [12, 3.5]. Let χ ∈ HSn(X) such that

(qnX)
−1

(χ) ∈ C(X) \ ({X} ∪ F1(X)). Then Cn(X) \ {(qnX )
−1

(χ)} is not arc-
wise connected [10, 6.9]. Hence, HSn(X) \ {FnX , χ} is not arcwise connected.
Thus, since h is a homeomorphism, HSn(Y ) \ {h(F nX), h(χ)} is not arcwise
connected. Then, by Theorem 4.3 and the fact that h({qnX(X), FnX}) =
{qnY (Y ), FnY }, we have that h(F nX ) = FnY and h(qnX (X)) = qnY (Y ). We also

have that (qnY )
−1

(h(χ)) ∈ C(Y ) by Theorem 4.4.
Hence, we have a homeomorphism

` : Cn(X) \ Fn(X) → Cn(Y ) \ Fn(Y )

1The only place in the proof of [15, Theorem 7] at which the hypothesis of the zero–
dimensional subset Z being closed is to construct an open set about the point whose closure
misses Z. To construct M only the fact that dim(Z) ≤ 0 is used.
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given by

`(A) = (qnY )−1 (h(qnX (A))).

Note that `(X) = Y and `(C(X) \ F1(X)) ⊂ C(Y ) \ F1(Y ). As in the proof

of [5, 8.5], `|C(X)\F1(X) can be extended to a map ˆ̀: C(X) → C(Y ) in such a

way that ˆ̀ is one–to–one and ˆ̀(F1(X)) ⊂ F1(Y ).

Let Z ∈ C(Y ) such that F1(Z) = h(F1(X)). Then ˆ̀(C(X)) = C(Z).

Since ˆ̀(X) = `(X) = Y , Y ∈ C(Z). Hence, Z = Y and ˆ̀(F1(X)) = F1(Y ).
Therefore, Y is homeomorphic to X .
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