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Analysis of heterogeneous gas sand reservoirs is one of the most difficult problems. These reservoirs usually

produce from multiple layers with different permeability and complex formation, which is often enhanced by

natural fracturing. Therefore, using new well logging techniques like NMR or a combination of NMR and

conventional openhole logs, as well as developing new interpretation methodologies are essential for

improved reservoir characterization. Nuclear magnetic resonance (NMR) logs differ from conventional

neutron, density, sonic and resistivity logs because the NMR measurements provide mainly lithology

independent detailed porosity and offer a good evaluation of the hydrocarbon potential. NMR logs can also

be used to determine formation permeability and capillary pressure.

In heterogeneous reservoirs classical methods face problems in determining accurately the relevant

petrophysical parameters. Applications of artificial intelligence have recently made this challenge a

possible practice. This paper presents a successful application of Neural Network (NN) to predict porosity

and permeability of gas sand reservoirs using NMR T2 (transverse relaxation time) and conventional open

hole logs data. The developed NN models use the NMR T2 pin values, and density and resistivity logs to

predict porosity, and permeability for two test wells. The NN trained models displayed good correlation with

core porosity and permeability values, and with the NMR derived porosity and permeability in the test wells.

Key words: neural network, porosity, permeability, NMR, conventional logs and heterogeneous gas
sand reservoirs

1. Introduction

Porosity logs measurements require environmental cor-
rections and are influenced by lithology and formation
fluids. The porosity derived is the total porosity, which
consists of producible fluids, capillary bound fluids and
clay-bound water. However, NMR provides lithology inde-
pendent pore size distribution. Permeability is a measure
of fluid rock conductivity. To be permeable, a rock must
have interconnected porosity. Greater porosity usually
corresponds to greater permeability; however, this is not
always the case. Formation permeability is influenced by
pore size, shape and continuity, as well as the amount of
porosity. Permeability can be determined from resistivity
gradients, permeability models based on porosity, �, and
irreducible water saturation (Swi), formation tester (FT)
and nuclear magnetic resonance (NMR). Perhaps, the
most important feature of NMR logging is the ability to re-
cord a real-time permeability log. The potential benefits
of NMR to oil companies are enormous. Log permeability
measurements enable production rates prediction and
allow optimization of production completion and pro-
grams stimulation while decreasing the cost of coring
and testing wells especially in heterogeneous tight reser-
voirs where there is considerable permeability aniso-
tropy.

The field of interest is a gas condensate field producing
from a Lower-Mesozoic reservoir. The reservoir is classi-
fied as a tight heterogeneous gas shaly sands reservoir. It
suffers from lateral and vertical heterogeneity due to
diagenesis effect (kaolinite & illite) and variation in grain
size distribution. The petrophysical analysis indicates a
narrow 8-12% porosity range, and a wide permeability
range from 0.01 to 100 mD. Figure 1 shows core poros-
ity-permeability crossplot over whole reservoir section
including all facies in different wells. The core data
shows cloud of points with undefined trend, which could
be roughly subdivided into six or seven regions.15,1

In heterogeneous reservoirs, facies may change on few
meters and down to few centimetres scales. The average
fluid density in this case becomes unsatisfactory due to
fluids distribution heterogeneity in the reservoir; there-
upon, it is required to explore new porosity determina-
tion techniques that are independent of facies change.
Due to reservoir heterogeneity; many cores were ac-
quired in different wells covering different reservoir units
to create the proper porosity-density and permeability
models for each. The uncertainty associated with identi-
fication of the proper porosity and permeability model
for each unit is high, which could result in high perme-
ability estimation far beyond the actual well perfor-
mance. Therefore, integration of non standard tools like
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NMR with conventional tools and special core analysis
(SCAL) in the petrophysical evaluation is essential to re-
duce the uncertainty beyond the limitations of each tool
in individual bases, especially in gas reservoirs.7,18,4

This work concentrates on determination of porosity
(�DMR) from combination of density porosity and NMR po-
rosity and permeability from NMR logs using Bulk Gas
Magnetic Resonance Permeability (kBGMR), a technique
proposed by Hamada et al10, and then using the neural
network (NN) technique to predict formation porosity
and permeability using NMR and conventional logging
data. The NN technique has been developed and applied
in several field cases and the predicted porosity and per-
meability values were validated from the proposed NN al-
gorithm. Predicted porosity and permeability have
shown a good correlation with core porosity and perme-
ability in the studied gas sand reservoir.

2. Density-magnetic resonance porosity
(�DMR)

Freedman et al6 proposed a combination of density po-
rosity and NMR porosity (�DMR) to determine gas cor-
rected formation porosity and flushed zone water
saturation (Sxo). Density/NMR crossplot is superior to
density/neutron crossplot for detecting and evaluating
gas shaly sands. This superiority is due to the effect of
thermal neutron absorbers in shaly sands on neutron
porosities which cause neutron porosity readings to be
too high. As results, neutron/density logs can miss gas
zones in shaly sands.1,6 On the other hand NMR porosi-
ties are not affected by shale or rock mineralogy, and

therefore density/ NMR (DMR) technique is the more reli-
able to indicate and evaluate gas shaly sands.

� �� � �NMR gxo g g L gxoS HI P HI S� � �1 (1)

2.1. Density porosity response in gas flushed
zone is defined as

� � � �� � � � � � �b m L gxo g gxoS S� � � � �1 1 (2)

Solution of equations (1) and (2) for True Formation
Porosity (�)

� � �� 	 � 	A BD NMR

� � �DMR D NMRA B� 	 � 	 (3)

where �NMR is NMR porosity, HI is hydrogen index, P is
NMR polarization, �D is density porosity, Sgxo is flushed
zone gas saturation, �b is bulk density and A, B are fac-
tors.

2.2 Calibration for �DMR porosity

A curve fitting method has been used to calibrate the A

and B constants values which are applied to the reservoir
of interest. In our case we have selected well (A) (Both
core and NMR data were available over the same reser-
voir interval. Assuming core porosities are equal to �DMR,
which is the gas corrected porosity.

Equation (3) can be written in the following form:

�

�

�

�
Core

NMR

D

NMR

A B� 	 � (4)
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Fig. 1. Porosity-permeability plot in heterogeneous gas sand
Sl. 1. Plot šupljikavost – propusnost u heterogenom plinonosnom pješèenjaku



The fitting trend line has a slope
of A = 0.65 and intercepts the Y
axis at B=0.35, which results in
DMR porosity transform as follows

�DMR = 0.65 �D + 0.35 �NMR (5)

2.3 �DMR porosity results

The results of �DMR transform ap-
plications in the two test wells A
and B showed very good match be-
tween �DMR and core porosities as
shown in Figures 2 and 3. As a re-
sult, it is considered being an inde-
pendent facies porosity model.
These corrected porosities can be
used in conjunction with
Timur-Coates equation4 to esti-
mate accurate permeability in gas
bearing formations.

Figures 2 and 3 present well logs
showing PHID and �DMR. Gamma
ray and Caliper curves are shown
in the first track (GR and CALI),
second track shows depth in me-
ters, the third one is resistivity, the
fourth one is neutron-density logs,
the fifth track shows comparison
between core, density and NMR
porosities, the sixth track shows
comparison between �DMR and core
porosity, the seventh track shows
saturations of gas (green shadow)
and water (blue shadow) and the
last track shows core permeability
in mD.

The DMR method has the advan-
tage of avoiding the use of fluid
density and gas hydrogen index
(HI) at reservoir condition for gas
correction. Another advantage is
that we can increase logging
speeds as we do not need full po-
larization for gas.6,13

3. Gas Sand
Permeability
Estimation from NMR
(kBGMR)

Bulk Gas Magnetic Resonance Per-
meability (kBGMR) is a new tech-
nique for permeability estimation
in gas reservoirs. It has the same
value in oil-based mud (OBM) and
water-based mud (WBM) condi-
tions, as it depends on gas re-entry
to the flushed zone after mud cake
takes place and invasion stops. It
is a dynamic concept of gas move-
ment behind mud cake as a result
of formation permeability, gas mo-
bility and capillarity forces. Be-
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Fig. 2. DMR Porosity and core porosity in well A
Sl. 2. DMR poroznost i poroznost jezgre iz bušotine A

Fig. 3. DMR Porosity and core porosity in well B
Sl. 3. DMR poroznost i poroznost jezgre iz bušotine B



cause gravity forces are constant,
capillarity depends mainly on per-
meability and mobility depends on
permeability and fluid viscosity
which is constant for gas; the gas
re-entry volume is a direct function
of permeability.

3.1 BGMR permeability
results

Permeability is derived from em-
pirical relationship between NMR
porosity and mean values of T2 re-
laxation times. Two permeability
models are widely used in the in-
dustry Kenyon model [k=c · �NMR)a

x (T2)b] and Timer- Coates model
[k = (�NMR / c )a x (BVM/BVI)b].13

Kenyon model permeability is af-
fected by gas and OBM filtrate
(non-wetting phase). Timer-Coates
permeability model works well in
gas reservoirs, but it is affected by
uncertainty of BVI cut off values
and wettability alteration by OBM
filtrate. After defining T2 cut off
values, it is time to calibrate the fit-
ting parameters (a, b and c) for
studied shaly gas sand reservoir.
Permeability determination by
Timer-Coates model in the case of
tight heterogeneous shaly gas sand
was not satisfactory due to the ef-
fect of rock facies, tightness and
the significant variation of T2 val-
ues for the same facies. Estimates
of Kenyon and Timer-Coates per-
meability are both affected by hy-
drocarbon; therefore, the
development of a different perme-
ability model is essential. NMR de-
rived permeability is based on
bulk gas volume (BG) in flushed
zone. It is the difference between
DMR (density magnetic resonance)
porosity and NMR porosity.

BG volume = �DMR – �NMR (6)

The relationship can be normal-
ized by dividing the gas volume by
the total porosity of DMRP to be
equal to flushed zone gas satura-
tion, Sgxo

Sgxo = (�DMR – �NMR) / �DMR (7)

The correlation between Sgxo and
permeability in mD has the follow-
ing form.

kBGMR = 0.18 · 10(6.4qSgxo) (8)

Equation (8) has been applied to
two wells A and B, where Figures 4
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Fig. 4. Well A, KBGMR permeability, track 6.
Sl. 4. Bušotina A, KBGMR propusnost, krivulja 6

Fig. 5. Well B, KBGMR permeability, track 6.
Sl. 5. Bušotina B, KBGMR propusnost, krivulja 6



and 5 show the results in the two wells respectively. Wells
A, B show a good match between BGMRK permeability
with core permeability using the same kBGMR transform.

4. NN interpretation of NMR log data
For obvious economic reasons, there has been a para-
digm shift in hydrocarbon exploration and development
strategies for better utilization of seismic data for reser-
voir characterization. Discovering the complicated and
nonlinear relationship between seismic attributes and
reservoir properties has been a major challenge for
working geoscientists. Artificial Neural Network tech-
niques have been proposed and proved to be effective in
capturing these complex relations, and have proven to be
effective modelling tool. Let x1,x2,….x5, be the input sig-
nals, wk1,wk2,….wkp, are synaptic weights of neuron k,
wk0 is a bias term, vk is the linear combiner output, f(.) is
an activation function, and yk is the output signal of the
neuron, the mathematical model of the k-th neuron is de-
scribed as

� �

v w x w

y f v

k kj j k

j

p

k k

� �

�

�


 0

1
(9)

The activation function, f(.), defines the output of a neu-
ron in terms of the activity level at its input. There are
several classes of artificial neural networks structures.
The most common structure of ANN is known as
multi-layer perceptron Feed Forward Neural Networks
(FFNN). FFNNs are composed of layers of interconnected
neurons. Usually, an input layer, a number of hidden lay-
ers, and an output layer are used as shown in Figure 6.
The input layer is essentially a direct link to the inputs of
the first hidden layer. The output of each neuron may be
connected to the inputs of all the neurons in the next
layer. Signals are unidirectional i.e., they flow only from
input to output.11

The potential of FFNN as a basis for the modeling, clas-
sification, and statistical estimation stems from the fol-
lowing characteristics:

• For a sufficient number of hidden units, feed forward
neural networks (FFNN) can approximate any continu-

ous static input-output mapping to any desired degree
of approximation11,12

• Due to the modular and feed forward structure, the
training of the network is simple and can be made to
adapt to varying conditions.

The back propagation (BP) algorithm is usually used
for (FFNN) training.10 Although BP is simple, the choice
of a good learning rate requires some trial and error. Sev-
eral improved variants of the BP algorithms were pro-
posed in the literature, e.g., the RPROP algorithm,
Riedmiller and Braun,17 Conjugate Gradient, Powell,16

and Levenberge-Marquardt (LM), Hagan and Menhaj.9

Although all these algorithms suffer from sensitivity to
the initial value of the weights and biases, the LM was
shown to be the fastest algorithm for function approxi-
mation problems. The LM training algorithm is chosen
for training the developed neural networks in this study.

5. Porosity prediction using neural
network (NN)

Porosity is a key petrophysical parameter in formation
evaluation. Consequently, new well logging techniques
are developed to determine accurately formation poros-
ity. Neural networks present an alternative approach to
estimate porosity. Soto et al19 developed a back propaga-
tion neural network with four layers to predict perme-
ability and porosity from log data with satisfactory
results. Lim and Kim1 used artificial neural network to
classified/identify lithofacies and predicted permeability
and porosity from well and he proposed the use of com-
bined fuzzy logic artificial neural network to predict po-
rosity and permeability. Fuzzy curve analysis was used to
select the best inputs for the artificial neural network
from the available conventional well log data. Elshafei
and Hamada5 estimated formation porosity and water
saturation of shaly sand reservoirs with relatively satis-
factory result using two separate neural network from
well logging measurements.

5.1 NN Porosity prediction using conventional
log

The conventional log consists of 5 measurements:
Gamma Ray (GR), bulk density

(RHOB), Neutron porosity (CNL), Deep

and shallow resistivity (RT_D, and

RT_S). The NMR data consists of 10 T2

pin values. Data from two test wells A

and B were combined and split to 60%

training and 40% testing. A neural net-

work consisting of 5 inputs, a single

hidden layer of 16 neurons, and an out-

put layer was built. The hidden layer

consists of a tan-sigmoid function, and

the output neuron is a log-sigmoid

function. The mean square root error

during training, Figure 7 and testing,

Figure 8 came to 0.0075 and 0.0102 re-

spectively. The correlation between the

predicted values and target values dur-

ing training came to 0.852, and during
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Fig. 6. Multi-layer feed forward neural network (FFNN).
Sl. 6. Višeslojna Feed-forward neuralna mre�a (FFNN)



testing 0.66. These relatively low correlation coefficients
may be attributed to the high noise level in the input data.

5.2. NN Prediction of porosity using NMR and
conventional log

The data used consists of 5 conventional logs, 10 T2
pins, and the mean value of the pins, the mean squared

value of the pins, and the maxi-
mum value of the pins, a total of
18 parameters. Due to the rich-
ness of the data, a simple neural
network provides an improved
performance over the structure
used with the conventional log.
The neural network here con-
sists of a single hidden layer of 8
neurons. The hidden neurons
use tan-sigmoid function, and
the output neuron uses a
log-sigmoid function.

The root mean square root of
errors during training and test-
ing came to 0.0038 and 0.0105
respectively (0.5).

The correlation between the
predicted values and target val-
ues during training, Figure 9
came to 0.9653 and during test-
ing 0.69. (ff nmr por._net3), Fig-
ure 10. The relatively poor
performance is mainly due to
the small number of core mea-
surements (24 from well A, and
51 from well B, a total of only 75
points).

6. Permeability
estimation using
neural network
(NN)

The determination of permeabil-
ity characteristics is labour in-
tensive and complicated.
Empirical models to predict rel-
ative permeability from rock
and fluid properties have also
experienced relatively limited
success. Hence alternative
methodologies for accurate de-
termination of relative perme-
ability characteristics have since
been considered.19,15,2,3 Artificial
neural network (ANN) approach
is proposed to predict an accu-
rate permeability. Balan et al3

did comparative prediction of
the permeability estimation
from log data using empirical
model, multiple variable regres-
sion, and artificial neural net-
work. The result shows that
multiple regression and neural

network techniques perform better than empirical with

neural network as the best tool. Garrouch and Smaoni8

estimated tight gas sand permeability from porosity,

mean pore size, and mineralogical data using a

back-propagation neural network model with 8-input

neuron and 2-5 hidden layers.
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Fig. 7. NN prediction of porosity using conventional log, training performance.
Sl. 7. NN predviðanje poroznosti korištenjem konvencionalne karota�e, uvje�bavanje

Fig. 8. NN prediction of porosity using conventional log, testing performance.
Sl. 8. NN predviðanje poroznosti korištenjem konvencionalne karota�e, predviðanje



6.1 Gas sand permeability
estimation from NN

Prediction of permeability by Ar-
tificial neural network (ANN) ap-
proach needs good input logging
data, such as NMR data (T2), in
addition to conventional logging
data (GR, density, Neutron, re-
sistivity). The two wells A, B
were analysed to build a
NN-based permeability predic-
tion model.

6.2 NN permeability
prediction using
conventional log

Conventional log data from wells
A and B were combined and di-
vided into two data sets, a train-
ing set of 60% of data, and a test
set of 40% of data. It is preferred
to start the prediction of perme-
ability using conventional log
alone, thereby using Figure 11
as a base line for later assess-
ment of the NMR effectiveness.

The developed NN has five in-
puts and one hidden layer of 16
neurons. The hidden layer uses
tan-sigmoid activation func-
tions, and the output layer uses
log-sigmoid activation function.
All inputs were normalized be-
tween [-1, +1] based on the data
available in wells A and B. The
permeability was normalized on
a log scale as

� �� �p pn true� �log / .10 2 05

The performance of the devel-
oped NN on the training data is
shown in Figure 11, and its per-
formance on the test data is
shown in Figure 12. The NN
achieves a root mean squared
error of 6.8 (4.5% of the
full-scale) during training, and
9.14 (6.09%) during testing,
with correlation coefficient of r

= 0.9375.

6.3. NN Permeability
prediction using NMR
and conventional log

The data used consists of 5 con-
ventional logs, 10 T2 pins, plus
the mean value of the pins, the
mean squared value of the pins,
and the maximum value of the
pins, making a total of 18 pa-
rameters. The conventional log
data and the NMR data from
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Fig. 9. NN prediction of porosity using conventional and NMR log, training performance.
Sl. 9. NN predviðanje poroznosti korištenjem konvencionalne i NMR karota�e, uvje�bavanje

Fig. 10. NN prediction of porosity using conventional & NMR log, testing performance.
Sl. 10. NN predviðanje poroznosti korištenjem konvencionalne i NMR karota�e, predviðanje



wells A and B were combined
and divided into two data sets, a
training set of 60% of data, and a
testing set of 40% of data.

Due to the richness of the
data, a simpler neural network
provided an improved perfor-
mance over the structure used
with the conventional log. The
neural network here consists of
a single hidden layer of 8 neu-
rons. The hidden neurons use
tan-sigmoid function, and the
output neuron uses a log-sig-
moid function. Figure 13 shows
the performance of the 18-input
NN on the training data, and Fig-
ure 14 shows its performance
on the test data.

The developed NN achieves a
root mean squared error of 4.18
(about 2.8%) and of 4.515
(about 3.01%) on the training
data and test data respectively.
These results indicate that the
NN manages to properly interpo-
late the test data and achieves al-
most uniform performance on
the entire log data. The correla-
tion coefficient came to r =
0.978 during training, and r =

0.961 during testing.

7. Conclusion
1. NMR derived permeability

and, porosity have shown
good matching with core
tests results.

2. NN-predicted porosity using
NMR and conventional log
has an excellent matching
with DMR NMR porosity in
training and also in testing
sections that indicated an
acceptable validation level of
NN approach.

3. NN-predicted permeability
from NMR decay times T2
and conventional logs
achieve very close values to
the core permeability.

4. It is recommended to use the
developed NN model to
predict permeability from
NMR data in other wells. It is
also recommended to try
different NN structures for
possibly achieving improved
results than those obtained
by FFNN.
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Fig. 11. NN prediction of permeability using conventional log, training performance.
Sl. 11. NN predviðanje propusnosti korištenjem konvencionalne karota�e, uvje�bavanje

Fig. 12. NN prediction of permeability using conventional log, testing performance.
Sl. 12. NN predviðanje propusnosti korištenjem konvencionalne karota�e, predviðanje
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Fig. 13. NN prediction of permeability using conv. and NMR log, training performance.
Sl. 13. NN predviðanje propusnosti korištenjem konvencionalne i NMR karota�e, uvje�bavanje

Fig. 14. NN prediction of permeability using conv. and NMR log, testing performance.
Sl.14. NN predviðanje propusnosti korištenjem konvencionalne i NMR karota�e, predviðanje



Nomenclature
� Porosity

Swi Irreducible water saturation

Sgxo Flushed zone gas saturation

FT Formation tester

OBM Oil base mud

WBM Water base mud

PHID Density porosity reading

RT-D True resistivity

RT-S Flushed zone resistivity

NMR Nuclear magnetic resonance

NN Neural Network

BP Back propagation training algorithm

kBGMR Bulk gas magnetic resonance permeability

BG Bulk gas volume

DMR Density magnetic resonance

FFNN Feed forward neural network

LM Levenberge-Marquardt training algorithm
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