ALTERNATE PROOFS OF SOME BASIC THEOREMS OF FINITE GROUP THEORY

Yakov Berkovich
University of Haifa, Israel

Dedicated to Moshe Roitman on the occasion of his 60th birthday

Abstract

In this note alternate proofs of some basic results of finite group theory are presented.

These notes contain a few new results. Our aim here is to give alternate and, as a rule, more short proofs of some basic results of finite group theory: theorems of Sylow, Hall, Carter, Kulakoff, Wielandt-Kegel and so on.

Only finite groups are considered. We use the standard notation. $\pi(n)$ is the set of prime divisors of a natural number n and $\pi(G)=\pi(|G|)$, where $|G|$ is the order of a group $G ; p$ is a prime. A group G is said to be p-nilpotent if it has a normal p-complement. Given $H<G$, let $H_{G}=\bigcap_{x \in G} H^{x}$ and H^{G} be the core and normal closure of H in G, respectively. If M is a subset of G, then $\mathrm{N}_{G}(M)$ and $\mathrm{C}_{G}(M)$ is the normalizer and centralizer of M in G. Let $\mathrm{s}_{k}(G)\left(\mathrm{c}_{k}(G)\right)$ denote the number of subgroups (cyclic subgroups) of order p^{k} in G. Next, $\mathrm{E}_{p^{n}}$ is the elementary abelian group of order $p^{n} ; \mathrm{C}_{m}$ is the cyclic group of order $m ; \mathrm{D}_{2^{n}}, \mathrm{Q}_{2^{n}}$ and $\mathrm{SD}_{2^{n}}$ are dihedral, generalized quaternion and semidihedral group of order 2^{n}, respectively. If G is a p-group, then $\Omega_{n}(G)=\left\langle x \in G \mid o(x) \leq p^{n}\right\rangle, \mho_{1}(G)=\left\langle x^{p^{n}} \mid x \in G\right\rangle$, where $o(x)$ is the order of $x \in G$. Next, $G^{\prime}, \mathrm{Z}(G), \Phi(G)$ is the derived subgroup, the center and the Frattini subgroup of $G ; \operatorname{Syl}_{p}(G)$ and $\operatorname{Hall}_{\pi}(G)$ are the sets of p-Sylow and π-Hall subgroups of G. We denote $\mathrm{O}_{\pi}(G)$ the maximal normal π-subgroup of G. Let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G. If $H<G$

[^0]and $\mu \in \operatorname{Irr}(H)$, then μ^{G} is the induced character and χ_{H} is the restriction of a character χ of G to H.

Almost all prerequisites are collected in the following
Lemma J.
(a) (O. Schmidt; see [Hup, Satz 5.2]) If G is a minimal nonnilpotent group, then $G=P Q$, where $P \in \operatorname{Syl}_{p}(G)$ is cyclic and $Q=G^{\prime} \in \operatorname{Syl}_{q}(G)$ is either elementary abelian or special. If $q>2$, then $\exp (Q)=q$. If Q is abelian, then $Q \cap \mathrm{Z}(G)=\{1\}$ and $\exp (Q)=q$. If Q is nonabelian, then $Q \cap \mathrm{Z}(G)=\mathrm{Z}(Q)$.
(b) (Frobenius; see [Isa1, Theorem 9.18] + (a)) If G is not p-nilpotent, it has a minimal nonnilpotent subgroup S such that $S^{\prime} \in \operatorname{Syl}_{p}(S)$.
(c) (Burnside; see [Isa1, Theorem 9.13]) If $P \in \operatorname{Syl}_{p}(G)$ is contained in $\mathrm{Z}\left(\mathrm{N}_{G}(P)\right)$, then G is p-nilpotent.
(d) (Tuan; see [Isa2, Lemma 12.12]) If a nonabelian p-group G possesses an abelian subgroup of index p, then $|G|=p\left|G^{\prime}\right||\mathrm{Z}(G)|$.
(e) (Gaschütz; see [Hup, Hauptsatz 1.17.4(a)]) If P, an abelian normal p-subgroup of G, is complemented in a Sylow p-subgroup of G, then P is complemented in G.
(f) (see [Suz, Theorem 4.4.1]) If a nonabelian p-group G has a cyclic subgroup of index p, then either $G=\left\langle a, b \mid a^{p^{n}}=b^{p}=1, a^{b}=a^{1+p^{n-1}}\right\rangle$ with $n>2$ for $p=2$, or $p=2$ and G is dihedral, semidihedral or generalized quaternion.
(g) (see [Isa2, Lemma 2.27]) If a group G has a faithful irreducible character, then its center is cyclic.
(h) (Ito; see [Isa2, Theorem 6.15]) The degree of an irreducible character of a group G divides the index of its abelian normal subgroup.
(i) (Chunikhin) If $G=A B, A_{0}$ is normal in A and $A_{0} \leq B$, then $A_{0} \leq$ B_{G}.
(j) [Ber5, Proposition 19] If B is a nonabelian subgroup of order p^{3} of a p-group G such that $C_{G}(B)<B$, then G is of maximal class. In particular (Suzuki), if G has a subgroup U of order p^{2} such that $C_{G}(U)=U$, then U is of maximal class.
(k) (Blackburn; see [Ber6, Theorem 9.6] If $H \leq G$, where G is a p-group of maximal class, then $\left|H / \mho_{1}(H)\right| \leq p^{p}$.

1. Theorems of Sylow, Hall, Carter and so on

We prove Sylow's Theorem in the following form:
Theorem 1.1. All maximal p-subgroups of a group G are conjugate and their number is $\equiv 1(\bmod p)$ so, if P is a maximal p-subgroup of G, then p does not divide $|G: P|$.

Lemma 1.2 (Cauchy). If $p \in \pi(G)$, then G has a subgroup of order p. In particular, a maximal p-subgroup of G is $>\{1\}$.

Proof. Suppose that G is a counterexample of minimal order. Then G has no proper subgroup C of order divisible by p and $|G| \neq p$. If G has only one maximal subgroup, say M, it is cyclic. Indeed, if $x \in G-M$, then $\langle x\rangle$ is not contained in M so $\langle x\rangle=G$. Then $\left\langle x^{o(x) / p}\right\rangle<G$ is of order p, a contradiction. If G is abelian and $A \neq B$ are maximal subgroups of G, then $G=A B$ so $|G|=\frac{|A||B|}{|A \cap B|}$, and p does not divide $|G|$, a contradiction. If G is nonabelian, then $|G|=|\mathrm{Z}(G)|+\sum_{i=1}^{k} h_{i}$, where h_{1}, \ldots, h_{k} are sizes of noncentral G-classes. Since h_{i} 's are indices of proper subgroups in G, p divides h_{i} for all i. Then p divides $|\mathrm{Z}(G)|$, a final contradiction.

The set $\mathbf{S}=\left\{A_{i}\right\}_{i=1}^{n}$ of subgroups of a group G is said to be invariant if $A_{i}^{x} \in \mathbf{S}$ for all $i \leq n$ and $x \in G$. All members of the set \mathbf{S} are conjugate if and only if it has no nonempty proper invariant subset.

Lemma 1.3. Let $\mathbf{S} \neq \emptyset$ be an invariant set of subgroups of a group G. Suppose that whenever $\mathbf{N} \neq \emptyset$ is an invariant subset of \mathbf{S}, then $|\mathbf{N}| \equiv 1$ $(\bmod p)$. Then all members of the set \mathbf{S} are conjugate in G.

Proof. Assume that \mathbf{S} has a proper invariant subset $\mathbf{N} \neq \emptyset$. Then $\mathbf{S}-\mathbf{N} \neq \emptyset$ is invariant so $|\mathbf{S}|=|\mathbf{N}|+|\mathbf{S}-\mathbf{N}| \equiv 1+1 \not \equiv 1(\bmod p)$, a contradiction. Thus, all members of \mathbf{S} are conjugate in G.

Let P be a maximal p-subgroup of a group G and P_{1} a p-subgroup of G. If $P P_{1} \leq G$, then $P P_{1}$ is a p-subgroup so $P_{1} \leq P$. If P_{1} is also maximal p-subgroup of G, then $\mathrm{N}_{P}\left(P_{1}\right)=P \cap P_{1}$.

Proof of Theorem 1.1. One may assume that p divides $|G|$. Let $\mathbf{S}_{0}=$ $\left\{P=P_{0}, P_{1}, \ldots, P_{r}\right\}$ be an invariant set of maximal p-subgroups of G; then $P_{i}>\{1\}$ for all i (Lemma 1.2). Let $r>0$ and let P act on the set $\mathbf{S}_{0}-\{P\}$ via conjugation. Then the size of every P-orbit on the set $\mathbf{S}_{0}-\{P\}$ is a power of p greater than 1 since the stabilizer of a 'point' P_{i} equals $P \cap P_{i}<P$. Thus, p divides r so $\left|\mathbf{S}_{0}\right|=r+1 \equiv 1(\bmod p)$, and the first assertion follows (Lemma 1.3). Then p does not divide $\left|G: \mathrm{N}_{G}(P)\right|$. Since P is a maximal p-subgroup of $\mathrm{N}_{G}(P)=N$, the prime p does not divide $|N / P|$ (Lemma 1.2) whence p does not divide $|G: N||N: P|=|G: P|$.

Remark 1.1 (Frobenius). Let P be a p-subgroup of a group G and let $\mathbf{M}=\left\{P_{1}, \ldots, P_{r}\right\} \subset \operatorname{Syl}_{p}(G)-\{P\}$ be P-invariant and P is not contained in P_{i} for all i. Then $|\mathbf{M}| \equiv 0(\bmod p)$ (let us P act on \mathbf{M} via conjugation) so, by Theorem 1.1, the number of Sylow p-subgroups of G, containing P, is $\equiv 1$ $(\bmod p)$. Similarly, if $P \in \operatorname{Syl}_{p}(G)$, then the number of p-subgroups of G of given order that are not contained in P, is divisible by p (P acts on the set of the above p-subgroups!).

Remark 1.2 (Frobenius). Let $\mathbf{M}=\left\{M_{1}, \ldots, M_{s}\right\}$ be the set of all subgroups of order p^{k} in a group G of order $p^{m}, k<m$. We claim that $|\mathbf{M}| \equiv 1$ $(\bmod p)$. Let $\Gamma_{1}=\left\{G_{1}, \ldots, G_{r}\right\}$ be the set of all maximal subgroups of G. Since the number of subgroups of index p in the elementary abelian p-group $G / \Phi(G)$ of order, say p^{d}, equals $\frac{p^{d}-1}{p-1}=1+p+\cdots+p^{d-1} \equiv 1(\bmod p)$, we get $\left|\Gamma_{1}\right| \equiv 1(\bmod p)$, so we may assume that $k<m-1$. Let α_{i} be the number of members of the set \mathbf{M} contained in G_{i} and β_{j} be the number of members of the set Γ_{1} containing M_{j}, all i, j. Then, by double counting,

$$
\alpha_{1}+\cdots+\alpha_{r}=\beta_{1}+\cdots+\beta_{s}
$$

By the above, $r \equiv 1(\bmod p)$. By induction, $\alpha_{i} \equiv 1(\bmod p)$, all i. Next, β_{j} is the number of maximal subgroups in $G / M_{j} \Phi(G)$ so $\beta_{j} \equiv 1(\bmod p)$, all j. By the displayed formula, $|\mathbf{M}|=s \equiv r \equiv 1(\bmod p)$.

Remark 1.3 (Frobenius; see also [Bur, Theorem 9.II]). It follows from Remarks 1.1 and 1.2 that the number of p-subgroups of order p^{k} in a group G of order $p^{k} m$ is $\equiv 1(\bmod p)$.

Remark 1.4. Suppose that $\mathbf{S}_{1}, \mathbf{S}_{2} \subset \operatorname{Syl}_{p}(G)$ are nonempty and disjoint. Let $P_{i} \in \mathbf{S}_{i}$ be such that the set \mathbf{S}_{i} is P_{i}-invariant, $i=1,2$; then $\left|\mathbf{S}_{i}\right| \equiv 1$ $(\bmod p), i=1,2\left(\right.$ see the proof of Theorem 1.1). It follows that \mathbf{S}_{2} is not P_{1}-invariant (otherwise, considering the action of P_{1} on \mathbf{S}_{2} via conjugation, we get $\left|\mathbf{S}_{2}\right| \equiv 0(\bmod p)$ since $\left.P_{1} \notin \mathbf{S}_{2}\right)$.

Remark 1.5 (Burnside). Let G be a non p-closed group (i.e., $\mathrm{O}_{p}(G) \notin$ $\left.\operatorname{Syl}_{p}(G)\right)$ and $P \in \operatorname{Syl}_{p}(G)$. Suppose that $Q \in \operatorname{Syl}_{p}(G)-\{P\}$ is such that the intersection $D=P \cap Q$ is a maximal, by inclusion, intersection of Sylow p subgroups of G. We claim that $N=\mathrm{N}_{G}(D)$ is not p-closed. Assume that this is false. Then $P_{1} \in \operatorname{Syl}_{p}(N)$ is normal in N. It follows from properties of p groups that $P \cap P_{1}>D$ and $Q \cap P_{1}>D$ so P_{1} is not contained in P. Therefore, if $P_{1} \leq U \in \operatorname{Syl}_{p}(G)$, then $U \neq P$. However, $P \cap Q=D<P \cap P_{1} \leq P \cap U$, a contradiction.

The following assertion is obvious. If R is an abelian minimal normal subgroup of G and $G=H R$, where $H<G$, then H is maximal in G and $H \cap R=\{1\}$.

Theorem 1.4 (P. Hall [Hal1]). If π is a set of primes, then all maximal π-subgroups of a solvable group G are conjugate.

By Theorems 1.1 and 1.4, a maximal π-subgroup of a solvable group G is its π-Hall subgroup, and this gives the standard form of Hall's Theorem.

The proofs of Theorems 1.4, 1.6 and 1.7 are based on the following
Lemma 1.5 ([Ore]). If maximal subgroups F and H of a solvable group $G>\{1\}$ have equal cores, then they are conjugate.

Proof. One may assume that $F_{G}=\{1\}$; then G is not nilpotent. Let R be a minimal normal, say p-subgroup, of G; then $R F=G=R H$. Let K / R be a minimal normal, say q-subgroup, of $G / R, q$ is a prime. In that case, K is nonnilpotent (otherwise, $\mathrm{N}_{G}(K \cap F)>F$ so $\{1\}<K \cap F \leq F_{G}=\{1\}$) hence $q \neq p$. Then $F \cap K$ and $H \cap K$ are nonnormal Sylow q-subgroups of K hence they are conjugate (Theorem 1.1). It follows that then $\mathrm{N}_{G}(F \cap K)=F$ and $\mathrm{N}_{G}(H \cap K)=H$ are also conjugate.

Proof of Theorem 1.4. ${ }^{1}$ We use induction on $|G|$. Let F and H be maximal π-subgroups of G and R a minimal normal, say p-subgroup, of G. If $p \in \pi$, then $R \leq F$ and $R \leq H$, by the product formula and $F / R, H / R$ are maximal π-subgroups of G / R so they are conjugate, by induction; then F and R are conjugate. Now assume that $\mathrm{O}_{\pi}(G)=\{1\}$; then $p \in \pi^{\prime}$. Let $F_{1} / R, H_{1} / R$ be maximal π-subgroups of G / R containing $F R / R, H R / R$, respectively; then $F_{1}^{x}=H_{1}$ for some $x \in G$ and $F_{1} / R, H_{1} / R \in \operatorname{Hall}_{\pi}(G / R)$, by induction. Assume that $F_{1}<G$. Then, by induction, $F \in \operatorname{Hall}_{\pi}\left(F_{1}\right)$ as a maximal π-subgroup of F_{1} so $F_{1}=F \cdot R$. Similarly, $H_{1}=H \cdot R$. Therefore, $F^{x} \in \operatorname{Hall}_{\pi}\left(H_{1}\right)$. Then $H=\left(F^{x}\right)^{y}=F^{x y}$ for some $y \in H_{1}$, by induction. Now let $F_{1}=G$; then G / R is a π-group. Let K / R be a minimal normal, say q-subgroup, of G / R; then $q \in \pi$. Let $Q \in \operatorname{Syl}_{q}(K)$; then $K=Q R$. By Frattini argument, $G=\mathrm{N}_{G}(Q) K=\mathrm{N}_{G}(Q) Q R=\mathrm{N}_{G}(Q) R$ so $\mathrm{N}_{G}(Q) \in \operatorname{Hall}_{\pi}(G)$ is maximal in G. Assume that $F R<G$. Then $\mathrm{N}_{G}(Q) \cap F R$, as a π-Hall subgroup of $F R$ (product formula!), is conjugate with F, contrary to the choice of F. Thus, $F R=H R=G$ and $F_{G}=\{1\}=H_{G}$, by assumption. Then F and H are conjugate maximal subgroups of G (Lemma 1.5).

Let us prove, for completeness, by induction on $|G|$, that a group G is solvable if it has a p^{\prime}-Hall subgroup for all $p \in \pi(G)$ (Hall-Chunikhin; see [Hal1,Chu]). Let $G_{p^{\prime}} \in \operatorname{Hall}_{p^{\prime}}(G)$, where $p^{\prime}=\pi(G)-\{p\}$, and let $q \in p^{\prime}$. If $G_{q^{\prime}} \in \operatorname{Hall}_{q^{\prime}}(G)$, then $G_{p^{\prime}} \cap G_{q^{\prime}} \in \operatorname{Hall}_{q^{\prime}}\left(G_{p^{\prime}}\right)$, by the product formula, so $G_{p^{\prime}}$ is solvable, by induction. Let R be a minimal normal, say r-subgroup of $G_{p^{\prime}}, r \in p^{\prime}$. In view of Burnside's two-prime theorem, we may assume that $|\pi(G)|>2$, so there exists $s \in \pi(G)-\{p, r\}$; let $G_{s^{\prime}} \in \operatorname{Hall}_{s^{\prime}}(G)$; then $G=G_{p^{\prime}} G_{s^{\prime}}$. By Theorem 1.1, one may assume that $R<G_{s^{\prime}}$; then $R \leq\left(G_{s^{\prime}}\right)_{G}$ (Lemma J(i)). Next, $\left(G_{s^{\prime}}\right)_{G}$ is solvable as a subgroup of $G_{s^{\prime}}$. Thus, G has a minimal normal, say r-subgroup, which we denote by R again. If $R \in \operatorname{Syl}_{r}(G)$, then $G / R \cong G_{r^{\prime}}$ is solvable so is G. If $R \notin \operatorname{Syl}_{r}(G)$, then $G_{r^{\prime}} R / R \in \operatorname{Hall}_{r^{\prime}}(G / R)$. Let $q \in \pi(G)-\{r\} ;$ then $R<G_{q^{\prime}}$ so $G_{q^{\prime}} / R \in$ $\operatorname{Hall}_{q^{\prime}}(G / R)$. In that case, by induction, G / R is solvable, and the proof is complete.

A subgroup K is said to be a Carter subgroup (= C-subgroup) of G if it is nilpotent and coincides with its normalizer in G.

[^1]Theorem 1.6 (Carter [Car]). A solvable group G possesses a C-subgroup and all C-subgroups of G are conjugate.

Proof. We use induction on $|G|$. One may assume that G is not nilpotent. Let R be a minimal normal, say p-subgroup, of G.

Existence. By induction, G / R contains a C-subgroup S / R so $\mathrm{N}_{G}(S)=S$. Let T be a p^{\prime}-Hall subgroup of S (Theorem 1.4); then $T R$ is normal in S and $S=T P$, where $P \in \operatorname{Syl}_{p}(S)$. Set $K=\mathrm{N}_{S}(T)$; then $K=T \times \mathrm{N}_{P}(T)$ is nilpotent and $K R=S$ (Theorem 1.4 and the Frattini argument). If $y \in$ $\mathrm{N}_{S}(K)$, then $y \in \mathrm{~N}_{S}(T)=K$ since T is characteristic in K, and so $\mathrm{N}_{S}(K)=$ K. If $x \in \mathrm{~N}_{G}(K)$, then $x \in \mathrm{~N}_{G}(K R)=\mathrm{N}_{G}(S)=S$ so $x \in \mathrm{~N}_{S}(K)=K$, and K is a C-subgroup of G.

Conjugacy. Let K, L be C-subgroups of G; then $K R / R, L R / R$ are Csubgroups in G / R so, by induction, $L R=(K R)^{x}$ for some $x \in G$, and we have $K^{x} \leq L R$. One may assume that R is not contained in K; then $R K$ is nonnilpotent so R is not contained in L. If $L R<G$, then $\left(K^{x}\right)^{y}=L$ for $y \in L R$, by induction. Now let $G=L R$; then $G=K R$ so G / R is nilpotent, and this is true for each choice of R. Thus, R is the unique minimal normal subgroup of G so K and L are maximal in G and $K_{G}=L_{G}$; then they are conjugate in G (Lemma 1.5).

Theorem 1.7. Let a nonnilpotent group $G=N_{1} \ldots N_{k}$, where N_{1}, \ldots, N_{k} are pairwise permutable and nilpotent. Then there exists $i \leq k$ such that $N_{i}^{G}<G$.

Lemma 1.8 ([Ore]). If $G=A B$, where $A, B<G$, then A and B are not conjugate.

Proof. Assume that $B=A^{g}$ for $g \in G$. Then $g=a b, a \in A$ and $b \in B$, so $B=A^{a b}=A^{b}$ and $A=B^{b^{-1}}=B, G=A$, a contradiction.

Proof of Theorem 1.7. ${ }^{2}$ Let G be a minimal counterexample. By [Keg], G is solvable. Let $R<G$ be a minimal normal, say p-subgroup; then $G / R=\left(N_{1} R / R\right) \ldots\left(N_{k} R / R\right)$, where all $N_{i} R / R$ are nilpotent. If G / R is not nilpotent, we get $\left(N_{i} R\right)^{G}<G$ for some i, by induction. Now let G / R be nilpotent. Then, by hypothesis, we get, for all $i, N_{i} R=G$ so N_{i} is maximal in G and R is the unique minimal normal subgroup of G, whence $\left(N_{i}\right)_{G}=\{1\}$ for all i; in that case, N_{1}, \ldots, N_{k} are conjugate in G (Lemma 1.5). Then $N_{r} N_{s}=G$ for some $r, s \leq k$, contrary to Lemma 1.8.

SUPPLEMENT 1 TO LEMMA 1.5. If for arbitrary maximal subgroups F and H of a group G with equal cores, we have $\pi(|G: F|)=\pi(|G: H|)$, then G is solvable.

[^2]Proof. Let G be a minimal counterexample. Since the hypothesis inherited by epimorphic images, G has only one minimal normal subgroup R, and R is nonsolvable. Let $p \in \pi(R)$ and $P \in \operatorname{Syl}_{p}(R)$. Let $\mathrm{N}_{G}(P) \leq F<G$, where F is maximal in G. By Frattini's Lemma, $G=R F$ so $|G: F|=|R:(F \cap R)|$ and $p \notin \pi(|G: F|)$. Let $q \in \pi\left(\mid R:(F \cap R \mid)\right.$. Take $Q \in \operatorname{Syl}_{q}(R)$ and let $\mathrm{N}_{G}(Q) \leq H<G$, where H is maximal in G. Then $F R=G=H R$ so $F_{G}=\{1\}=H_{G}$. However, $q \in \pi(|G: F|)$ and $q \notin \pi(|G: H|)$, a contradiction.

A group G is said to be p-solvable, if every its composition factor is either p - or p^{\prime}-number.

Supplement 2 to Lemma 1.5. Let $G>\{1\}$ be a p-solvable group with minimal normal p-subgroup R. Suppose that G possesses a maximal subgroup H with $H_{G}=\{1\}$. Then all maximal subgroups of G with core $\{1\}$ are conjugate.

Proof. By hypothesis, $|\pi(G)|>1$. Let F be another maximal subgroup of G with $F_{G}=\{1\}$; then $G=F R=H R$ and $F \cap R=\{1\}=H \cap R$. If $R \in \operatorname{Syl}_{p}(G)$, we are done (Schur-Zassenhaus). Now let $p \in \pi(G / R)$; then G / R is not simple: $p \in \pi(G / R)$. Let K / R be a minimal normal subgroup of G / R. Then, as in the proof of Lemma $1.5,|\pi(K)|>1$ so, taking into account that G / R is p-solvable, we conclude that K / R is a p^{\prime}-subgroup. In that case, $F \cap K$ and $H \cap K$ as p^{\prime}-Hall subgroups of K, are conjugate (Schur-Zassenhaus) so $H=\mathrm{N}_{G}(F \cap K)$ and $F=\mathrm{N}_{G}(H \cap K)$ are also conjugate.

Supplement 3 to Lemma 1.5 [Gas]. Let M be a minimal normal subgroup of a solvable group G. Suppose that K^{1} and K^{2} are complements of M in G such that $K^{1} \cap \mathrm{C}_{G}(M)=K^{2} \cap \mathrm{C}_{G}(M)$. Then K^{1} and K^{2} are conjugate in G.

Proof. ${ }^{3}$ It follows from $K^{i} M=G$, that K^{i} maximal in $G, i=1,2$. We have $K^{i} \cap M=\{1\}$ so $\left(K^{i}\right)_{G} \leq \mathrm{C}_{G}(M), i=1,2$. By the modular law, $\mathrm{C}_{G}(M)=M \times \mathrm{C}_{K^{i}}(M)$ so $\mathrm{C}_{K^{i}}(M)=\left(K^{i}\right)_{G}, i=1,2$. Then, by hypothesis, $\left(K^{1}\right)_{G}=\left(K^{2}\right)_{G}$ so K^{1} and K^{2} are conjugate in G, by Lemma 1.5.

2. Groups with a cyclic Sylow p-Subgroup

Here we prove two results on groups with a cyclic Sylow p-subgroup.
Theorem 2.1. ${ }^{4}$ Let $P \in \operatorname{Syl}_{p}(G)$ be cyclic. If H is normal in G and p divides $(|H|,|G: H|)$, then H is p-nilpotent and G is p-solvable ${ }^{5}$.

Suppose that $P \in \operatorname{Syl}_{p}(G)$ is cyclic.

[^3]Remark 2.1. Suppose, in addition, that p divides $|\mathrm{Z}(G)|$. Set $N=$ $\mathrm{N}_{G}(P)$. Since N has no minimal nonnilpotent subgroup S with $S^{\prime} \in \operatorname{Syl}_{p}(N)$ (Lemma $\mathrm{J}(\mathrm{a}, \mathrm{b})$), it is p-nilpotent so $P \leq \mathrm{Z}(N)$. In that case, G is p-nilpotent (Lemma J(c)).

Remark 2.2. Suppose that G, p, P and H are as in Theorem 2.1 and that $P_{1}=P \cap H$ is normal in H so in G. Let $T \in \operatorname{Hall}_{p^{\prime}}(H)$ (Schur-Zassenhaus); then $H=P_{1} T, G=H \mathrm{~N}_{G}(T)=P_{1} \mathrm{~N}_{G}(T)$ (Schur-Zassenhaus and Frattini argument). Let $P_{2} \in \operatorname{Syl}_{p}\left(\mathrm{~N}_{G}(T)\right) ;$ then $P_{1} P_{2} \in \operatorname{Syl}_{p}(G)$ is cyclic and $P_{2}>$ $\{1\}$ so $P_{1} \cap P_{2}>\{1\}$. We have $\mathrm{C}_{H}\left(P_{1} \cap P_{2}\right) \geq P_{1} T=H$ so H is p-nilpotent, by Remark 2.1.

Remark 2.3. If $\{1\}<H<G$ and $R \leq \Phi(H)$ is normal in G, then $R \leq \Phi(G)$. Indeed, assuming that this is false, we get $G=R M$ for some maximal subgroup M of G. Then, by the modular law, $H=R(H \cap M)$ so $H=H \cap M$. In that case, $R<H \leq M$, a contradiction.

REmark 2.4. If H is normal in G and $G=A H$, where A is as small as possible, then $A \cap H \leq \Phi(A)$. Indeed, if this is false, then $A=B(A \cap H)$, where $B<A$ is maximal. Then $G=A H=B(A \cap H) H=B H$, contrary to the choice of A.

Proof of Theorem 2.1. By the product formula, $P_{1}=P \cap H \in$ $\operatorname{Syl}_{p}(H)$. Set $N=\mathrm{N}_{G}\left(P_{1}\right)$; then $P \leq N$. Set $N_{1}=\mathrm{N}_{H}\left(P_{1}\right)=N \cap H$. Then, by Remark 2.2 applied to the pair $N_{1}<N$, we get $N_{1}=P_{1} \times T$, where $T \in \operatorname{Hall}_{p^{\prime}}\left(N_{1}\right)$, and so H is p-nilpotent (Lemma $\left.\mathrm{J}(\mathrm{c})\right)$. By Frattini's Lemma, $G=H N$ so $G / H \cong N /(N \cap H)=N / N_{1}$; therefore, it remains to prove that N / N_{1} is p-solvable. To this end, we may assume that $N=G$; then P_{1} is normal in G. In that case, $G / \mathrm{C}_{G}\left(P_{1}\right)$ as a p^{\prime}-subgroup of $\operatorname{Aut}\left(P_{1}\right)$, is cyclic of order dividing $p-1$. By Remark 2.1, $\mathrm{C}_{G}\left(P_{1}\right)$ is p-nilpotent, and we conclude that G is p-solvable ${ }^{6}$.

Theorem 2.2 ([Hal3, Theorem 4.61]). If $P \in \operatorname{Syl}_{p}(G)$ is cyclic of order p^{m} and $k \leq m$, then $\mathrm{c}_{k}(G) \equiv 1\left(\bmod p^{m-k+1}\right)$.

Proof. Let $\mathbf{C}=\left\{Z_{1}, \ldots, Z_{r}\right\}$ be the set of subgroups of order p^{k} in G not contained in P. Let P act on \mathbf{C} via conjugation. The P-stabilizer of Z_{i} equals $P \cap Z_{i}$ which is of order p^{k-1} at most. It follows that $r=|\mathbf{C}| \equiv 0$ $\left(\bmod p^{m-(k-1)}\right)$.

3. Groups with a normal Hall subgroup

R. Baer [Bae] has proved that if $P \in \operatorname{Syl}_{p}(G)$ is normal in G, then $P \cap$ $\Phi(G)=\Phi(P)$.

[^4]Theorem 3.1. If H is a normal Hall subgroup of a group G, then $H \cap$ $\Phi(G)=\Phi(H)$.

Proof. We have $\Phi(H) \leq H \cap \Phi(G)$, by Remark 2.3. To prove the reverse inclusion, it suffices, assuming $\Phi(H)=\{1\}$, to show that $D=H \cap \Phi(G)=\{1\}$. Assume, however, that $D>\{1\}$. Then $D=P \times L$ for some $\{1\}<P \in$ $\operatorname{Syl}_{p}(D)$. Considering the pair $D / \Phi(P) L<G / \Phi(P) L$, one may assume that $\Phi(P) L=\{1\}$; then $D=P$ is elementary abelian normal subgroup of G. Let $T<H$ be minimal such that $P T=H$. Then $P \cap T \leq \Phi(T)$, by Remark 2.4, and $\mathrm{N}_{H}(P \cap T) \geq P T=H$ so $P \cap T \leq \Phi(H)=\{1\}$, by Remark 2.3. If $P \leq P_{0} \in \operatorname{Syl}_{p}(H)\left(=\operatorname{Syl}_{p}(G)\right)$, then $P_{0}=P\left(P_{0} \cap T\right)$, by the modular law, so P is complemented in P_{0}. Then, by Lemma $\mathrm{J}(\mathrm{e}), P$ is complemented in G so P is not contained in $\Phi(G)$, a contradiction.

4. Subgroup generated by some minimal nonabelian subgroups

Let $p \in \pi(G)$ and let $\mathbf{A}_{p}(G)$ be the set of all minimal nonabelian subgroups A of G such that A^{\prime} is a p-subgroup (in that case, A is either a p-group or minimal nonnilpotent). Set $\mathrm{L}_{p}(G)=\left\langle H \mid H \in \mathbf{A}_{p}(G)\right\rangle$ and $\mathrm{L}(G)=\prod_{p \in \pi(G)} \mathrm{L}_{p}(G)$. It is known [Ber1] that $\mathrm{L}(G)=G$ if G is a nonabelian p-group and $G^{\prime} \leq \mathrm{L}(G)$ for arbitrary G.

TheOrem 4.1. Given a group G, the quotient group $G / L_{p}(G)$ is p nilpotent and has an abelian Sylow p-subgroup.

Proof. Let $P \in \operatorname{Syl}_{p}(G)$. We may assume that P is not contained in $\mathrm{L}_{p}(G)$; then P is abelian. Assume that $G / \mathrm{L}_{p}(G)$ is not p-nilpotent. Then $G / \mathrm{L}_{p}(G)$ has a minimal nonnilpotent subgroup $H / \mathrm{L}_{p}(G)$ such that $\left(H / \mathrm{L}_{p}(G)\right)^{\prime}$ is a p-subgroup (Lemma $\left.\mathrm{J}(\mathrm{b})\right)$. Let $T \leq H$ be minimal such that $T \mathrm{~L}_{p}(G)=H$; then $T \cap \mathrm{~L}_{p}(G) \leq \Phi(T)$, by Remark 2.4, and $T /\left(T \cap \mathrm{~L}_{p}(G)\right) \cong H / \mathrm{L}_{p}(G)$. Using properties of Frattini subgroups and Lemma J(a), we get $T=Q \cdot P_{0}$, where $P_{0}=T^{\prime} \in \operatorname{Syl}_{p}(T), Q \in \operatorname{Syl}_{q}(T)$ is cyclic and $|Q:(Q \cap \mathrm{Z}(T))|=q$. Since P_{0} is abelian and indices of minimal nonabelian subgroups in T are not multiples of q and Sylow q-subgroups generate T, we get $T=\mathrm{L}_{p}(T) \leq \mathrm{L}_{p}(G)$, a contradiction.

5. Simplicity of $\mathrm{A}_{n}, n>4$

Here we prove the following classical.
TheOrem 5.1 (Galois). The alternating group $G=\mathrm{A}_{n}, n>4$, is simple.
If $n>4$ and a permutation $x \in \mathrm{~S}_{n}^{\#}$ is of cycle type $\left(1^{a_{1}}, 2^{a_{2}}, \ldots, n^{a_{n}}\right)$, then $\left|\mathrm{C}_{\mathrm{S}_{n}}(x)\right|=\prod_{i=1}^{n}\left(a_{i}\right)!i^{a_{i}} \leq 2(n-2)$! with equality if and only if x is a transposition.

Let G be a 2-transitive permutation group of degree $n, n>2$, and let H be a stabilizer of a point in G; then $|G: H|=n$. Assume that $H<M<G$.

If M is transitive, we get $|M: H|=n$ so $M=G$, a contradiction. Then M has an orbit of size $n-1$ since H has so M is a stabilizer of a point in G, a final contradiction. Thus, H is maximal in G so G is primitive. We have $H_{G}=\{1\}$ since H_{G} fixes all points.

Proof of Theorem 5.1. We proceed by induction on n. If $n=5, G$ is simple since, by Lagrange, a nontrivial subgroup of G is not a union of G-classes (indeed, sizes of G-classes are $1,12,12,15,20$). Let $n>5$ and let H be the stabilizer of a point; then $H \cong \mathrm{~A}_{n-1}$ is maximal and nonnormal in G and nonabelian simple, by induction. Then H has no proper subgroup of index $<n-1$ since H is not isomorphic with a subgroup of A_{n-2}. Assume that G has a nontrivial normal subgroup N; then $|N|=n$ since $N H=G$ and $N \cap H=\{1\}$ (H is simple!). Let H act on the set $N^{\#}$ via conjugation. The H-stabilizer $C=\mathrm{C}_{H}(x)$ of a 'point' $x \in N^{\#}$ has index $\leq\left|N^{\#}\right|=n-1$ in H. Assume that $|H: C|<n-1$. Then, by what has just been said, H centralizes x so $\left|\mathrm{C}_{G}(x)\right| \geq|H| \cdot o(x) \geq 2 \cdot \frac{1}{2}(n-1)!>2(n-2)$!, a contradiction. Thus, $|H: C|=n-1$ so $|C|=\frac{1}{2}(n-2)$!. Then all elements of $N^{\#}$ are conjugate under H so N is an elementary abelian p-subgroup for some prime p. If $x \in N^{\#}$, then. since $n \geq 6$, we get $\left|C_{G}(x)\right| \geq|N| \cdot|C|=n \cdot \frac{1}{2}(n-2)!>2(n-2)$!, a final contradiction.

Let us prove Theorem 5.1 independently of the paragraph preceding its proof. Beginning with the place where N is an elementary abelian p-group of order, say $p^{r}(=n)$, we get $\mathrm{C}_{G}(N)=N$ since H is not normal in G. Then H is isomorphic to a subgroup of the group $\operatorname{Aut}(N) \cong \mathrm{GL}(r, p)$, so $|H|$ divides the number
$\left(p^{r}-1\right)\left(p^{r}-p\right) \ldots\left(p^{r}-p^{r-1}\right)=(n-1)(n-p) \ldots\left(n-p^{r-1}\right)<\frac{1}{2}(n-1)!=|H|$, a contradiction since $r>1$ and $n>4$.

Here is the third proof of Theorem 5.1. Let N be a group of order $n>4$. We claim that $|\operatorname{Aut}(N)|<\frac{1}{2}(n-1)$!. Indeed, let n_{1}, \ldots, n_{r} be the sizes of Aut (N)-orbits on $N^{\#}$; then $\operatorname{Aut}(N)$ is isomorphic to a subgroup of $\mathrm{S}_{n_{1}} \times \cdots \times$ $\mathrm{S}_{n_{r}}$, and the result follows if $r>1$. If $r=1$, all elements of $N^{\#}$ are conjugate under $\operatorname{Aut}(N)$, and we get a contradiction as in the previous paragraph.

Suppose that G, a group of order $n!, n>4$, has a subgroup H of index $\leq n+1$; then G is not simple. Assume that this is false. Then $G \leq \mathrm{A}_{n+1}$ since G is simple. In that case, $\left|\mathrm{A}_{n+1}: G\right| \leq \frac{1}{2}(n+1)$, a contradiction since, by Theorem 5.1, A_{n+1} has no proper subgroup of index $<n+1$. (Compare with [Isa1, Example 6.14].)

6. Theorems of Taussky and Kulakoff

The following two theorems have many applications in p-group theory.

Theorem 6.1 (Taussky). Let G be a nonabelian 2-group. If $\left|G: G^{\prime}\right|=4$, then G contains a cyclic subgroup of index 2^{7}.

Proof. We use induction on m, where $|G|=2^{m}$. One may assume that $m>3$. Let $R \leq G^{\prime} \cap \mathrm{Z}(G)$ be of order 2 . Then G / R has a cyclic subgroup T / R of index 2 , by induction. Assume that T is noncyclic. Then $T=R \times Z$, where Z is cyclic of order $2^{m-2}>2$ so, since $m>3$ and G / Z_{G} is isomorphic to a subgroup of D_{8}, we get $Z_{G}>\{1\}$. We have $R \times \Omega_{1}\left(Z_{G}\right) \leq \mathrm{Z}(G)$ so $|\mathrm{Z}(G)| \geq 4$. By Lemma $\mathrm{J}(\mathrm{d}),\left|G: G^{\prime}\right|=2|\mathrm{Z}(G)| \geq 2 \cdot 4=8$, a contradiction. The last assertion now follows from Lemma $J(f)$.

Here is another proof of Theorem 6.1. Since $\Phi(G)=\mho_{1}(G)$, it suffices to prove that $\Phi(G)$ is cyclic. Assume that this is false. Then $\Phi(G)$ has a G-invariant subgroup T such that $\Phi(G) / T$ is abelian of type $(2,2)$. By [BZ, Lemma 31.8], $\Phi(G / T) \leq \mathrm{Z}(G / T)$ so G / T is minimal nonabelian. In that case, $\left|(G / T):(G / T)^{\prime}\right|=8$ (Lemma 16.1, below), a contradiction.

Next we offer the proof of Kulakoff's Theorem [Kul] independent of Hall's enumeration principle, fairly deep combinatorial assertion (Kulakoff considered only the case $p>2$; our proof also covers the case $p=2$).

Remark 6.1. Let H be normal subgroup of a p-group G. If H has no normal abelian subgroup of type (p, p), it is cyclic or a 2-group of maximal class. Indeed, let A be a maximal G-invariant abelian subgroup in H; then A is cyclic. Suppose that $A<H$ and let B / A be a G-invariant subgroup of order p in H / A. Then B has no characteristic abelian subgroup of type (p, p) so, by Lemma $\mathrm{J}(\mathrm{f}), B$ is a 2-group of maximal class. Assume that $B<H$. Then $|A|>4$ since $|H|>8$ and $\mathrm{C}_{H}(A)=A$. Let $V=\mathrm{C}_{H}\left(\Omega_{2}(A)\right)$; then $|H: V|=2$ since $\Omega_{2}(A)$ is not contained in $\mathrm{Z}(H)$. Let $B_{1} / A \leq V / A$ be G-invariant of order 2 . Then B_{1} is not of maximal class, contrary to what has just been proved.

Remark 6.2. If a p-group G is neither cyclic nor a 2 -group of maximal class, then $\mathrm{c}_{1}(G) \equiv 1+p\left(\bmod p^{2}\right)$ and $\mathrm{c}_{k}(G) \equiv 0(\bmod p)$ if $k>1$. Indeed, G has a normal abelian subgroup R of type (p, p), by Remark 6.1. If G / R is cyclic, the result follows easily since then $\Omega_{1}(G) \in\left\{\mathrm{E}_{p^{2}}, \mathrm{E}_{p^{3}}\right\}$. Now let T / R be normal in G / R such that $G / T \cong \mathrm{E}_{p^{2}}$ and let $M_{1} / T, \ldots, M_{p+1} / T$ be all subgroups of order p in G / T. It is easy to check that

$$
\begin{equation*}
\mathrm{c}_{n}(G)=\mathrm{c}_{n}\left(M_{1}\right)+\cdots+\mathrm{c}_{n}\left(M_{p+1}\right)-p \mathrm{c}_{n}(T) \tag{1}
\end{equation*}
$$

Next we use induction on $|G|$. Let $|G|=p^{4}$. If $|\mathrm{Z}(G)|=p^{2}$, then, taking $T=\mathrm{Z}(G)$ in (1), we get what we wanted. Let $|\mathrm{Z}(G)|=p$; then $\mathrm{C}_{G}(R)=M_{1}$ is the unique abelian subgroup of index p in G so, using (1), we get the desired

[^5]result. Now we let $|G|>p^{4}$. Then all M_{i} are neither cyclic nor of maximal class, and, using induction and (1), we complete the proof.

Remark 6.3. Let G be a p-group and $N \leq \Phi(G)$ be G-invariant. Then, if $\mathrm{Z}(N)$ is cyclic so is N. Assume that this is false. Then N has a G-invariant subgroup R of order p^{2}. Considering $\mathrm{C}_{G}(R)$, we see that $R \leq \mathrm{Z}(\Phi(G))$ so $R \leq \mathrm{Z}(N)$ and N is not of maximal class. Now the result follows from Remark 6.1.

Remark 6.4. (P. Hall, 1926, from unpublished dissertation). If all abelian characteristic subgroups of a nonabelian p-group G are of orders $\leq p$, then G is extraspecial. Indeed, it follows from Remark 6.3 that $|\Phi(G)|=p=|\mathrm{Z}(G)|$ so $G^{\prime}=\Phi(G)=\mathrm{Z}(G)$.

Lemma 6.2. Let G be a noncyclic group of order p^{m} and R a subgroup of order p in $\mathrm{Z}(G)$ and $k>1$. Then the number of cyclic subgroups of order p^{k} containing R, is divisible by p, unless G is a 2-group of maximal class.

Proof. Let \mathbf{C} be the set of all cyclic subgroups of order p^{k} in G, let \mathbf{C}^{+} be the set of all elements of the set \mathbf{C} that contain R and set $\mathbf{C}^{-}=\mathbf{C}-\mathbf{C}^{+}$. If $Z \in \mathbf{C}^{-}$, then $R Z=R \times Z$ has exactly p cyclic subgroups of order p^{k} not containing R. It follows that p divides $\left|\mathbf{C}^{-}\right|$. By Remark 6.2 , p divides $|\mathbf{C}|$. Then p divides $\left|\mathbf{C}^{+}\right|=|\mathbf{C}|-\left|\mathbf{C}^{-}\right|$.

Lemma 6.3. For a p-group G, $p^{3} \leq|G| \leq p^{4}$, which is neither cyclic nor a 2-group of maximal class, we have $\mathrm{s}_{2}(G) \equiv 1+p\left(\bmod p^{2}\right)$.

Proof. This is trivial (see Remark 6.2).
TheOrem 6.4. ${ }^{8}$ Let G be neither cyclic nor a 2 -group of maximal class, $|G|=p^{m}$ and $1 \leq k<m$. Then $\mathrm{s}_{k}(G) \equiv 1+p\left(\bmod p^{2}\right)$.

Proof. We use induction on m. For $k=m-1$ the result is trivial. For $k=1$ the result follows from Remark 6.2. Therefore, one may assume that $1<k<m-1$ and $m>4$ (see Lemma 6.3). In view of Lemma $J(f)$, we may assume that G has no cyclic subgroup of index p. Let \mathbf{M} be the set of all subgroups of order p^{k} in G. Let $R \leq \mathrm{Z}(G)$ be of order p. Let $\mathbf{M}^{+}=\{H \in \mathbf{M} \mid R<H\}$ and put $\mathbf{M}^{-}=\mathbf{M}-\mathbf{M}^{+}$.

Let G / R be a 2 -group of maximal class and let Z / R be a cyclic subgroup of index 2 in G / R; then Z is abelian of type $\left(2^{m-2}, 2\right)$. Replacing R by the subgroup R_{1} of order 2 in $\Phi(Z)$, we see that G / R_{1} is not of maximal class. So suppose from the start that G / R is not of maximal class. Then, by induction, $\left|\mathbf{M}^{+}\right|=\mathrm{s}_{k-1}(G / R) \equiv 1+p\left(\bmod p^{2}\right)$. It remains to prove that $\left|\mathbf{M}^{-}\right| \equiv 0\left(\bmod p^{2}\right)$ since $|\mathbf{M}|=\left|\mathbf{M}^{+}\right|+\left|\mathbf{M}^{-}\right|$. Let $H / R<G / R$ be of order p^{k}. If $R<\Phi(H)$, then H has no members of the set \mathbf{M}^{-}. Now let R is not contained in $\Phi(H)$; then $H=R \times A$ with $A \in \mathbf{M}^{-}$. If A

[^6]is cyclic, H contains exactly p members of the set \mathbf{M}^{-}. Then, by Lemma 6.2 and Remark 6.2 , converse images in G of cyclic subgroups of G / R of order p^{k} contribute in $\left|\mathbf{M}^{-}\right|$a multiple of p^{2}. Now let A be noncyclic with $\mathrm{d}(A)=d$; then the number of members of the set \mathbf{M}^{-}contained in H, equals $\left(1+p+\cdots+p^{d}\right)-\left(1+p+\cdots+p^{d-1}\right)=p^{d}>p$ (here $1+p+\cdots+p^{d}$ is the number of maximal subgroups of H and $1+p+\cdots+p^{d-1}$ is the number of maximal subgroups of H containing $R)$. Then $\left|\mathbf{M}^{-}\right| \equiv 0\left(\bmod p^{2}\right)$.

7. Characterization of p-Nilpotent groups

We need the following
Lemma 7.1. Let a p-subgroup P_{0} be normal in a group G. If, for each $x \in P_{0},\left|G: \mathrm{C}_{G}(x)\right|$ is a power of p, then $P_{0} \leq \mathrm{H}(G)$, the hypercenter of G ($=$ the last member of the upper central series of G).

Proof. Let $P_{0} \leq P \in \operatorname{Syl}_{p}(G)$ and $x \in\left(P_{0} \cap \mathrm{Z}(P)\right)^{\#}$; then $x \in \mathrm{Z}(G)$, by hypothesis. Set $X=\langle x\rangle$. Take $y X \in\left(P_{0} / X\right)^{\#}$ and set $Y=\langle y, X\rangle$. Let $r \in \pi(G)-\{p\}$ and $R \in \operatorname{Syl}_{r}\left(\mathrm{C}_{G}(y)\right)$; then $R \in \operatorname{Syl}_{r}(G)$, by hypothesis, so R centralizes $Y=\langle y, X\rangle$. It follows that $R X / X \leq \mathrm{C}_{G / X}(y X)$, so r does not divide $d=\left|(G / X): \mathrm{C}_{G / X}(y X)\right|$. Since $r \neq p$ is arbitrary, d is a power of p, and the pair $P_{0} / X \leq G / X$ satisfies the hypothesis. Now the result follows by induction on $|G|$.

Remark 7.1 (Wielandt). Let $x \in G^{\#}$ be a p-element and $\left|G: \mathrm{C}_{G}(x)\right|$ a power of p. Then $G=\mathrm{C}_{G}(x) P$, where $x \in P \in \operatorname{Syl}_{p}(G)$, and so $x \in P_{G}$ (Lemma J(i)).

Theorem 7.2 ([BK]). A group G is p-nilpotent if and only if for each p element $x \in G$ of order $\leq p^{\mu_{p}}$, where $\mu_{p}=1$ for $p>2$ and $\mu_{2}=2,\left|G: \mathrm{C}_{G}(x)\right|$ is a power of p.

Proof. By Remark 7.1, the subgroup $\mathrm{O}_{p}(G)$ contains all p-elements of orders $\leq p^{\mu_{p}}$ in G. Assume that G is not p-nilpotent. Then G has a minimal nonnilpotent subgroup S such that $S^{\prime} \in \operatorname{Syl}_{p}(S)$ (Lemma $\mathrm{J}(\mathrm{b})$). Let a be a generator of nonnormal, say, q-Sylow subgroup of S. Then $S \mathrm{O}_{p}(G)=$ $\langle a\rangle \mathrm{O}_{p}(G)$ since $S^{\prime} \leq \mathrm{O}_{p}(G)$ (Lemma $\mathrm{J}(\mathrm{a})$ and Remark 7.1). Let T be the Thompson critical subgroup of $\mathrm{O}_{p}(G)$ (see [Suz, page 93, Exercise 1(b)]). Then a induces a nonidentity automorphism on T so $\langle a\rangle T$ possesses a minimal nonnilpotent subgroup (Lemma $\mathrm{J}(\mathrm{b})$) which we denote S again. Set $P_{0}=$ $\Omega_{\mu_{p}}(T)$. It follows from $P_{0} \leq \mathrm{H}(G)$ (Lemma 7.1) that a centralizes P_{0}, a contradiction since $S^{\prime} \leq P_{0}$.

8. On factorization theorem of Wielandt-Kegel

Wielandt and Kegel [Wie2, Keg] have proved that a group $G=A B$, where A and B are nilpotent, is solvable. Below, using the Odd Order Theorem, we prove the following

Theorem 8.1 ([Ber2]). Let a group $G=A B$, where $(|A|,|B|)=1$. Let $A=P \times L$, where $P \in \operatorname{Syl}_{2}(G)$ and let B be nilpotent. Then G is solvable.

Recall that a subgroup K of $G=A B$ is said to be factorized if $K=$ $(K \cap A)(K \cap B)$. If, in addition, $(|A|,|B|)=1$ and K is normal in G, then K is factorized always.

Lemma $8.2([\mathrm{Wie} 2])$. Let $G=A B,(|A|,|B|)=1, A_{0}$ is normal in A and B_{0} is normal in B. Then subgroups $H=\left\langle A_{0}, B_{0}\right\rangle$ and $\mathrm{N}_{G}(H)$ are factorized.

Proof. Let $x=a b^{-1} \in \mathrm{~N}_{G}(H)(a \in A, b \in B)$; then $H^{a}=H^{x b}=H^{b}$. We have $A_{0}=A_{0}^{a} \leq H^{a}, B_{0}=B_{0}^{b} \leq H^{b}=H^{a}$ so $H=\left\langle A_{0}, B_{0}\right\rangle \leq H^{a}=H^{b}$. Then $H^{a}=H=H^{b}, a \in \mathrm{~N}_{A}(H)=\mathrm{N}_{G}(H) \cap A, b \in \mathrm{~N}_{B}(H)=\mathrm{N}_{G}(H) \cap B$ hence $\mathrm{N}_{G}(H) \leq\left(\mathrm{N}_{G}(H) \cap A\right)\left(\mathrm{N}_{G}(H) \cap B\right) \leq \mathrm{N}_{G}(H)$, and $\mathrm{N}_{G}(H)$ is factorized. Next, H is normal in $\mathrm{N}_{G}(H)$ and $\left(\left|\mathrm{N}_{G}(H)\right| \cap A,\left|\mathrm{~N}_{G}(H) \cap B\right|\right)=1$ so $H=$ $\left(H \cap \mathrm{~N}_{G}(H) \cap A\right)\left(H \cap \mathrm{~N}_{G}(H) \cap B\right)=(H \cap A)(H \cap B)$.

If K and L are Hall subgroups of a solvable group X, then $K L^{u}=L^{u} K$ for some $u \in X$. Indeed, set $\sigma=\pi(K) \cup \pi(L)$ and let $K \leq H$, where $H \in \operatorname{Hall}_{\sigma}(X)$ (Theorem 1.4). By Theorem 1.4 again, $L^{u} \leq H$ for some $u \in X$. Now $K L^{u}=H$, by the product formula.

Lemma 8.3 ([Wie2]). Suppose that $A, B<G$ are such that $A B^{g}=B^{g} A$ for all $g \in G$. If $G=A^{G} B=A B^{G}$, then $G=A B^{g}$ for some $g \in G$.

Proof. Let A be not normal in G (otherwise, $G=A^{G} B=A B$). Then $A \neq A^{x}$ for some $x=b^{g}$, where $b \in B$ and $g \in G$. We have $A<A^{*}=\left\langle A, A^{x}\right\rangle$ and $A^{*} B^{g}=B^{g} A^{*}$ for all $g \in G$. Working by induction on $|G: A|$, we get $G=A^{*} B^{g}$. However, $A^{*} B^{g}=\left\langle A, A^{x}, B^{g}\right\rangle=\left\langle A, B^{g}\right\rangle=A B^{g}$.

Remark 8.1 ([Keg]). If $A, B<G$ and $A B^{g}=B^{g} A<G$ for all $g \in G$, then either $A^{G}<G$ or $B^{G}<G$. Indeed, if $A^{G}=G=B^{G}$, then $G=A B^{g}$ for some $g \in G$ (Lemma 8.3), contrary to the hypothesis.

Lemma 8.4 (Wielandt). Let $A=P \times Q$ be a nilpotent Hall subgroup of $G, P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G), p$ and q are distinct primes. Then every $\{p, q\}$-subgroup of G is nilpotent.

Proof. We use induction on $|G|$. Suppose that H is a nonnilpotent $\{p, q\}$-subgroup of minimal order in G. Then H is minimal nonnilpotent so, say $H=P_{1} \cdot Q_{1}$, where $P_{1} \in \operatorname{Syl}_{p}(H), Q_{1}=H^{\prime} \in \operatorname{Syl}_{q}(H)$ (Lemma $\mathrm{J}(\mathrm{a}))$. We may assume that $Q_{1} \leq Q$ and $\mathrm{N}_{Q}\left(Q_{1}\right) \in \operatorname{Syl}_{q}\left(\mathrm{~N}_{G}\left(Q_{1}\right)\right)$ (Theorem
1.1). However, $P<\mathrm{N}_{G}\left(Q_{1}\right)$ so $N_{A}\left(Q_{1}\right)$ is a nilpotent $\{p, q\}$-Hall subgroup of $\mathrm{N}_{G}\left(Q_{1}\right)$, by induction. Since the nonnilpotent $\{p, q\}$-subgroup $H \leq \mathrm{N}_{G}\left(Q_{1}\right)$, we get $\mathrm{N}_{G}\left(Q_{1}\right)=G$, by induction, and so Q_{1} is normal in G hence $\mathrm{C}_{G}\left(Q_{1}\right)$ is also normal in G. Then p does not divide $\left|G: \mathrm{C}_{G}\left(Q_{1}\right)\right|$, i.e., all p-elements of G centralize Q_{1}. In that case, H is nilpotent, a contradiction.

Recall that a group, generated by two noncommuting involutions, is dihedral.

Proof of Theorem 8.1. Suppose that G is a counterexample of minimal order. Then $P>\{1\}$, by Odd Order Theorem, and all proper factorized subgroups and epimorphic images of G are solvable. Since all proper normal subgroups and epimorphic images are products of two nilpotent groups of coprime orders so solvable, G must be simple. Then, by Burnside's p^{α}-Lemma [Isa2, Theorem 3.8], $L \neq\{1\}$ and $|\pi(B)|>1$.
(i) Assume that, for $A_{0} \in\{P, L\}$ and $\{1\}<B_{0} \in \operatorname{Syl}(B)$, we have $H=$ $\left\langle A_{0}, B_{0}\right\rangle<G$. Then, by Lemma 8.2, H is factorized so solvable. By virtue of paragraph, following Lemma 8.2, one may assume that $H=A_{0} B_{0}=B_{0} A_{0}$. Let $g=b a \in G$, where $a \in A$ and $b \in B$. We have

$$
\begin{equation*}
A_{0} B_{0}^{g}=A_{0} B_{0}^{b a}=A_{0} B_{0}^{a}=\left(A_{0} B_{0}\right)^{a}=\left(B_{0} A_{0}\right)^{a}=B_{0}^{b a} A_{0}=B_{0}^{g} A_{0} \tag{2}
\end{equation*}
$$

Since $A_{0} B_{0}^{g}<G$, by the product formula, G is not simple, by Remark 8.1, a contradiction. Thus, $H=G$.
(ii) Let $u \in \mathrm{Z}(P)$ be an involution, $r \in \pi(B)$ and $R \in \operatorname{Syl}_{r}(B)$. Set $H=\langle u, R\rangle$ and assume that $H<G$. By Lemma 8.2, H is factorized so solvable. Let F be a $\{2, r\}$-Hall subgroup of H containing R. Replacing A by its appropriate G-conjugate, one may assume that $u \in P_{0} \in \operatorname{Syl}_{2}(A \cap F)$; then $F=P_{0} R$. Let M be a minimal normal subgroup of F; then either $M \leq P_{0}$ or $M \leq R$. In the first case, $\mathrm{N}_{G}(M) \geq\langle L, R\rangle=G$, by (i), a contradiction. Now assume that $M \leq R$. Then $\mathrm{N}_{G}(M) \geq T=\langle u, B\rangle$ so $G=A T$. By Lemma $\mathrm{J}(\mathrm{i}), 1 \neq u \in T_{G}$, a contradiction.
(iii) Let $u \in \mathrm{Z}(P)$ be an involution. We claim that $\mathrm{C}_{G}(u)=A$. Assume that this is false. By the modular law, $\mathrm{C}_{G}(u)$ is factorized so solvable, and $\mathrm{C}_{B}(u)$ contains an element b of prime order, say q. Then $\mathrm{C}_{G}(b) \geq H=\langle u, R\rangle$, where $R \in \operatorname{Syl}_{r}(B)$ for some $r \in \pi(B)-\{q\}$. In that case, $H<G$, contrary to (ii).
(iv) Let $u \in \mathrm{Z}(P)$ and $v \in G$ be distinct involutions. Assume that $D=$ $\langle u, v\rangle$ is not a 2-subgroup; then D is dihedral with $|\pi(D)|>1$ and $u \notin \mathrm{Z}(D)$. Let $\{1\}<T<D,|T|=p \in \pi(D)-\{2\}$; then $\langle u\rangle \cdot T$ is dihedral of order $2 p$. By Lemma 8.4, $2 p$ does not divide $|A|$ so we may assume that $T<B$. Let $\{1\}<Q \in \operatorname{Syl}_{q}(B)$ with $q \in \pi(B)-\{p\}$. Then $\mathrm{N}_{G}(T) \geq\langle u, Q\rangle=G$, by (i), a contradiction.
(v) Let u and v be as in (iv). Then, by (iv), there is $g \in G$ such that $\langle u, v\rangle \leq P^{g}<A^{g}=P^{g} \times L^{g}$ so $L^{g}<\mathrm{C}_{G}(u)=A$, by (iii). Then $L^{g}=L$
and $v \in \mathrm{C}_{G}(L)<G$. Thus, $\mathrm{C}_{G}(L)$ contains all involutions v of G so G is not simple, a final contradiction ${ }^{9}$.

ThEOREM 8.5 ([Keg]). If a group G is a product of two nilpotent subgroups, it is solvable.

Proof. Suppose that $G=A B$, where A and B are nilpotent, is a minimal counterexample; then some prime $p \in \pi(A) \cap \pi(B)$ (Theorem 8.1). Let $A_{0} \in \operatorname{Syl}_{p}(A)$ and $B_{0} \in \operatorname{Syl}_{p}(B)$. Replacing, if necessary, B by its conjugate, one may assume that $K=\left\langle A_{0}, B_{0}\right\rangle \leq P \in \operatorname{Syl}_{p}(G)$. Clearly, $K \cap A=A_{0}$ and $K \cap B=B_{0}$ so, since K is factorized (Lemma 8.2), we get $K=A_{0} B_{0}$. As in part (i) of the proof of Theorem 8.1, we get $A_{0} B_{0}^{g}=B_{0}^{g} A$, all $g \in G$, and this is a proper subgroup of G. By Remark 8.1, one may assume that $A_{0}^{G}<G$. By induction, G has no nontrivial solvable normal subgroup. Therefore, since, by the modular law, $A_{0}^{G} A$ and $A_{0}^{G} B$ are factorized, we get $A_{0}^{G} A=G=A_{0}^{G} B$. It follows that p does not divide $\left|G: A_{0}^{G}\right|$ so $P^{G}=A_{0}^{G}$. Let $A_{0} \leq C_{0}<A_{0}^{G}$, where C_{0} is a maximal p-subgroup of A_{0}^{G} permutable with all conjugates of B_{0}. As above, $P^{G}=B_{0}^{G}$ so $A_{0}^{G}=B_{0}^{G}$; denote this subgroup by H. It follows that B_{0}^{y} does not normalizes C_{0} for some $y \in H$ so there exists $x \in B_{0}^{y}$ such that $C_{0}^{x} \neq C_{0}$. Set $T=\left\langle C_{0}, C_{0}^{x}\right\rangle\left(>C_{0}\right)$. Since $T \leq H$ is permutable with all conjugates of B_{0}, it follows from the choice of C_{0} that T is not a p-subgroup. Since $T B_{0}^{y}=\left\langle C_{0}, C_{0}^{x}, B_{0}^{y}\right\rangle=\left\langle C_{0}, B_{0}^{y}\right\rangle=C_{0} B_{0}^{y}=B_{0}^{y} C_{0}$ is a p-subgroup, we get a contradiction.

9. A SOLVABILITY CRITERION

The following nice theorem is known in the case where M is solvable.
Theorem 9.1. Let $\{1\}<\mathbf{N}$ be normal in G and let M be a maximal subgroup of G with $M_{G}=\{1\}$. If $\{1\}<T$ is a minimal normal p-subgroup of M for some prime p and $M \cap \mathbf{N}=\{1\}$, then \mathbf{N} is solvable.

Proof. ${ }^{10}$ Clearly, \mathbf{N} is a minimal normal subgroup of G. Since $M \leq$ $\mathrm{N}_{G}(T)<G$, we get $\mathrm{N}_{G}(T)=M$ and so $\mathrm{N}_{T \mathbf{N}}(T)=T^{11}$. It follows that $T \in$ $\operatorname{Syl}_{p}(T \mathbf{N})$ so \mathbf{N} is a p^{\prime}-subgroup (Theorem 1.1). Let $r \in \pi(\mathbf{N})$. By Theorem 1.1, p does not divide $\left|\operatorname{Syl}_{r}(\mathbf{N})\right|$ so there exists a T-invariant $R \in \operatorname{Syl}_{r}(\mathbf{N})$.

Assume that there is another T-invariant $R_{1} \in \operatorname{Syl}_{r}(\mathbf{N})$; then $R_{1}=R^{x}$ for some $x \in \mathbf{N}$ (Theorem 1.1). Hence both T and T^{x} normalize R_{1} so $\left\langle T, T^{x}\right\rangle \leq \mathrm{N}_{T \mathbf{N}}\left(R_{1}\right)$. Note that $T, T^{x} \in \operatorname{Syl}_{p}(T \mathbf{N})$ so $T, T^{x} \in \operatorname{Syl}_{p}\left(\mathrm{~N}_{T \mathbf{N}}\left(R_{1}\right)\right)$.

[^7]By Theorem 1.1, $T^{z}=T^{x}$ for some $z \in \mathrm{~N}_{T \mathbf{N}}\left(R_{1}\right)$. By the modular law, $\mathrm{N}_{T \mathbf{N}}\left(R_{1}\right)=T \mathrm{~N}_{\mathbf{N}}\left(R_{1}\right)$ so $z=t x_{0}$ for some $t \in T$ and $x_{0} \in \mathrm{~N}_{\mathbf{N}}\left(R_{1}\right)$. We have $T^{x}=T^{z}=T^{t x_{0}}=T^{x_{0}}$, and so $x_{0} x^{-1} \in \mathrm{~N}_{\mathbf{N}}(T)=\{1\}$. Hence $x=x_{0}$. We get $R_{1}=R^{x}=R^{x_{0}}$ so $R=R_{1}^{x_{0}^{-1}}=R_{1}$, a contradiction.

Take $y \in M$. Since T normalizes R then $T^{y}=T$ also normalizes R^{y}. By the previous paragraph, $R^{y}=R$, so M normalizes R. Since M is maximal in G, we get $M R=G$ so $R=\mathbf{N}$ and \mathbf{N} is solvable.

Example 9.2. Let $G=A \times \mathbf{N}$. where A and \mathbf{N} are isomorphic nonabelian simple groups, and let M be a diagonal subgroup of G. Then $M \cong A$ is maximal in G so $G=M \mathbf{N}, M \cap \mathbf{N}=\{1\}$ and \mathbf{N} is nonsolvable. We also have $M_{G}=\{1\}$.

10. Abelian subgroups of maximal order in the SYMMETRIC GROUP S_{n}

Now we prove the following
Theorem 10.1. ${ }^{12}$ Let $G \leq \mathrm{S}_{n}$ be abelian of maximal order, where $n=$ $k+3 m$ with $k \leq 4$. Then $G=A \times Z_{1} \times \cdots \times Z_{m}$, where A, Z_{1}, \ldots, Z_{m} are regular of degrees $k, 3, \ldots, 3$ (m times), respectively ${ }^{13}$.

Lemma 10.2. Let A be a maximal abelian subgroup of $G=H_{1} \times \cdots \times H_{r}$. Then $A=\left(A \cap H_{1}\right) \times \cdots \times\left(A \cap H_{r}\right)$.

Proof. Let A_{i} be the projection of A into $H_{i}, i=1, \ldots, r$. Then $A \leq$ $B=A_{1} \times \cdots \times A_{r}$ so $A=B$ since B is abelian and A is maximal abelian. Since $A_{i}=A \cap H_{i}$ for all i, we are done.

Proof of Theorem 10.1. If G is transitive, it is regular of order n since the G-stabilizer of a point equals $\{1\}$. If $n>4, \mathrm{~S}_{n}$ has an abelian subgroup of order $2(n-2)>n$, a contradiction. Thus, if G is transitive, then $n \leq 4$.

Let G be intransitive. Then $\{1, \ldots, n\}=\Omega_{1} \cup \cdots \cup \Omega_{r}$ is the partition in G-orbits, $r>1$, so $G \leq W=\mathrm{S}_{\Omega_{1}} \times \cdots \times \mathrm{S}_{\Omega_{r}}$, where $\mathrm{S}_{\Omega_{i}}$ is the symmetric group on $\Omega_{i}, i=1, \ldots, r$. By Lemma $10.2, G=T_{1} \times \cdots \times T_{r}$, where $T_{i}=G \cap \mathrm{~S}_{\Omega_{i}}$ is a regular abelian subgroup of $\mathrm{S}_{\Omega_{i}}$. By the previous paragraph, $\left|T_{i}\right| \leq 4$. Assume that $\left|T_{1}\right|=\left|T_{2}\right|=4$. Then $\mathrm{S}_{\Omega_{1} \cup \Omega_{2}}$ has an abelian subgroup B of order 18 contained in $\mathrm{S}_{2} \times \mathrm{S}_{3} \times \mathrm{S}_{3}$, and this is a contradiction since then $|G|<\left|B \times T_{3} \times \cdots \times T_{r}\right|$. If $\left|T_{1}\right|=2$ and $\left|T_{2}\right|=4$, then $\mathrm{S}_{\Omega_{1} \cup \Omega_{2}}$ has an abelian subgroup B of order 9 contained in $\mathrm{S}_{3} \times \mathrm{S}_{3}$, and this is a contradiction since then $|G|<\left|B \times T_{3} \times \cdots \times T_{r}\right|$. Similarly, equalities $\left|T_{1}\right|=\left|T_{2}\right|=\left|T_{3}\right|=2$ are impossible.

[^8]
11. Characterization of simple groups

Let $\delta(G)$ be the minimal degree of a faithful representation of a group G by permutations. If $G \leq \mathrm{S}_{\delta(G)}$, then G has no one-element orbit. Given $G>\{1\}$, let $\mathrm{i}(G)=\min \{|G: H| \mid H<G\}$. For $G=\{1\}$, we set $\mathrm{i}(G)=1$. Then $\delta(G) \geq \mathrm{i}(G)$ with equality if G is simple. If $H<G$ is normal, then $\mathrm{i}(G / H) \geq \mathrm{i}(G)$; if, in addition, $H \leq \Phi(G)$, then $\mathrm{i}(G / H)=\mathrm{i}(G)$. The size of each non one-element G-orbit is at least $\mathrm{i}(G)$. It follows that $G \leq \mathrm{S}_{\delta(G)}$ is transitive if $\delta(G)<2 \mathrm{i}(G)$; moreover, in that case the G-stabilizer of a point is maximal in G.

Theorem 11.1 ([Ber4]). A group $G>\{1\}$ is simple if and only if $\delta(G)=$ $\mathrm{i}(G)^{14}$.

Proof. If G is simple, then $\mathrm{i}(G)=\delta(G)$. Now assume that $\delta(G)=\mathrm{i}(G)$ but G has a nontrivial normal subgroup N. Let $G \leq \mathrm{S}_{\delta(G)}$ and H the G stabilizer of a point; then $|G: H|=\delta(G), H$ is maximal in G and G is transitive. We have $H N=G$ since $H_{G}=\{1\}$. Let $A \leq H$ be minimal such that $G=A N$; then $A>\{1\}$. Let A_{1} be the A-stabilizer of a point moved by A; then $A_{1}<A$ and $\left|A: A_{1}\right| \leq \delta(H)<\delta(G)=\mathrm{i}(G)$. By the choice of A, we have $A_{1} N<G$ so $\left|G: A_{1} N\right| \geq \mathrm{i}(G)>\left|A: A_{1}\right|$. On the other hand,

$$
\begin{aligned}
\left|G: A_{1} N\right| & =\left|A N: A_{1} N\right|=\frac{|A||N|\left|A_{1} \cap N\right|}{|A \cap N|\left|A_{1}\right||N|} \\
& =\left|A: A_{1}\right| \frac{\left|A_{1} \cap N\right|}{|A \cap N|} \leq\left|A: A_{1}\right|<\mathrm{i}(G)
\end{aligned}
$$

a final contradiction.
Theorem 11.2 ([Ber4]). If, for a group G, we have $\delta(G)=\mathrm{i}(G)+1$, then one of the following holds:
(a) $G \cong \mathrm{~S}_{3}$.
(b) $\delta(G)=2^{n}, G=S \cdot \mathrm{E}_{2^{n}}$, a semidirect product with kernel $\mathrm{E}_{2^{n}}, n>1$, S is a simple group ${ }^{15}$.
Proof. Let $G \leq \mathrm{S}_{\Omega}$ where $|\Omega|=\delta(G)$.
By Theorem 11.1, G is not simple. Let E be a minimal normal subgroup of G and let S be the G-stabilizer of a point; then $|G: S|=\delta(G)<2 \mathrm{i}(G)$ so G is transitive, S is maximal in $G, S_{G}=\{1\}$ and $G=S E$.
(i) Suppose that E is solvable. Then $\delta(G)=|E|=p^{n}$, a power of a prime p. In that case, $S \cap E=\{1\}, \mathrm{i}(G)=p^{n}-1$ is not a multiple of p so, if H is a subgroup of index $\mathrm{i}(G)$ in G, then $E \leq H$. It follows that $\mathrm{i}(G)=\mathrm{i}(S)$. We

[^9]also have $\mathrm{C}_{G}(E)=E$. Therefore, if $n=1$, then $\mathrm{i}(S)=p-1$ is a prime so $p=3$ and $G \cong \mathrm{~S}_{3}$. Next let $n>1$.

Assume that S is not simple. Then, by Theorem 11.1, $\delta(S) \geq \mathrm{i}(S)+1=$ $p^{n}=\delta(G)$, a contradiction. Thus, S is simple.

Let S be solvable. In that case, $\mathrm{i}(S)=|S|=p^{n}-1$ is a prime number and so $p=2$ since $n>1$; then G is a group of part (b).

Now let S be nonabelian simple. Let $L<E$ be of order p. Then $\mathrm{N}_{G}(L)$ is a proper subgroup of G of index $\leq \mathrm{c}_{1}(E)=\frac{p^{n}-1}{p-1}$. It follows that $\frac{p^{n}-1}{p-1} \geq$ $\mathrm{i}(S)=p^{n}-1$ so $p=2$, and G is a group of part (b).
(ii) Now let E be nonsolvable. Let $A \leq S$ be minimal such that $A E=G$. Then $A \cap E \leq \Phi(A)$, by Remark $2.4, G / E \cong A /(A \cap E)$ and

$$
\delta(A) \geq \mathrm{i}(A)=\mathrm{i}(A /(A \cap E))=\mathrm{i}(G / E) \geq \mathrm{i}(G)=\delta(G)-1 \geq \delta(A)
$$

so there are equalities throughout. It follows that $\delta(A)=\mathrm{i}(A)$ so A is simple (Theorem 11.1), $\mathrm{i}(A)=\mathrm{i}(G)=\delta(G)-1$ and $G=A \cdot E$, a semidirect product with kernel E.

Let $p \in \pi(E)$ be odd, $P \in \operatorname{Syl}_{p}(E)$ and $N=\mathrm{N}_{G}(P)$; then $G=N E$ (Frattini). Let $B \leq N$ be as small as possible such that $B E=G$; then $B \cap E=\Phi(B)$ since $B /(B \cap E) \cong A$ is simple. It follows that $\mathrm{i}(B)=\mathrm{i}(A)(=$ $\delta(G)-1=\mathrm{i}(G))$. Assume that $B \cap E>\{1\}$. Since $\delta(B) \leq \delta(G)<2 \mathrm{i}(G)=$ $2 \mathrm{i}(B), B$ is transitive; moreover, the B-stabilizer of a point is maximal in B so contains $\Phi(B)=B \cap E>\{1\}$, a contradiction. Thus, $B \cap E=\{1\}$. Let $\{1\}<P_{0} \leq P$ be a minimal B-invariant subgroup of P. Set $K=B \cdot P_{0}$.

Assume that $\mathrm{C}_{K}\left(P_{0}\right)>P_{0}$; then $K=B \times P_{0}$ and $\left|P_{0}\right|=p$. In that case, as it easy to see, $\delta(K)=\delta(B)+p>\delta(G)$ (recall that $p>2$), a contradiction.

Thus, $\mathrm{C}_{K}\left(P_{0}\right)=P_{0}$. Set $\left|P_{0}\right|=p^{n}$. Then, as in (i), $\mathrm{c}_{1}\left(P_{0}\right)=\frac{p^{n}-1}{p-1} \geq \mathrm{i}(B)$ so $p^{n}>2 \mathrm{i}(B)=2 \mathrm{i}(G)>\delta(G)$ since $p>2$. Let $H<K$ be such that $|K: H|=\mathrm{i}(K)(\leq \mathrm{i}(B))$. By what has just been proved, $H \cap P_{0}>\{1\}$. It follows that $H P_{0}<K$ so $\left|K: H P_{0}\right| \geq \mathrm{i}(B)$, and we conclude that $\mathrm{i}(K)=$ $\mathrm{i}(B)$ and $P_{0}<H$. It follows that there are at least two K-orbits on Ω so $\delta(K) \geq 2 \mathrm{i}(K)=2 \mathrm{i}(B)=2 \mathrm{i}(G)>\delta(G)$, a final contradiction.

12. On A PROBLEM OF p-GROUP THEORY

Consider the following
Problem 1. Classify the nonabelian p-groups G possessing a subgroup Z of order p which contained in the unique abelian subgroup E of type (p, p).

Blackburn [Bla] has posed the following problem. Classify the 2-groups G possessing an involution which contained in only one subgroup of G of order 4. This problem, a partial case of Problem 1, was solved in [BoJ]. Problem 1 is essentially more difficult.

Theorem 12.1. Let Z be a subgroup of order p of a p-group G such that there is in G only one abelian subgroup of type (p, p), say E, that contains
Z. Let G be not a 2-group of maximal class; then G has a normal abelian subgroup V of type (p, p). Set $T=\mathrm{C}_{G}(V)$. In that case, G has no normal subgroup of order p^{p+1} and exponent p and one of the following holds:
(a) Let $E \neq V$. Then $G=Z \cdot T$. We have $C_{G}(Z)=Z \times Q$, where $Q=\mathrm{C}_{T}(Z)$ is either cyclic or generalized quaternion.
(b) Now let $E=V$. Then $\Omega_{1}(T)=E$. If $p>2$, then T is metacyclic. If $t \in G-T$ is an element of order p, then $G=\langle t\rangle \cdot T$ and $C_{G}(t)=\langle t\rangle \times Q$, where Q is either cyclic or generalized quaternion. Next, G has no subgroup $\cong \mathrm{E}_{p^{3}}$.

Proof. If $Z<K \leq G$, then $K \not \not \mathrm{E}_{p^{3}}$.
Assume that G has a normal subgroup H of order p^{p+1} and exponent p. By hypothesis, $\mathrm{C}_{H Z}(Z) \cong \mathrm{E}_{p^{2}}$ so $H Z$ is of maximal class (Lemma $\mathrm{J}(\mathrm{j})$), contrary to Lemma $\mathrm{J}(\mathrm{k})$. Then, by Remark 6.1, G has a normal abelian subgroup V of type (p, p). Set $T=\mathrm{C}_{G}(V)$.

Suppose that Z is not contained in V; then $E \neq V$ and $|G: T|=p$ since Z is not contained in T (otherwise, $Z V=Z \times V \cong \mathrm{E}_{p^{3}}$). We have $G=Z \cdot T$, a semidirect product, and $\mathrm{C}_{G}(Z)=Z \times \mathrm{C}_{T}(Z)$, by the modular law. Next, $\mathrm{C}_{T}(Z)$ has no abelian subgroup of type (p, p) (otherwise, if that subgroup is R, then $Z \times R \cong \mathrm{E}_{p^{3}}$). Then, by Remark 6.1, $\mathrm{C}_{T}(Z)$ is either cyclic or generalized quaternion.

Let $Z<V$ so $E=V$. In that case, $\Omega_{1}(T)=V$ so, if $p>2$, then T is metacyclic (Blackburn; see [Ber3, Theorem 6.1]). Assume that $\mathrm{E}_{p^{3}} \cong U<G$. Considering $U \cap T$, we see that $Z<U$, a contradiction. Thus, G has no subgroup $\cong \mathrm{E}_{p^{3}}$. If $t \in G-T$ is of order p, then, as above, $\mathrm{C}_{G}(t)=\langle t\rangle \times \mathrm{C}_{T}(t)$, where $\mathrm{C}_{T}(t)$ is cyclic or generalized quaternion.

The 2-groups G containing an involution t such that $\mathrm{C}_{G}(t)=\langle t\rangle \times Q$, where Q is either cyclic or generalized quaternion, are classified in [Jan1, Jan2]. The p-groups without normal subgroup $\cong \mathrm{E}_{p^{3}}$, are classified for $p>2$ by Blackburn (see [Ber5, Theorem 6.1]) and for $p=2$ their classification is reduced to Problem 2, below (see [Jan3]).

Thus, Problem 1 is reduced to the following two outstanding problems:
Problem 2. (Old problem) Classify the 2-groups G with exactly three involutions.

Problem 3. (Blackburn) Classify the p-groups $G, p>2$, containing a subgroup Z of order p such that $\mathrm{C}_{G}(Z)=Z \times Q$, where Q is cyclic.

Janko [Jan4] obtained a number of deep results concerning Problem 2. He reduced this problem to the case where G has a normal metacyclic subgroup M of index at most 4. It is easy to show that if $|G: M|=2$ and G is nonmetacyclic, then the set $G-M$ has an element x of order 4 so, in this case, there is a strong hope to obtain complete classification.
13. The order of the automorphism group of an abelian p-Group

In this section we find the order of the automorphism group of an abelian p-group.

Let

$$
\begin{gathered}
B=\left\{x_{1,1}, \ldots, x_{1, \alpha_{1}}, x_{2,1}, \ldots, x_{2, \alpha_{2}}, \ldots, x_{r, 1}, \ldots, x_{r, \alpha_{r}}\right\} \\
B_{1}=\left\{y_{1,1}, \ldots, y_{1, \alpha_{1}}, x_{2,1}, \ldots, y_{2, \alpha_{2}}, \ldots, y_{r, 1}, \ldots, y_{r, \alpha_{r}}\right\}
\end{gathered}
$$

be two bases of an abelian p-group G such that

$$
o\left(x_{i, j}\right)=o\left(y_{i, j}\right)=p^{e_{i}}, i=1, \ldots, r, j=1, \ldots, \alpha_{i} .
$$

These bases we call automorphic since there is the $\phi \in \operatorname{Aut}(G)$ such that $x_{i, j}^{\phi}=$ $y_{i, j}$ for all i, j. Conversely, each automorphism of G sends one basis in an automorphic one. The set of bases of G is partitioned in classes of automorphic bases. The group $\operatorname{Aut}(G)$ acts regularly on each class of automorphic bases. Therefore, to find the order of $\operatorname{Aut}(G)$, it suffices to find the cardinality of an arbitrary class of automorphic bases. The number of all bases of G equals $M=\left(p^{d}-1\right)\left(p^{d}-p\right) \ldots\left(p^{d}-p^{d-1}\right)|\Phi(G)|^{d}$, where $d=\mathrm{d}(G)$, so M is a multiple of $|\operatorname{Aut}(G)|$. It is easy to show, and this follows from Theorem 13.1, that $|\operatorname{Aut}(G)|=M$ if and only if G is homocyclic.

Remark 13.1. Let x_{1}, \ldots, x_{d} be generators of an abelian p-group G of rank d. By the product formula, $\prod_{i=1}^{d} o\left(x_{i}\right) \geq|G|$. We claim that, if $\prod_{i=1}^{d} o\left(x_{i}\right)=|G|$, then $G=\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{d}\right\rangle$. Indeed, we have $G=$ $\left\langle x_{1}\right\rangle \ldots\left\langle x_{d}\right\rangle$. Using product formula, we get $\left\langle x_{1}\right\rangle \cap\left\langle x_{2}, \ldots x_{d}\right\rangle=\{1\}$ so that $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}, \ldots x_{d}\right\rangle$. Now, by induction, $\left\langle x_{2}, \ldots, x_{d}\right\rangle=\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{d}\right\rangle$ since $\prod_{i=2}^{d} o\left(x_{i}\right)=\left|G /\left\langle x_{1}\right\rangle\right|=\left|\left\langle x_{2}, \ldots, x_{d}\right\rangle\right|$.

In what follows, G is an abelian group of order p^{m} and type $\left(\alpha_{1}\right.$. $p^{e_{1}}, \ldots, \alpha_{r} \cdot p^{e_{r}}$, where all $\alpha_{i} \geq 0$ and $e_{1}>\cdots>e_{r} \geq 1$. That group has exactly α_{i} invariants $p^{e_{i}}$, all i.

Our solution is divided in r steps.

COMPUTATION OF $|\operatorname{Aut}(G)|$

Step 1. First we choose α_{1} elements of maximal order $p^{e_{1}}$. All of them lie in the set $G-T_{1}$, where $T_{1}=\Omega_{e_{1}-1}(G)\left(G-T_{1}\right.$ is the set of elements of order $p^{e_{1}}$ in $\left.G\right)$. Set $f_{1}=m$ and $\left|T_{1}\right|=p^{t_{1}}$. We have $f_{1}-t_{1}=\alpha_{1}$ so $\left|G: T_{1}\right|=p^{\alpha_{1}}$.

As $x_{1,1}$ we take any element of the set $G-T_{1}$ of cardinality $|G|-\left|T_{1}\right|$. As $x_{1,2}$ we take any element in the set $G-\left\langle x_{1,1} T_{1}\right\rangle$ of cardinality $|G|-p\left|T_{1}\right|$. Continuing so, we take an α_{1}-th element $x_{1, \alpha_{1}}$ in the set $G-\left\langle x_{1,1}, \ldots, x_{1, \alpha_{1}-1}, T_{1}\right\rangle$ of cardinality $|G|-p^{\alpha_{1}-1}\left|T_{1}\right|$. Thus, α_{1} elements $x_{1,1}, \ldots, x_{1, \alpha_{1}}$ of order $p^{e_{1}}$ one can choose by

$$
\begin{aligned}
N_{1} & =\left(p^{f_{1}}-p^{t_{1}}\right)\left(p^{f_{1}}-p^{1+t_{1}}\right) \ldots\left(p^{f_{1}}-p^{\alpha_{1}-1+t_{1}}\right) \\
& =\left(p^{\alpha_{1}}-1\right) \ldots\left(p^{\alpha_{1}}-p^{\alpha_{1}-1}\right) p^{\alpha_{1} t_{1}}
\end{aligned}
$$

ways. By the choice, $\left|\left\langle x_{1,1}, \ldots, x_{1, \alpha_{1}}, \Phi(G)\right\rangle / \Phi(G)\right|=p^{\alpha_{1}}$.
Step 2. Now we choose α_{2} elements $x_{2,1}, \ldots, x_{2, \alpha_{2}}$ of order $p^{e_{2}}$ in the set $\Omega_{e_{2}}(G)-T_{2}$, where $T_{2}=\Omega_{e_{2}}(\Phi(G)) \Omega_{e_{2}-1}(G)$ (if an element of order $p^{e_{2}}$ generates, modulo $\Phi(G)$, together with $\left\langle x_{1,1}, \ldots, x_{1, \alpha_{1}}\right\rangle$ a subgroup of order $p^{\alpha_{1}+1}$, it must lie in the set $\left.\Omega_{e_{2}}(G)-T_{2}\right)$. We have $\left|\Omega_{e_{2}}(G)\right|=p^{f_{2}}$, where $f_{2}=\left(\alpha_{1}+\alpha_{2}\right) e_{2}+\alpha_{3} e_{3}+\cdots+\alpha_{r} e_{r}$ and $\left|T_{2}\right|=p^{t_{2}}$, where $t_{2}=$ $\alpha_{1} e_{2}+\left(e_{2}-1\right) \alpha_{2}+\alpha_{3} e_{3}+\cdots+\alpha_{r} e_{r}$ so that $\left|\Omega_{e_{2}}(G): T_{2}\right|=p^{f_{2}-t_{2}}=p^{\alpha_{2}}$.

As $x_{2,1}$ we take any element of the set $\Omega_{e_{2}}(G)-T_{2}$ of cardinality $p^{f_{2}}-p^{t_{2}}$. As $x_{2,2}$ we take any element in the set $\Omega_{e_{2}}(G)-\left\langle x_{2,1}, T_{2}\right\rangle$ of cardinality $p^{f_{2}}-p^{t_{2}+1}$. Continuing so, we can choose α_{2} elements $x_{2,1}, \ldots, x_{2, \alpha_{2}}$ of order $p^{e_{2}}$ by

$$
\begin{aligned}
N_{2} & =\left(p^{f_{2}}-p^{t_{2}}\right)\left(p^{f_{2}}-p^{1+t_{2}}\right) \ldots\left(p^{f_{2}}-p^{\alpha_{2}-1+t_{2}}\right) \\
& =\left(p^{\alpha_{2}}-1\right) \ldots\left(p^{\alpha_{2}}-p^{\alpha_{2}-1}\right) p^{\alpha_{2} t_{2}}
\end{aligned}
$$

ways. By the choice, $\left|\left\langle x_{1,1}, \ldots, x_{1, \alpha_{1}}, x_{2,1}, \ldots, x_{2, \alpha_{2}}, \Phi(G)\right\rangle / \Phi(G)\right|=p^{\alpha_{1}+\alpha_{2}}$.
Step 3. All wanted elements of order $p^{e_{3}}$ are contained in the set $\Omega_{e_{3}}(G)-$ T_{3}, where $T_{3}=\Omega_{e_{3}}(\Phi(G)) \Omega_{e_{3}-1}(G)$. We have $\left|\Omega_{e_{3}}(G)\right|=p^{f_{3}}$, where $f_{3}=$ $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) e_{3}+\alpha_{4} e_{4}+\cdots+\alpha_{r} e_{r},\left|T_{3}\right|=p^{t_{3}}$, where $t_{3}=\left(\alpha_{1}+\alpha_{2}\right) e_{3}+$ $\left(e_{3}-1\right) \alpha_{3}+\alpha_{4} e_{4}+\cdots+\alpha_{r} e_{r}$ so that $\left|\Omega_{e_{3}}(G): T_{3}\right|=p^{f_{3}-t_{3}}=p^{\alpha_{3}}$. Acting as above, one can choose α_{3} elements $x_{3,1}, \ldots, x_{3, \alpha_{3}}$ of order $p^{e_{3}}$ by

$$
\begin{aligned}
N_{3} & =\left(p^{f_{3}}-p^{t_{3}}\right)\left(p^{f_{3}}-p^{1+t_{3}}\right) \ldots\left(p^{f_{3}}-p^{\alpha_{3}-1+t_{3}}\right) \\
& =\left(p^{\alpha_{3}}-1\right) \ldots\left(p^{\alpha_{3}}-p^{\alpha_{3}-1}\right) p^{\alpha_{3} t_{3}}
\end{aligned}
$$

ways. So chosen $\alpha_{1}+\alpha_{2}+\alpha_{3}$ elements generate, modulo $\Phi(G)$, the subgroup of order $p^{\alpha_{1}+\alpha_{2}+\alpha_{3}}$.

And so on. Finally,
Step r. At last, we will choose α_{r} wanted elements $x_{r, 1}, \ldots, x_{r, \alpha_{r}}$ of order $p^{e_{r}}$. All of them lie in the set $\Omega_{e_{r}}(G)-T_{r}$, where $T_{r}=\Omega_{e_{r}}(\Phi(G)) \Omega_{e_{r}-1}(G)$. As above, these elements may be chosen by

$$
N_{r}=\left(p^{\alpha_{r}}-1\right)\left(p^{\alpha_{r}}-p\right) \ldots\left(p^{\alpha_{r}}-p^{\alpha_{r}-1}\right) p^{\alpha_{r} t_{r}}
$$

ways.
The elements
$x_{1,1}, \ldots, x_{1, \alpha_{1}}, x_{2,1}, \ldots, x_{2, \alpha_{2}}, \ldots, x_{x, 1}, \ldots, x_{r, \alpha_{r}}$, in view of their choice, generate G. Since the product of their orders equals $|G|$, it follows, by Remark 13.1, that they form a basis of G. Thus, $|\operatorname{Aut}(G)|=\prod_{i=1}^{r} N_{i}$ so we get

Theorem 13.1. If G is an abelian p-group of type $\left(\alpha_{1} \cdot p^{e_{1}}, \ldots, \alpha_{r} \cdot p^{e_{r}}\right)$, then

$$
|\operatorname{Aut}(G)|=p^{\sum_{i=1}^{r} \alpha_{i} t_{i}} \prod_{i=1}^{r}\left(p^{\alpha_{i}}-1\right)\left(p^{\alpha_{i}}-p\right) \ldots\left(p^{\alpha_{i}}-p^{\alpha_{i}-1}\right),
$$

where $t_{i}=\left(\alpha_{1}+\cdots+\alpha_{i-1}\right) e_{i}+\left(e_{i}-1\right) \alpha_{i}+\sum_{j=i+1}^{r} \alpha_{j} e_{j}$.
14. A CONDITION FOR $\Phi(G) \leq \mathrm{Z}(G)$, where G is A p-GROUP, $p>2$

In this section we prove the following
Theorem 14.1. For a p-group $G, p>2$, the following conditions are equivalent:
(a) All subgroups of $\Phi(G)$ are normal in G.
(b) $\Phi(G) \leq \mathrm{Z}(G)$.

Proof. It suffices to show that $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let G be nonabelian and $|\Phi(G)|>p$.

Let $\Phi(G)$ be cyclic and U a maximal cyclic subgroup of G containing $\Phi(G)$. If $|G: U|=p$, the result follows from Lemma $\mathrm{J}(\mathrm{f})$ so let $|G: U|>p$. Let $U<T<G$, where $|T: U|=p$. Then $\Omega_{1}(T) \cong \mathrm{E}_{p^{2}}$ centralizes $\Phi(G)$. If $U=\Phi(G)$, then T is abelian. If $|U: \Phi(G)|=p$, then $\Phi(G)=\Phi(T) \leq \mathrm{Z}(T)$ (Lemma $\mathrm{J}(\mathrm{f})$), whence $\mathrm{C}_{G}(\Phi(G)) \geq T$. Since all such T generate G, we get $\Phi(G) \leq \mathrm{Z}(G)$.

Now let $\Phi(G)$ be noncyclic; then $\Phi(G)$ is Dedekindian so abelian. Let $\Phi(G)=U_{1} \times \cdots \times U_{n}$, where U_{1}, \ldots, U_{n} are cyclic. Working by induction on $|G|$, we get $[\Phi(G), G] \leq \bigcap_{i=1}^{n} U_{i}=\{1\}$, completing the proof.

If $n>2, p>2$ and $G=\left\langle a, b \mid a^{p^{n}}=b^{p^{n-1}}=1, a^{b}=a^{1+p}\right\rangle$, then $G^{\prime}=\left\langle a^{p}\right\rangle$ is cyclic so all subgroups of G^{\prime} are normal in G but G^{\prime} is not contained in $\mathrm{Z}(G)$. Therefore, it is impossible, in Theorem 14.1, to take G^{\prime} instead of $\Phi(G)$.

Recently Janko [Jan5] classified the p-groups G in which every nonnormal subgroup is contained in a unique maximal subgroup of G. The original proof in the case $p>2$ is fairly involved. Theorem 14.2 allows us to simplify the proof essentially.

THEOREM 14.2 ([Jan5]). The following conditions for a nonabelian pgroup $G, p>2$, are equivalent:
(a) Every nonnormal subgroup is contained in a unique maximal subgroup of G.
(b) G is minimal nonabelian (see Lemma 16.1).

Proof. If H is a nonnormal subgroup of a minimal nonabelian p-group G, then $H \Phi(G)$ is the unique maximal subgroup of G since $\mathrm{d}(G)=2$ and H is not contained in $\mathrm{Z}(G)=\Phi(G)$. Thus, $(\mathrm{b}) \Rightarrow(\mathrm{a})$.

It remains to prove that $(\mathrm{a}) \Rightarrow(\mathrm{b})$. The group G has a nonnormal cyclic subgroup, say U. By hypothesis, all subgroups of $\Phi(G)$ are normal in G so $\Phi(G) \leq \mathrm{Z}(G)$ (Theorem 14.1). We have $U \Phi(G)<G$ so $U \Phi(G)$ is the unique maximal subgroup of G containing U since $G / \Phi(G)$ is elementary abelian. It
follows that $\mathrm{d}(G)=2$. Then $\Phi(G)=\mathrm{Z}(G)$ has index p^{2} in G so it is minimal nonabelian ${ }^{16}$.

Theorem 14.1 is not true for $G=\mathrm{D}_{16}$. However, we have the following
Supplement to Theorem 14.1. Let G be a 2 -group such that all subgroups of $\Phi(G)$ are normal in G. Then the following conditions are equivalent:
(a) $\Phi(G) \leq \mathrm{Z}(G)$.
(b) G has no subgroup of maximal class and order 2^{4}.

To prove, it suffices to repeat, word for word, the proof of Theorem 14.1.
15. p-GROUPS WITH FAITHFUL IRREDUCIBLE CHARACTER OF DEGREE p^{n} HAS DERIVED LENGTH AT MOST $n+1$

In this section we prove the following
THEOREM 15.1. If a p-group G has a faithful irreducible character χ of degree p^{n}, then its derived length $\mathrm{dl}(G) \leq n+1$, and this estimate is best possible.

Proof. We use induction on n. One may assume that $n>0$.
Let G have no normal abelian subgroup of type (p, p). Then G is a 2 group of maximal class, by Remark 6.1; then $n=1$, by [Isa2, Theorem 6.15], and $\operatorname{dl}(G)=2=n+1$.

Next we assume that G has a normal abelian subgroup R of type (p, p); then $\left|G: \mathrm{C}_{G}(R)\right| \leq p$ so there exists a maximal subgroup M of G such that $R \leq M \leq \mathrm{C}_{G}(R)$. By Lemma $\mathrm{J}(\mathrm{g})$, the restriction χ_{M} of χ to M is reducible. By Clifford theory, $\chi_{M}=\mu_{1}+\cdots+\mu_{p}$, where μ_{1}, \ldots, μ_{p} are pairwise distinct irreducible characters of M, all of the same degree p^{n-1}. We also have $\bigcap_{i=1}^{p} \operatorname{ker}\left(\mu_{i}\right)=\{1\}$ since χ is faithful. Then, by induction, $\mathrm{dl}\left(M / \operatorname{ker}\left(\mu_{i}\right)\right) \leq(n-1)+1=n$. Since M is isomorphic to a subgroup of the direct product $\left(M / \operatorname{ker}\left(\mu_{1}\right)\right) \times \cdots \times\left(M / \operatorname{ker}\left(\mu_{p}\right)\right)$, we get $\mathrm{dl}(M) \leq n$. Since G / M is abelian (of order p), the derived length of G is at most $n+1 .{ }^{17}$

It remains to show that $G=\Sigma_{n+1} \in \operatorname{Syl}_{p}\left(\mathrm{~S}_{p^{n+1}}\right)$ has derived length $n+1$ and a faithful irreducible character of degree p^{n}. The first assertion is well known. We have $G=H \mathrm{wr}_{p}$, the standard wreath product with 'passive' factor $H \cong \Sigma_{n}$ and 'active' factor C_{p} of order p. In that case,

[^10]the base $B=H_{1} \times \cdots \times H_{p}$ of our wreath product has index p in G, and $H_{i} \cong H$. Let $F=H_{2} \times \cdots \times H_{p}$ and let ϕ be a faithful irreducible character of degree p^{n-1} of $B / F \cong H$ existing by induction. Set $\chi=\phi^{G}$ and prove that χ is irreducible and faithful (of degree p^{n}), thereby completing the proof. Since $\operatorname{ker}(\chi)=\operatorname{ker}(\phi)_{G}=F_{G}=\{1\}$, the character χ is faithful. Assume, however, that χ is reducible. Then, by Clifford theory, $\chi=\tau_{1}+\cdots+\tau_{p}$, where $\tau_{i}(1)=p^{n-1}$ for $i=1, \ldots, p$, hence, by reciprocity, $\chi_{B}=p \cdot \phi$ so $F=\operatorname{ker}(\phi) \leq \operatorname{ker}(\chi)=\{1\}$, a contradiction.

Definition 15.2. A group G is said to be an M^{*}-group if it satisfies the following condition. Whenever H is a subnormal subgroup of G and χ is a nonlinear irreducible character of H, there exists in H a normal subgroup A of prime index such that χ_{A} is reducible. We consider abelian groups as M^{*}-groups .

Obviously, subnormal subgroups and epimorphic images of M^{*}-groups are M^{*}-groups so, by induction, M^{*}-groups are solvable. The p-groups, being Mgroups, are also M^{*}-groups. The symmetric group S_{4} is an M -group but not an M^{*}-group.

If m is a natural number, then $\lambda(m)$ denotes the number of prime factors of m (multiplicities counted). For example, $\lambda(32)=5, \lambda(96)=6$.

Supplement to Theorem 15.1. ${ }^{18}$ Suppose that an M^{*}-group G has a faithful irreducible character χ. Then $\operatorname{dl}(G) \leq \lambda(\chi(1))+1$.

Proof. One may assume that G is nonabelian; then $\lambda(\chi(1))=n>0$. We are working by induction on n. Let T be a normal subgroup of prime index, say p, such that χ_{T} is reducible. Then, by Clifford theory, $\chi_{T}=\mu_{1}+\cdots+\mu_{p}$, where μ_{1}, \ldots, μ_{p} are pairwise distinct G-conjugate irreducible characters of M. We have $\mu_{i}(1)=\chi(1) / p$ so $\lambda\left(\mu_{i}(1)\right)=n-1$ and $\operatorname{dl}\left(T / \operatorname{ker}\left(\mu_{i}\right)\right) \leq(n-$ 1) $+1=n$, by induction. It follows that $T^{(n)}$, the n-th derived subgroup of T, is contained in $\bigcap_{i=1}^{p} \operatorname{ker}\left(\mu_{i}\right)=T \cap \operatorname{ker}(\chi)=\{1\}$, so $\operatorname{dl}(T) \leq n$. Since G / T is abelian, we get $\operatorname{dl}(G) \leq \operatorname{dl}(G / T)+1 \leq n+1$.

16. On Groups of order p^{4}

In this section we clear up the subgroup and normal structure of groups of order p^{4} using two easy general Lemmas 16.1 and $J(j)$. In particular, we obtain their classification in the case $p=2$.

Lemma 16.1 (Redei). Let G be a minimal nonabelian p-group. Then one of the following holds:
(a) $G=\left\langle a, b \mid a^{p^{m}}=b^{p^{m}}=1, a^{b}=a^{1+p^{m-1}}\right\rangle, m>1$.
(b) $G=\left\langle a, b, c \mid a^{p^{m}}=b^{p^{n}}=c^{p}=1, a^{b}=a c,[a, c]=[b, c]=1\right\rangle$.
(c) $G \cong \mathrm{Q}_{8}$.

[^11]REmark 16.1. It is easy to prove that $A \cong B$, where $A=Q * X$ and $B=D * Y$ are groups of order 2^{4} and $Q \cong \mathrm{Q}_{8}, D \cong \mathrm{D}_{8}, X \cong Y \cong \mathrm{C}_{4}$. Next, for $p>2$, we have $C \cong D$, where $C=M * U$ and $D=E * V$ of order p^{4}, where M and E are nonabelian of order p^{3} and exponent p^{2} and p, respectively (in our case, $\Omega_{1}(C)$ is of order p^{3} and exponent p and $C=\Omega_{1}(C) * U$ so $\Omega_{1}(C)$ is nonabelian, and we get $C \cong D$).

Let G be a group of order p^{4}. Then one of the following holds:
(i) G is abelian of one of the following five types: $\left(p^{4}\right),\left(p^{3}, p\right),\left(p^{2}, p^{2}\right)$, $\left(p^{2}, p, p\right),(p, p, p, p)$.
(ii) G is minimal nonabelian. According to Lemma 16.1, there are exactly three types of such groups and two of them are metacyclic (namely, groups from Lemma 16.1(a) with $\{m, n\}=\{3,1\},\{2,2\}$ and the nonmetacyclic group of Lemma 16.1(b) with $m=2, n=1$.
(iii) G is of maximal class (if $p=2$, there are exactly three types of such groups, by Theorem 6.1).
(iv) $G=M \times C$, where M is nonabelian of order p^{3} and $|C|=p$ (two types).
(v) $G=M * \mathrm{C}_{p^{2}}$, where M is nonabelian of order p^{3} and exponent p (one type).

Indeed, suppose that G is not such as in parts (i)-(iii). Then it contains a minimal nonabelian subgroup M of order p^{3}. By Lemma $\mathrm{J}(\mathrm{j}), G=M \mathrm{Z}(G)$. If $\mathrm{Z}(G)$ is noncyclic, then $G=M \times \mathrm{C}_{p}$, and we get two groups from (iv) (there are two types of nonabelian groups of order $\left.p^{3}\right)$. Now suppose that $\mathrm{Z}(G)$ is cyclic and M is metacyclic. Then $\left|G^{\prime}\right|=p$ and $\Phi(G)=G^{\prime}=\mho_{1}(G)$. For each p, we get one group, by Remark 16.1. Thus, there are $5+3+2+1=11$ types of groups of order p^{4}, which are not of maximal class so there are exactly $11+3=14$ types of groups of order 2^{4} (Theorem 6.1).

Acknowledgements.
I am indebted to Zvonimir Janko. Martin Isaacs and Noboru Ito for useful suggestions and discussion.

References

[Bae] R. Baer, Supersoluble immersion, Can. J. Math. 11 (1959), 353-369.
[BM] R. Bercov and L. Moser, On abelian permutation groups, Canad. Math. Bull. 8 (1965), 627-630.
[Ber1] Y. Berkovich, A corollary of Frobenius' normal p-complement theorem, Proc. Amer. Math. Soc. 127, 9 (1999), 2505-2509.
[Ber2] Y. Berkovich, A generalization of theorems of Carter and Wielandt, Soviet Math. Dokl. 7 (1966), 1525-1529.
[Ber3] Y. Berkovich, On p-groups of finite order, Siberian Math. Zh. 9 (1968), 1284-1306 (Russian).
[Ber4] Y. Berkovich, A necessary and sufficient condition for the simplicity of a finite group, Algebra and number theory, Nal'chik (1979), 17-21 (Russian).
[Ber5] Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
[Ber6] Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.
[BJ] Y. Berkovich and Z. Janko, Groups of Prime Power Order, Part III, in preparation.
[BK] Y. Berkovich and L. Kazarin, Indices of elements and normal structure of finite groups, J. Algebra 283 (2005), 564-583.
[Bla] N. Blackburn, Groups of prime-power order having an abelian centralizer of type $(r, 1)$, Mh. Math. 99 (1985), 1-18.
[BoJ] Z. Božikov and Z. Janko, On a question of N. Blackburn about finite 2-groups, Israel J. Math., to appear.
[Bur] W. Burnside, The Theory of Groups of Finite Order, Dover, NY, 1955.
[Car] R. Carter, Nilpotent self-normalizing subgroups of soluble groups, Math. Z. 75 (1961), 136-139.
[Chu] S.A. Chunikhin, On solvable groups, Izv. NIIMM of Tomsk Univ. 2 (1938), 220-223.
[Gas] W. Gaschütz, Lectures on Subgroups of Sylow Type in Finite Solvable Groups, Australian Nat. Univ., 1979.
[Hal1] P. Hall, A note on a soluble groups, J. London Math. Soc. 3 (1928), 98-105.
[Hal2] P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937), 198-200.
[Hal3] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 2, 40 (1936), 468-501.
[Hup] B. Huppert, Endliche Gruppen, Bd. I, Springer, Berlin, 1967.
[Isa1] I.M. Isaacs, Algebra. A Graduate Course, Brooks/Cole, Pacific Grove, 1994.
[Isa2] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, NY, 1976.
[Jan1] Z. Janko, Finite 2-groups with small centralizer of an involution, J. Algebra 241 (2001), 818-826.
[Jan2] Z. Janko, Finite 2-groups with small centralizer of an involution, 2, J. Algebra 245 (2001), 413-429.
[Jan3] Z. Janko, Finite 2-groups with no normal elementary abelian subgroups of order 8, J. Algebra 246 (2001), 951-961.
[Jan4] Z. Janko, Finite 2-groups with three involutions, J. Algebra, to appear.
[Jan5] Z. Janko, Finite p-groups with uniqueness condition for nonnormal subgroups, manuscript.
[Keg] O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961), 90-93.
[Kul] A. Kulakoff, Über die Anzahl der eigentlichen Untergruppen und die Elemente von gegebener Ordnung in p-Gruppen, Math. Ann. 104 (1931), 779-793.
[Ore] O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1938), 431-460.
[Suz] M. Suzuki, Group Theory II, Springer, New York, 1986.
[Weh] B.A.F. Wehrfritz, Finite Groups, World Scientific, Singapore, 1999.
[Wie1] H. Wielandt, Sylowgruppen and Kompositionsstruktur, Abhandl. Math. Seminar Univ. Hamburg 22 (1958), 215-228.
[Wie2] H. Wielandt, Uber Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958), 611-618.
Y. Berkovich

Department of Mathematics
University of Haifa
Mount Carmel, Haifa 31905
Israel
E-mail: berkov@math.haifa.ac.il
Received: 2.3.2005.
Revised: 2.5.2005 \& 20.7.2005.

[^0]: 2000 Mathematics Subject Classification. 20C15.
 Key words and phrases. Sylow p-subgroup, solvable group, Hall subgroup, Carter subgroup.

[^1]: ${ }^{1}$ This proof is independent of the Schur-Zassenhaus Theorem.

[^2]: ${ }^{2}$ For $k=2$, Theorem 1.7 was proved by Janko and Kegel [Keg], independently.

[^3]: ${ }^{3}$ Compare with [Weh, Theorem 3.7]
 ${ }^{4}$ Compare with [Wie1]
 ${ }^{5}$ It is easy to deduce from this that the p-length of G equals 1.

[^4]: ${ }^{6}$ Since $H \cap P \leq \Phi(G)$, then, by deep Tate's Theorem [Hup, Satz 4.4.7], H is p-nilpotent.

[^5]: ${ }^{7}$ In particular, G is dihedral, generalized quaternion or semidihedral, and these groups exhaust the 2-groups of maximal class.

[^6]: ${ }^{8}[\mathrm{Kul}]$ for $p>2,[\mathrm{Ber} 3]$ for $p=2$.

[^7]: ${ }^{9}$ Repeating, word for word, the proof of Theorem 8.1, we get the following result (A.N. Fomin). Let $G=A B$, where $(|A|,|B|)=1, A=P \times L$ with $P \in \operatorname{Syl}_{2}(G)$ and $B=Q \times M$ with $Q \in \operatorname{Syl}_{q}(G), q$ is a prime. Then G is q-solvable.
 ${ }^{10}$ I am indebted to Janko who reported me this proof.
 ${ }^{11}$ It follows from the classification of finite simple groups, that \mathbf{N} is solvable, and we are done. However, we want to give an elementary proof.

[^8]: ${ }^{12}$ Compare with [BM]
 ${ }^{13}$ Thus, if not all abelian subgroups of maximal order are conjugate in S_{n}, then $k=4$ and S_{n} contains exactly two classes of such subgroups.

[^9]: ${ }^{14}$ It follows that if $H<G$ has index $\mathrm{i}(G)$ in G, then G / H_{G} is simple. If, in addition, G is solvable, then H is normal in G.
 ${ }^{15}$ If $G=\operatorname{AGL}(n, 2), n>2$, then $\mathrm{i}(G)=2^{n}-1, \delta(G)=2^{n}$ so $\delta(G)=\mathrm{i}(G)+1$. The Frobenius group $G=\mathrm{C}_{2^{n}-1} \cdot \mathrm{E}_{2^{n}}$ with prime $2^{n}-1$ also satisfies $\delta(G)=\mathrm{i}(G)+1$.

[^10]: ${ }^{16}$ Let us prove the following related result. If every minimal nonabelian subgroup is contained in a unique maximal subgroup of a p-group G, then either (i) $\mathrm{d}(G)=2$ and $\Phi(G)$ is abelian, or (ii) $\mathrm{d}(G)=3$ and $\Phi(G)$ is contained in $\mathrm{Z}(G)$. Indeed, groups from (i) and (ii) satisfy the hypothesis. Now let $\mathrm{d}(G)>2$ and G satisfies the hypothesis. Take minimal nonabelian subgroup H in G. Then $H \Phi(G)$ is maximal in G since $\Phi(H) \leq \Phi(G)$, and we conclude that $\mathrm{d}(G)=3$ since $\mathrm{d}(H)=2$. If $\Phi(G)<T<G$ with $|T: \Phi(G)|=p$, then T is abelian since T is contained in $p+1$ maximal subgroups of G so it has no minimal nonabelian subgroup. Since such subgroups T generate G and centralize $\Phi(G)$, it follows that $\Phi(G)$ is contained in $\mathrm{Z}(G)$.
 ${ }^{17}$ According to the letter of Ito, he also proved this inequality; his proof is the same.

[^11]: ${ }^{18}$ The supplement and its proof were inspired by Isaacs' letter at Jan. 29, 2005.

