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Abstract. In this note alternate proofs of some basic results of finite
group theory are presented.

These notes contain a few new results. Our aim here is to give alternate
and, as a rule, more short proofs of some basic results of finite group theory:
theorems of Sylow, Hall, Carter, Kulakoff, Wielandt-Kegel and so on.

Only finite groups are considered. We use the standard notation. π(n) is
the set of prime divisors of a natural number n and π(G) = π(|G|), where |G|
is the order of a group G; p is a prime. A group G is said to be p-nilpotent
if it has a normal p-complement. Given H < G, let HG =

⋂
x∈GH

x and HG

be the core and normal closure of H in G, respectively. If M is a subset of
G, then NG(M) and CG(M) is the normalizer and centralizer of M in G. Let
sk(G) (ck(G)) denote the number of subgroups (cyclic subgroups) of order pk

in G. Next, Epn is the elementary abelian group of order pn; Cm is the cyclic
group of order m; D2n , Q2n and SD2n are dihedral, generalized quaternion
and semidihedral group of order 2n, respectively. If G is a p-group, then
Ωn(G) = 〈x ∈ G | o(x) ≤ pn〉, f1(G) = 〈xpn | x ∈ G〉, where o(x) is the
order of x ∈ G. Next, G′, Z(G), Φ(G) is the derived subgroup, the center and
the Frattini subgroup of G; Sylp(G) and Hallπ(G) are the sets of p-Sylow and
π-Hall subgroups of G. We denote Oπ(G) the maximal normal π-subgroup of
G. Let Irr(G) be the set of complex irreducible characters of G. If H < G
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and µ ∈ Irr(H), then µG is the induced character and χH is the restriction of
a character χ of G to H .

Almost all prerequisites are collected in the following
Lemma J.

(a) (O. Schmidt; see [Hup, Satz 5.2]) If G is a minimal nonnilpotent group,
then G = PQ, where P ∈ Sylp(G) is cyclic and Q = G′ ∈ Sylq(G) is
either elementary abelian or special. If q > 2, then exp(Q) = q. If Q
is abelian, then Q ∩ Z(G) = {1} and exp(Q) = q. If Q is nonabelian,
then Q ∩ Z(G) = Z(Q).

(b) (Frobenius; see [Isa1, Theorem 9.18] + (a)) If G is not p-nilpotent, it
has a minimal nonnilpotent subgroup S such that S ′ ∈ Sylp(S).

(c) (Burnside; see [Isa1, Theorem 9.13]) If P ∈ Sylp(G) is contained in
Z(NG(P )), then G is p-nilpotent.

(d) (Tuan; see [Isa2, Lemma 12.12]) If a nonabelian p-group G possesses
an abelian subgroup of index p, then |G| = p|G′||Z(G)|.

(e) (Gaschütz; see [Hup, Hauptsatz 1.17.4(a)]) If P , an abelian normal
p-subgroup of G, is complemented in a Sylow p-subgroup of G, then P
is complemented in G.

(f) (see [Suz, Theorem 4.4.1]) If a nonabelian p-group G has a cyclic sub-

group of index p, then either G = 〈a, b | apn

= bp = 1, ab = a1+pn−1〉
with n > 2 for p = 2, or p = 2 and G is dihedral, semidihedral or
generalized quaternion.

(g) (see [Isa2, Lemma 2.27]) If a group G has a faithful irreducible char-
acter, then its center is cyclic.

(h) (Ito; see [Isa2, Theorem 6.15]) The degree of an irreducible character
of a group G divides the index of its abelian normal subgroup.

(i) (Chunikhin) If G = AB, A0 is normal in A and A0 ≤ B, then A0 ≤
BG.

(j) [Ber5, Proposition 19] If B is a nonabelian subgroup of order p3 of a
p-group G such that CG(B) < B, then G is of maximal class. In partic-
ular (Suzuki), if G has a subgroup U of order p2 such that CG(U) = U ,
then U is of maximal class.

(k) (Blackburn; see [Ber6, Theorem 9.6] If H ≤ G, where G is a p-group
of maximal class, then |H/f1(H)| ≤ pp.

1. Theorems of Sylow, Hall, Carter and so on

We prove Sylow’s Theorem in the following form:

Theorem 1.1. All maximal p-subgroups of a group G are conjugate and
their number is ≡ 1 (mod p) so, if P is a maximal p-subgroup of G, then p
does not divide |G : P |.
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Lemma 1.2 (Cauchy). If p ∈ π(G), then G has a subgroup of order p. In
particular, a maximal p-subgroup of G is > {1}.

Proof. Suppose that G is a counterexample of minimal order. Then
G has no proper subgroup C of order divisible by p and |G| 6= p. If G has
only one maximal subgroup, say M , it is cyclic. Indeed, if x ∈ G−M , then
〈x〉 is not contained in M so 〈x〉 = G. Then 〈xo(x)/p〉 < G is of order p,
a contradiction. If G is abelian and A 6= B are maximal subgroups of G,

then G = AB so |G| = |A||B|
|A∩B| , and p does not divide |G|, a contradiction.

If G is nonabelian, then |G| = |Z(G)| +
∑k

i=1 hi, where h1, . . . , hk are sizes
of noncentral G-classes. Since hi’s are indices of proper subgroups in G, p
divides hi for all i. Then p divides |Z(G)|, a final contradiction.

The set S = {Ai}ni=1 of subgroups of a group G is said to be invariant
if Axi ∈ S for all i ≤ n and x ∈ G. All members of the set S are conjugate if
and only if it has no nonempty proper invariant subset.

Lemma 1.3. Let S 6= ∅ be an invariant set of subgroups of a group G.
Suppose that whenever N 6= ∅ is an invariant subset of S, then |N| ≡ 1
(mod p). Then all members of the set S are conjugate in G.

Proof. Assume that S has a proper invariant subset N 6= ∅. Then
S − N 6= ∅ is invariant so |S| = |N| + |S − N| ≡ 1 + 1 6≡ 1 (mod p), a
contradiction. Thus, all members of S are conjugate in G.

Let P be a maximal p-subgroup of a group G and P1 a p-subgroup of
G. If PP1 ≤ G, then PP1 is a p-subgroup so P1 ≤ P . If P1 is also maximal
p-subgroup of G, then NP (P1) = P ∩ P1.

Proof of Theorem 1.1. One may assume that p divides |G|. Let S0 =
{P = P0, P1, . . . , Pr} be an invariant set of maximal p-subgroups of G; then
Pi > {1} for all i (Lemma 1.2). Let r > 0 and let P act on the set S0 − {P}
via conjugation. Then the size of every P -orbit on the set S0−{P} is a power
of p greater than 1 since the stabilizer of a ‘point’ Pi equals P ∩ Pi < P .
Thus, p divides r so |S0| = r + 1 ≡ 1 (mod p), and the first assertion follows
(Lemma 1.3). Then p does not divide |G : NG(P )|. Since P is a maximal
p-subgroup of NG(P ) = N , the prime p does not divide |N/P | (Lemma 1.2)
whence p does not divide |G : N ||N : P | = |G : P |.

Remark 1.1 (Frobenius). Let P be a p-subgroup of a group G and let
M = {P1, . . . , Pr} ⊂ Sylp(G)−{P} be P -invariant and P is not contained in
Pi for all i. Then |M| ≡ 0 (mod p) (let us P act on M via conjugation) so,
by Theorem 1.1, the number of Sylow p-subgroups of G, containing P , is ≡ 1
(mod p). Similarly, if P ∈ Sylp(G), then the number of p-subgroups of G of
given order that are not contained in P , is divisible by p (P acts on the set
of the above p-subgroups!).
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Remark 1.2 (Frobenius). Let M = {M1, . . . ,Ms} be the set of all sub-
groups of order pk in a group G of order pm, k < m. We claim that |M| ≡ 1
(mod p). Let Γ1 = {G1, . . . , Gr} be the set of all maximal subgroups of G.
Since the number of subgroups of index p in the elementary abelian p-group

G/Φ(G) of order, say pd, equals pd−1
p−1 = 1+p+ · · ·+pd−1 ≡ 1 (mod p), we get

|Γ1| ≡ 1 (mod p), so we may assume that k < m− 1. Let αi be the number
of members of the set M contained in Gi and βj be the number of members
of the set Γ1 containing Mj , all i, j. Then, by double counting,

α1 + · · · + αr = β1 + · · · + βs,

By the above, r ≡ 1 (mod p). By induction, αi ≡ 1 (mod p), all i. Next, βj
is the number of maximal subgroups in G/MjΦ(G) so βj ≡ 1 (mod p), all j.
By the displayed formula, |M| = s ≡ r ≡ 1 (mod p).

Remark 1.3 (Frobenius; see also [Bur, Theorem 9.II]). It follows from
Remarks 1.1 and 1.2 that the number of p-subgroups of order pk in a group
G of order pkm is ≡ 1 (mod p).

Remark 1.4. Suppose that S1,S2 ⊂ Sylp(G) are nonempty and disjoint.
Let Pi ∈ Si be such that the set Si is Pi-invariant, i = 1, 2; then |Si| ≡ 1
(mod p), i = 1, 2 (see the proof of Theorem 1.1). It follows that S2 is not
P1-invariant (otherwise, considering the action of P1 on S2 via conjugation,
we get |S2| ≡ 0 (mod p) since P1 6∈ S2).

Remark 1.5 (Burnside). Let G be a non p-closed group (i.e., Op(G) 6∈
Sylp(G)) and P ∈ Sylp(G). Suppose that Q ∈ Sylp(G)−{P} is such that the
intersection D = P ∩ Q is a maximal, by inclusion, intersection of Sylow p-
subgroups of G. We claim that N = NG(D) is not p-closed. Assume that this
is false. Then P1 ∈ Sylp(N) is normal in N . It follows from properties of p-
groups that P∩P1 > D andQ∩P1 > D so P1 is not contained in P . Therefore,
if P1 ≤ U ∈ Sylp(G), then U 6= P . However, P ∩Q = D < P ∩P1 ≤ P ∩U , a
contradiction.

The following assertion is obvious. If R is an abelian minimal normal
subgroup of G and G = HR, where H < G, then H is maximal in G and
H ∩ R = {1}.

Theorem 1.4 (P. Hall [Hal1]). If π is a set of primes, then all maximal
π-subgroups of a solvable group G are conjugate.

By Theorems 1.1 and 1.4, a maximal π-subgroup of a solvable group G is
its π-Hall subgroup, and this gives the standard form of Hall’s Theorem.

The proofs of Theorems 1.4, 1.6 and 1.7 are based on the following

Lemma 1.5 ([Ore]). If maximal subgroups F and H of a solvable group
G > {1} have equal cores, then they are conjugate.



SOME BASIC THEOREMS OF FINITE GROUP THEORY 211

Proof. One may assume that FG = {1}; then G is not nilpotent. Let R
be a minimal normal, say p-subgroup, of G; then RF = G = RH . Let K/R
be a minimal normal, say q-subgroup, of G/R, q is a prime. In that case, K
is nonnilpotent (otherwise, NG(K ∩ F ) > F so {1} < K ∩ F ≤ FG = {1})
hence q 6= p. Then F ∩K and H ∩K are nonnormal Sylow q-subgroups of K
hence they are conjugate (Theorem 1.1). It follows that then NG(F ∩K) = F
and NG(H ∩K) = H are also conjugate.

Proof of Theorem 1.4.1 We use induction on |G|. Let F and H be
maximal π-subgroups of G and R a minimal normal, say p-subgroup, of G.
If p ∈ π, then R ≤ F and R ≤ H , by the product formula and F/R, H/R
are maximal π-subgroups of G/R so they are conjugate, by induction; then
F and R are conjugate. Now assume that Oπ(G) = {1}; then p ∈ π′. Let
F1/R, H1/R be maximal π-subgroups of G/R containing FR/R, HR/R,
respectively; then F x1 = H1 for some x ∈ G and F1/R,H1/R ∈ Hallπ(G/R),
by induction. Assume that F1 < G. Then, by induction, F ∈ Hallπ(F1) as a
maximal π-subgroup of F1 so F1 = F · R. Similarly, H1 = H · R. Therefore,
F x ∈ Hallπ(H1). Then H = (F x)y = F xy for some y ∈ H1, by induction.
Now let F1 = G; then G/R is a π-group. Let K/R be a minimal normal, say
q-subgroup, of G/R; then q ∈ π. Let Q ∈ Sylq(K); then K = QR. By Frattini
argument, G = NG(Q)K = NG(Q)QR = NG(Q)R so NG(Q) ∈ Hallπ(G) is
maximal inG. Assume that FR < G. Then NG(Q)∩FR, as a π-Hall subgroup
of FR (product formula!), is conjugate with F , contrary to the choice of F .
Thus, FR = HR = G and FG = {1} = HG, by assumption. Then F and H
are conjugate maximal subgroups of G (Lemma 1.5).

Let us prove, for completeness, by induction on |G|, that a group G is
solvable if it has a p′-Hall subgroup for all p ∈ π(G) (Hall–Chunikhin; see
[Hal1,Chu]). Let Gp′ ∈ Hallp′(G), where p′ = π(G) − {p}, and let q ∈ p′. If
Gq′ ∈ Hallq′ (G), then Gp′ ∩ Gq′ ∈ Hallq′ (Gp′), by the product formula, so
Gp′ is solvable, by induction. Let R be a minimal normal, say r-subgroup
of Gp′ , r ∈ p′. In view of Burnside’s two-prime theorem, we may assume
that |π(G)| > 2, so there exists s ∈ π(G) − {p, r}; let Gs′ ∈ Halls′(G);
then G = Gp′Gs′ . By Theorem 1.1, one may assume that R < Gs′ ; then
R ≤ (Gs′)G (Lemma J(i)). Next, (Gs′ )G is solvable as a subgroup of Gs′ .
Thus, G has a minimal normal, say r-subgroup, which we denote by R again.
If R ∈ Sylr(G), then G/R ∼= Gr′ is solvable so is G. If R 6∈ Sylr(G), then
Gr′R/R ∈ Hallr′(G/R). Let q ∈ π(G) − {r}; then R < Gq′ so Gq′/R ∈
Hallq′(G/R). In that case, by induction, G/R is solvable, and the proof is
complete.

A subgroup K is said to be a Carter subgroup (= C-subgroup) of G if it
is nilpotent and coincides with its normalizer in G.

1This proof is independent of the Schur-Zassenhaus Theorem.
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Theorem 1.6 (Carter [Car]). A solvable group G possesses a C-subgroup
and all C-subgroups of G are conjugate.

Proof. We use induction on |G|. One may assume that G is not nilpo-
tent. Let R be a minimal normal, say p-subgroup, of G.

Existence. By induction, G/R contains a C-subgroup S/R so NG(S) = S.
Let T be a p′-Hall subgroup of S (Theorem 1.4); then TR is normal in S and
S = TP , where P ∈ Sylp(S). Set K = NS(T ); then K = T × NP (T ) is
nilpotent and KR = S (Theorem 1.4 and the Frattini argument). If y ∈
NS(K), then y ∈ NS(T ) = K since T is characteristic in K, and so NS(K) =
K. If x ∈ NG(K), then x ∈ NG(KR) = NG(S) = S so x ∈ NS(K) = K, and
K is a C-subgroup of G.

Conjugacy. Let K, L be C-subgroups of G; then KR/R, LR/R are C-
subgroups in G/R so, by induction, LR = (KR)x for some x ∈ G, and we
have Kx ≤ LR. One may assume that R is not contained in K; then RK
is nonnilpotent so R is not contained in L. If LR < G, then (Kx)y = L for
y ∈ LR, by induction. Now let G = LR; then G = KR so G/R is nilpotent,
and this is true for each choice of R. Thus, R is the unique minimal normal
subgroup of G so K and L are maximal in G and KG = LG; then they are
conjugate in G (Lemma 1.5).

Theorem 1.7. Let a nonnilpotent group G = N1 . . .Nk, where N1, . . . , Nk
are pairwise permutable and nilpotent. Then there exists i ≤ k such that
NG
i < G.

Lemma 1.8 ([Ore]). If G = AB, where A,B < G, then A and B are not
conjugate.

Proof. Assume that B = Ag for g ∈ G. Then g = ab, a ∈ A and b ∈ B,

so B = Aab = Ab and A = Bb
−1

= B, G = A, a contradiction.

Proof of Theorem 1.7.2 Let G be a minimal counterexample. By
[Keg], G is solvable. Let R < G be a minimal normal, say p-subgroup; then
G/R = (N1R/R) . . . (NkR/R), where all NiR/R are nilpotent. If G/R is
not nilpotent, we get (NiR)G < G for some i, by induction. Now let G/R be
nilpotent. Then, by hypothesis, we get, for all i, NiR = G so Ni is maximal in
G and R is the unique minimal normal subgroup of G, whence (Ni)G = {1}
for all i; in that case, N1, . . . , Nk are conjugate in G (Lemma 1.5). Then
NrNs = G for some r, s ≤ k, contrary to Lemma 1.8.

Supplement 1 to Lemma 1.5. If for arbitrary maximal subgroups F
and H of a group G with equal cores, we have π(|G : F |) = π(|G : H |), then
G is solvable.

2For k = 2, Theorem 1.7 was proved by Janko and Kegel [Keg], independently.
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Proof. Let G be a minimal counterexample. Since the hypothesis inher-
ited by epimorphic images, G has only one minimal normal subgroup R, and
R is nonsolvable. Let p ∈ π(R) and P ∈ Sylp(R). Let NG(P ) ≤ F < G, where
F is maximal in G. By Frattini’s Lemma, G = RF so |G : F | = |R : (F ∩R)|
and p 6∈ π(|G : F |). Let q ∈ π(|R : (F ∩ R|). Take Q ∈ Sylq(R) and
let NG(Q) ≤ H < G, where H is maximal in G. Then FR = G = HR so
FG = {1} = HG. However, q ∈ π(|G : F |) and q 6∈ π(|G : H |), a contradiction.

A group G is said to be p-solvable, if every its composition factor is either
p- or p′-number.

Supplement 2 to Lemma 1.5. Let G > {1} be a p-solvable group
with minimal normal p-subgroup R. Suppose that G possesses a maximal
subgroup H with HG = {1}. Then all maximal subgroups of G with core {1}
are conjugate.

Proof. By hypothesis, |π(G)| > 1. Let F be another maximal subgroup
of G with FG = {1}; then G = FR = HR and F ∩ R = {1} = H ∩ R. If
R ∈ Sylp(G), we are done (Schur-Zassenhaus). Now let p ∈ π(G/R); then
G/R is not simple: p ∈ π(G/R). Let K/R be a minimal normal subgroup of
G/R. Then, as in the proof of Lemma 1.5, |π(K)| > 1 so, taking into account
that G/R is p-solvable, we conclude that K/R is a p′-subgroup. In that case,
F ∩K and H∩K as p′-Hall subgroups of K, are conjugate (Schur-Zassenhaus)
so H = NG(F ∩K) and F = NG(H ∩K) are also conjugate.

Supplement 3 to Lemma 1.5 [Gas]. Let M be a minimal normal
subgroup of a solvable group G. Suppose that K1 and K2 are complements
of M in G such that K1 ∩ CG(M) = K2 ∩ CG(M). Then K1 and K2 are
conjugate in G.

Proof.3 It follows from KiM = G, that Ki maximal in G, i = 1, 2.
We have Ki ∩M = {1} so (Ki)G ≤ CG(M), i = 1, 2. By the modular law,
CG(M) = M × CKi(M) so CKi(M) = (Ki)G, i = 1, 2. Then, by hypothesis,
(K1)G = (K2)G so K1 and K2 are conjugate in G, by Lemma 1.5.

2. Groups with a cyclic Sylow p-subgroup

Here we prove two results on groups with a cyclic Sylow p-subgroup.

Theorem 2.1.4 Let P ∈ Sylp(G) be cyclic. If H is normal in G and p

divides (|H |, |G : H |), then H is p-nilpotent and G is p-solvable5.

Suppose that P ∈ Sylp(G) is cyclic.

3Compare with [Weh, Theorem 3.7]
4Compare with [Wie1]
5It is easy to deduce from this that the p-length of G equals 1.
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Remark 2.1. Suppose, in addition, that p divides |Z(G)|. Set N =
NG(P ). Since N has no minimal nonnilpotent subgroup S with S ′ ∈ Sylp(N)
(Lemma J(a,b)), it is p-nilpotent so P ≤ Z(N). In that case, G is p-nilpotent
(Lemma J(c)).

Remark 2.2. Suppose that G, p, P and H are as in Theorem 2.1 and that
P1 = P ∩H is normal in H so in G. Let T ∈ Hallp′(H) (Schur-Zassenhaus);
then H = P1T , G = HNG(T ) = P1NG(T ) (Schur-Zassenhaus and Frattini
argument). Let P2 ∈ Sylp(NG(T )); then P1P2 ∈ Sylp(G) is cyclic and P2 >
{1} so P1 ∩ P2 > {1}. We have CH(P1 ∩ P2) ≥ P1T = H so H is p-nilpotent,
by Remark 2.1.

Remark 2.3. If {1} < H < G and R ≤ Φ(H) is normal in G, then
R ≤ Φ(G). Indeed, assuming that this is false, we get G = RM for some
maximal subgroup M of G. Then, by the modular law, H = R(H ∩M) so
H = H ∩M . In that case, R < H ≤M , a contradiction.

Remark 2.4. If H is normal in G and G = AH , where A is as small as
possible, then A ∩ H ≤ Φ(A). Indeed, if this is false, then A = B(A ∩ H),
where B < A is maximal. Then G = AH = B(A ∩H)H = BH , contrary to
the choice of A.

Proof of Theorem 2.1. By the product formula, P1 = P ∩ H ∈
Sylp(H). Set N = NG(P1); then P ≤ N . Set N1 = NH(P1) = N ∩ H .
Then, by Remark 2.2 applied to the pair N1 < N , we get N1 = P1 ×T , where
T ∈ Hallp′(N1), and so H is p-nilpotent (Lemma J(c)). By Frattini’s Lemma,
G = HN so G/H ∼= N/(N ∩H) = N/N1; therefore, it remains to prove that
N/N1 is p-solvable. To this end, we may assume that N = G; then P1 is
normal in G. In that case, G/CG(P1) as a p′-subgroup of Aut(P1), is cyclic of
order dividing p− 1. By Remark 2.1, CG(P1) is p-nilpotent, and we conclude
that G is p-solvable6.

Theorem 2.2 ([Hal3, Theorem 4.61]). If P ∈ Sylp(G) is cyclic of order

pm and k ≤ m, then ck(G) ≡ 1 (mod pm−k+1).

Proof. Let C = {Z1, . . . , Zr} be the set of subgroups of order pk in G
not contained in P . Let P act on C via conjugation. The P -stabilizer of Zi
equals P ∩ Zi which is of order pk−1 at most. It follows that r = |C| ≡ 0
(mod pm−(k−1)).

3. Groups with a normal Hall subgroup

R. Baer [Bae] has proved that if P ∈ Sylp(G) is normal in G, then P ∩
Φ(G) = Φ(P ).

6Since H∩P ≤ Φ(G), then, by deep Tate’s Theorem [Hup, Satz 4.4.7], H is p-nilpotent.



SOME BASIC THEOREMS OF FINITE GROUP THEORY 215

Theorem 3.1. If H is a normal Hall subgroup of a group G, then H ∩
Φ(G) = Φ(H).

Proof. We have Φ(H) ≤ H∩Φ(G), by Remark 2.3. To prove the reverse
inclusion, it suffices, assuming Φ(H) = {1}, to show thatD = H∩Φ(G) = {1}.
Assume, however, that D > {1}. Then D = P × L for some {1} < P ∈
Sylp(D). Considering the pair D/Φ(P )L < G/Φ(P )L, one may assume that
Φ(P )L = {1}; then D = P is elementary abelian normal subgroup of G. Let
T < H be minimal such that PT = H . Then P ∩ T ≤ Φ(T ), by Remark 2.4,
and NH(P ∩ T ) ≥ PT = H so P ∩ T ≤ Φ(H) = {1}, by Remark 2.3. If
P ≤ P0 ∈ Sylp(H)(= Sylp(G)), then P0 = P (P0 ∩ T ), by the modular law, so
P is complemented in P0. Then, by Lemma J(e), P is complemented in G so
P is not contained in Φ(G), a contradiction.

4. Subgroup generated by some minimal nonabelian subgroups

Let p ∈ π(G) and let Ap(G) be the set of all minimal nonabelian sub-
groups A of G such that A′ is a p-subgroup (in that case, A is either a
p-group or minimal nonnilpotent). Set Lp(G) = 〈H | H ∈ Ap(G)〉 and
L(G) =

∏
p∈π(G) Lp(G). It is known [Ber1] that L(G) = G if G is a non-

abelian p-group and G′ ≤ L(G) for arbitrary G.

Theorem 4.1. Given a group G, the quotient group G/Lp(G) is p-
nilpotent and has an abelian Sylow p-subgroup.

Proof. Let P ∈ Sylp(G). We may assume that P is not contained
in Lp(G); then P is abelian. Assume that G/Lp(G) is not p-nilpotent.
Then G/Lp(G) has a minimal nonnilpotent subgroup H/Lp(G) such that
(H/Lp(G))′ is a p-subgroup (Lemma J(b)). Let T ≤ H be minimal
such that TLp(G) = H ; then T ∩ Lp(G) ≤ Φ(T ), by Remark 2.4, and
T/(T ∩ Lp(G)) ∼= H/Lp(G). Using properties of Frattini subgroups and
Lemma J(a), we get T = Q · P0, where P0 = T ′ ∈ Sylp(T ), Q ∈ Sylq(T )
is cyclic and |Q : (Q ∩ Z(T ))| = q. Since P0 is abelian and indices of mini-
mal nonabelian subgroups in T are not multiples of q and Sylow q-subgroups
generate T , we get T = Lp(T ) ≤ Lp(G), a contradiction.

5. Simplicity of An, n > 4

Here we prove the following classical.

Theorem 5.1 (Galois). The alternating group G = An, n > 4, is simple.

If n > 4 and a permutation x ∈ S#
n is of cycle type (1a1 , 2a2 , . . . , nan),

then |CSn
(x)| =

∏n
i=1(ai)!i

ai ≤ 2(n − 2)! with equality if and only if x is a
transposition.

Let G be a 2-transitive permutation group of degree n, n > 2, and let H
be a stabilizer of a point in G; then |G : H | = n. Assume that H < M < G.
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If M is transitive, we get |M : H | = n so M = G, a contradiction. Then M
has an orbit of size n − 1 since H has so M is a stabilizer of a point in G,
a final contradiction. Thus, H is maximal in G so G is primitive. We have
HG = {1} since HG fixes all points.

Proof of Theorem 5.1. We proceed by induction on n. If n = 5, G
is simple since, by Lagrange, a nontrivial subgroup of G is not a union of
G-classes (indeed, sizes of G-classes are 1, 12, 12, 15, 20). Let n > 5 and let
H be the stabilizer of a point; then H ∼= An−1 is maximal and nonnormal in
G and nonabelian simple, by induction. Then H has no proper subgroup of
index < n − 1 since H is not isomorphic with a subgroup of An−2. Assume
that G has a nontrivial normal subgroup N ; then |N | = n since NH = G and
N ∩H = {1} (H is simple!). Let H act on the set N# via conjugation. The
H-stabilizer C = CH(x) of a ‘point’ x ∈ N# has index ≤ |N#| = n− 1 in H .
Assume that |H : C| < n−1. Then, by what has just been said, H centralizes
x so |CG(x)| ≥ |H | · o(x) ≥ 2 · 1

2 (n − 1)! > 2(n− 2)!, a contradiction. Thus,

|H : C| = n − 1 so |C| = 1
2 (n − 2)!. Then all elements of N# are conjugate

under H so N is an elementary abelian p-subgroup for some prime p. If
x ∈ N#, then. since n ≥ 6, we get |CG(x)| ≥ |N |·|C| = n· 12 (n−2)! > 2(n−2)!,
a final contradiction.

Let us prove Theorem 5.1 independently of the paragraph preceding its
proof. Beginning with the place where N is an elementary abelian p-group of
order, say pr(= n), we get CG(N) = N since H is not normal in G. Then H
is isomorphic to a subgroup of the group Aut(N) ∼= GL(r, p), so |H | divides
the number

(pr−1)(pr−p) . . . (pr−pr−1) = (n−1)(n−p) . . . (n−pr−1) <
1

2
(n−1)! = |H |,

a contradiction since r > 1 and n > 4.
Here is the third proof of Theorem 5.1. Let N be a group of order n > 4.

We claim that |Aut(N)| < 1
2 (n − 1)!. Indeed, let n1, . . . , nr be the sizes of

Aut(N)-orbits on N#; then Aut(N) is isomorphic to a subgroup of Sn1 ×· · ·×
Snr

, and the result follows if r > 1. If r = 1, all elements of N# are conjugate
under Aut(N), and we get a contradiction as in the previous paragraph.

Suppose that G, a group of order n!, n > 4, has a subgroup H of index
≤ n + 1; then G is not simple. Assume that this is false. Then G ≤ An+1

since G is simple. In that case, |An+1 : G| ≤ 1
2 (n+ 1), a contradiction since,

by Theorem 5.1, An+1 has no proper subgroup of index < n + 1. (Compare
with [Isa1, Example 6.14].)

6. Theorems of Taussky and Kulakoff

The following two theorems have many applications in p-group theory.
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Theorem 6.1 (Taussky). Let G be a nonabelian 2-group. If |G : G′| = 4,
then G contains a cyclic subgroup of index 2 7.

Proof. We use induction on m, where |G| = 2m. One may assume that
m > 3. Let R ≤ G′ ∩ Z(G) be of order 2. Then G/R has a cyclic subgroup
T/R of index 2, by induction. Assume that T is noncyclic. Then T = R×Z,
where Z is cyclic of order 2m−2 > 2 so, since m > 3 and G/ZG is isomorphic
to a subgroup of D8, we get ZG > {1}. We have R × Ω1(ZG) ≤ Z(G) so
|Z(G)| ≥ 4. By Lemma J(d), |G : G′| = 2|Z(G)| ≥ 2 · 4 = 8, a contradiction.
The last assertion now follows from Lemma J(f).

Here is another proof of Theorem 6.1. Since Φ(G) = f1(G), it suffices
to prove that Φ(G) is cyclic. Assume that this is false. Then Φ(G) has a
G-invariant subgroup T such that Φ(G)/T is abelian of type (2, 2). By [BZ,
Lemma 31.8], Φ(G/T ) ≤ Z(G/T ) so G/T is minimal nonabelian. In that case,
|(G/T ) : (G/T )′| = 8 (Lemma 16.1, below), a contradiction.

Next we offer the proof of Kulakoff’s Theorem [Kul] independent of Hall’s
enumeration principle, fairly deep combinatorial assertion (Kulakoff consid-
ered only the case p > 2; our proof also covers the case p = 2).

Remark 6.1. Let H be normal subgroup of a p-group G. If H has no
normal abelian subgroup of type (p, p), it is cyclic or a 2-group of maximal
class. Indeed, let A be a maximal G-invariant abelian subgroup in H ; then
A is cyclic. Suppose that A < H and let B/A be a G-invariant subgroup of
order p in H/A. Then B has no characteristic abelian subgroup of type (p, p)
so, by Lemma J(f), B is a 2-group of maximal class. Assume that B < H .
Then |A| > 4 since |H | > 8 and CH(A) = A. Let V = CH(Ω2(A)); then
|H : V | = 2 since Ω2(A) is not contained in Z(H). Let B1/A ≤ V/A be
G-invariant of order 2. Then B1 is not of maximal class, contrary to what
has just been proved.

Remark 6.2. If a p-group G is neither cyclic nor a 2-group of maximal
class, then c1(G) ≡ 1 + p (mod p2) and ck(G) ≡ 0 (mod p) if k > 1. Indeed,
G has a normal abelian subgroup R of type (p, p), by Remark 6.1. If G/R is
cyclic, the result follows easily since then Ω1(G) ∈ {Ep2 ,Ep3}. Now let T/R
be normal in G/R such that G/T ∼= Ep2 and let M1/T, . . . ,Mp+1/T be all
subgroups of order p in G/T . It is easy to check that

(1) cn(G) = cn(M1) + · · · + cn(Mp+1) − pcn(T ).

Next we use induction on |G|. Let |G| = p4. If |Z(G)| = p2, then, taking
T = Z(G) in (1), we get what we wanted. Let |Z(G)| = p; then CG(R) = M1

is the unique abelian subgroup of index p in G so, using (1), we get the desired

7In particular, G is dihedral, generalized quaternion or semidihedral, and these groups
exhaust the 2-groups of maximal class.



218 Y. BERKOVICH

result. Now we let |G| > p4. Then all Mi are neither cyclic nor of maximal
class, and, using induction and (1), we complete the proof.

Remark 6.3. Let G be a p-group and N ≤ Φ(G) be G-invariant. Then,
if Z(N) is cyclic so is N . Assume that this is false. Then N has a G-invariant
subgroup R of order p2. Considering CG(R), we see that R ≤ Z(Φ(G)) so
R ≤ Z(N) and N is not of maximal class. Now the result follows from
Remark 6.1.

Remark 6.4. (P. Hall, 1926, from unpublished dissertation). If all abelian
characteristic subgroups of a nonabelian p-group G are of orders ≤ p, then G
is extraspecial. Indeed, it follows from Remark 6.3 that |Φ(G)| = p = |Z(G)|
so G′ = Φ(G) = Z(G).

Lemma 6.2. Let G be a noncyclic group of order pm and R a subgroup of
order p in Z(G) and k > 1. Then the number of cyclic subgroups of order pk

containing R, is divisible by p, unless G is a 2-group of maximal class.

Proof. Let C be the set of all cyclic subgroups of order pk in G, let C+

be the set of all elements of the set C that contain R and set C− = C−C+.
If Z ∈ C−, then RZ = R× Z has exactly p cyclic subgroups of order pk not
containing R. It follows that p divides |C−|. By Remark 6.2, p divides |C|.
Then p divides |C+| = |C| − |C−|.

Lemma 6.3. For a p-group G, p3 ≤ |G| ≤ p4, which is neither cyclic nor
a 2-group of maximal class, we have s2(G) ≡ 1 + p (mod p2).

Proof. This is trivial (see Remark 6.2).

Theorem 6.4.8 Let G be neither cyclic nor a 2-group of maximal class,
|G| = pm and 1 ≤ k < m. Then sk(G) ≡ 1 + p (mod p2).

Proof. We use induction on m. For k = m − 1 the result is trivial.
For k = 1 the result follows from Remark 6.2. Therefore, one may assume
that 1 < k < m − 1 and m > 4 (see Lemma 6.3). In view of Lemma J(f),
we may assume that G has no cyclic subgroup of index p. Let M be the
set of all subgroups of order pk in G. Let R ≤ Z(G) be of order p. Let
M+ = {H ∈ M | R < H} and put M− = M−M+.

Let G/R be a 2-group of maximal class and let Z/R be a cyclic subgroup
of index 2 in G/R; then Z is abelian of type (2m−2, 2). Replacing R by
the subgroup R1 of order 2 in Φ(Z), we see that G/R1 is not of maximal
class. So suppose from the start that G/R is not of maximal class. Then,
by induction, |M+| = sk−1(G/R) ≡ 1 + p (mod p2). It remains to prove
that |M−| ≡ 0 (mod p2) since |M| = |M+| + |M−|. Let H/R < G/R be
of order pk. If R < Φ(H), then H has no members of the set M−. Now
let R is not contained in Φ(H); then H = R × A with A ∈ M−. If A

8[Kul] for p > 2, [Ber3] for p = 2.
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is cyclic, H contains exactly p members of the set M−. Then, by Lemma
6.2 and Remark 6.2, converse images in G of cyclic subgroups of G/R of
order pk contribute in |M−| a multiple of p2. Now let A be noncyclic with
d(A) = d; then the number of members of the set M− contained in H , equals
(1 + p+ · · · + pd) − (1 + p+ · · · + pd−1) = pd > p (here 1 + p+ · · ·+ pd is the
number of maximal subgroups of H and 1 + p+ · · · + pd−1 is the number of
maximal subgroups of H containing R). Then |M−| ≡ 0 (mod p2).

7. Characterization of p-nilpotent groups

We need the following

Lemma 7.1. Let a p-subgroup P0 be normal in a group G. If, for each
x ∈ P0, |G : CG(x)| is a power of p, then P0 ≤ H(G), the hypercenter of G
(= the last member of the upper central series of G).

Proof. Let P0 ≤ P ∈ Sylp(G) and x ∈ (P0 ∩ Z(P ))#; then x ∈ Z(G),

by hypothesis. Set X = 〈x〉. Take yX ∈ (P0/X)# and set Y = 〈y,X〉. Let
r ∈ π(G) − {p} and R ∈ Sylr(CG(y)); then R ∈ Sylr(G), by hypothesis, so
R centralizes Y = 〈y,X〉. It follows that RX/X ≤ CG/X(yX), so r does not
divide d = |(G/X) : CG/X(yX)|. Since r 6= p is arbitrary, d is a power of p,
and the pair P0/X ≤ G/X satisfies the hypothesis. Now the result follows by
induction on |G|.

Remark 7.1 (Wielandt). Let x ∈ G# be a p-element and |G : CG(x)|
a power of p. Then G = CG(x)P , where x ∈ P ∈ Sylp(G), and so x ∈ PG
(Lemma J(i)).

Theorem 7.2 ([BK]). A group G is p-nilpotent if and only if for each p-
element x ∈ G of order ≤ pµp , where µp = 1 for p > 2 and µ2 = 2, |G : CG(x)|
is a power of p.

Proof. By Remark 7.1, the subgroup Op(G) contains all p-elements of
orders ≤ pµp in G. Assume that G is not p-nilpotent. Then G has a minimal
nonnilpotent subgroup S such that S ′ ∈ Sylp(S) (Lemma J(b)). Let a be
a generator of nonnormal, say, q-Sylow subgroup of S. Then SOp(G) =
〈a〉Op(G) since S′ ≤ Op(G) (Lemma J(a) and Remark 7.1). Let T be the
Thompson critical subgroup of Op(G) (see [Suz, page 93, Exercise 1(b)]).
Then a induces a nonidentity automorphism on T so 〈a〉T possesses a minimal
nonnilpotent subgroup (Lemma J(b)) which we denote S again. Set P0 =
Ωµp

(T ). It follows from P0 ≤ H(G) (Lemma 7.1) that a centralizes P0, a
contradiction since S′ ≤ P0.
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8. On factorization theorem of Wielandt-Kegel

Wielandt and Kegel [Wie2, Keg] have proved that a groupG = AB, where
A and B are nilpotent, is solvable. Below, using the Odd Order Theorem, we
prove the following

Theorem 8.1 ([Ber2]). Let a group G = AB, where (|A|, |B|) = 1. Let
A = P × L, where P ∈ Syl2(G) and let B be nilpotent. Then G is solvable.

Recall that a subgroup K of G = AB is said to be factorized if K =
(K ∩A)(K ∩B). If, in addition, (|A|, |B|) = 1 and K is normal in G, then K
is factorized always.

Lemma 8.2 ([Wie2]). Let G = AB, (|A|, |B|) = 1, A0 is normal in A and
B0 is normal in B. Then subgroups H = 〈A0, B0〉 and NG(H) are factorized.

Proof. Let x = ab−1 ∈ NG(H) (a ∈ A, b ∈ B); then Ha = Hxb = Hb.
We have A0 = Aa0 ≤ Ha, B0 = Bb0 ≤ Hb = Ha so H = 〈A0, B0〉 ≤ Ha = Hb.
Then Ha = H = Hb, a ∈ NA(H) = NG(H) ∩ A, b ∈ NB(H) = NG(H) ∩ B
hence NG(H) ≤ (NG(H)∩A)(NG(H)∩B) ≤ NG(H), and NG(H) is factorized.
Next, H is normal in NG(H) and (|NG(H)| ∩ A, |NG(H) ∩ B|) = 1 so H =
(H ∩ NG(H) ∩ A)(H ∩ NG(H) ∩B) = (H ∩ A)(H ∩ B).

If K and L are Hall subgroups of a solvable group X , then KLu = LuK
for some u ∈ X . Indeed, set σ = π(K) ∪ π(L) and let K ≤ H , where
H ∈ Hallσ(X) (Theorem 1.4). By Theorem 1.4 again, Lu ≤ H for some
u ∈ X . Now KLu = H , by the product formula.

Lemma 8.3 ([Wie2]). Suppose that A,B < G are such that ABg = BgA
for all g ∈ G. If G = AGB = ABG, then G = ABg for some g ∈ G.

Proof. Let A be not normal in G (otherwise, G = AGB = AB). Then
A 6= Ax for some x = bg, where b ∈ B and g ∈ G. We have A < A∗ = 〈A,Ax〉
and A∗Bg = BgA∗ for all g ∈ G. Working by induction on |G : A|, we get
G = A∗Bg . However, A∗Bg = 〈A,Ax, Bg〉 = 〈A,Bg〉 = ABg .

Remark 8.1 ([Keg]). If A,B < G and ABg = BgA < G for all g ∈ G,
then either AG < G or BG < G. Indeed, if AG = G = BG, then G = ABg

for some g ∈ G (Lemma 8.3), contrary to the hypothesis.

Lemma 8.4 (Wielandt). Let A = P × Q be a nilpotent Hall subgroup
of G, P ∈ Sylp(G), Q ∈ Sylq(G), p and q are distinct primes. Then every
{p, q}-subgroup of G is nilpotent.

Proof. We use induction on |G|. Suppose that H is a nonnilpotent
{p, q}-subgroup of minimal order in G. Then H is minimal nonnilpotent
so, say H = P1 · Q1, where P1 ∈ Sylp(H), Q1 = H ′ ∈ Sylq(H) (Lemma
J(a)). We may assume that Q1 ≤ Q and NQ(Q1) ∈ Sylq(NG(Q1)) (Theorem
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1.1). However, P < NG(Q1) so NA(Q1) is a nilpotent {p, q}-Hall subgroup of
NG(Q1), by induction. Since the nonnilpotent {p, q}-subgroup H ≤ NG(Q1),
we get NG(Q1) = G, by induction, and so Q1 is normal in G hence CG(Q1)
is also normal in G. Then p does not divide |G : CG(Q1)|, i.e., all p-elements
of G centralize Q1. In that case, H is nilpotent, a contradiction.

Recall that a group, generated by two noncommuting involutions, is di-
hedral.

Proof of Theorem 8.1. Suppose that G is a counterexample of mini-
mal order. Then P > {1}, by Odd Order Theorem, and all proper factorized
subgroups and epimorphic images of G are solvable. Since all proper normal
subgroups and epimorphic images are products of two nilpotent groups of co-
prime orders so solvable, G must be simple. Then, by Burnside’s pα-Lemma
[Isa2, Theorem 3.8], L 6= {1} and |π(B)| > 1.

(i) Assume that, for A0 ∈ {P,L} and {1} < B0 ∈ Syl(B), we have H =
〈A0, B0〉 < G. Then, by Lemma 8.2, H is factorized so solvable. By virtue of
paragraph, following Lemma 8.2, one may assume that H = A0B0 = B0A0.
Let g = ba ∈ G, where a ∈ A and b ∈ B. We have

(2) A0B
g
0 = A0B

ba
0 = A0B

a
0 = (A0B0)a = (B0A0)a = Bba0 A0 = Bg0A0.

Since A0B
g
0 < G, by the product formula, G is not simple, by Remark 8.1, a

contradiction. Thus, H = G.
(ii) Let u ∈ Z(P ) be an involution, r ∈ π(B) and R ∈ Sylr(B). Set

H = 〈u,R〉 and assume that H < G. By Lemma 8.2, H is factorized so
solvable. Let F be a {2, r}-Hall subgroup of H containing R. Replacing A by
its appropriate G-conjugate, one may assume that u ∈ P0 ∈ Syl2(A∩F ); then
F = P0R. Let M be a minimal normal subgroup of F ; then either M ≤ P0 or
M ≤ R. In the first case, NG(M) ≥ 〈L,R〉 = G, by (i), a contradiction. Now
assume that M ≤ R. Then NG(M) ≥ T = 〈u,B〉 so G = AT . By Lemma
J(i), 1 6= u ∈ TG, a contradiction.

(iii) Let u ∈ Z(P ) be an involution. We claim that CG(u) = A. Assume
that this is false. By the modular law, CG(u) is factorized so solvable, and
CB(u) contains an element b of prime order, say q. Then CG(b) ≥ H = 〈u,R〉,
where R ∈ Sylr(B) for some r ∈ π(B) − {q}. In that case, H < G, contrary
to (ii).

(iv) Let u ∈ Z(P ) and v ∈ G be distinct involutions. Assume that D =
〈u, v〉 is not a 2-subgroup; then D is dihedral with |π(D)| > 1 and u 6∈ Z(D).
Let {1} < T < D, |T | = p ∈ π(D) − {2}; then 〈u〉 · T is dihedral of order 2p.
By Lemma 8.4, 2p does not divide |A| so we may assume that T < B. Let
{1} < Q ∈ Sylq(B) with q ∈ π(B) − {p}. Then NG(T ) ≥ 〈u,Q〉 = G, by (i),
a contradiction.

(v) Let u and v be as in (iv). Then, by (iv), there is g ∈ G such that
〈u, v〉 ≤ P g < Ag = P g × Lg so Lg < CG(u) = A, by (iii). Then Lg = L
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and v ∈ CG(L) < G. Thus, CG(L) contains all involutions v of G so G is not
simple, a final contradiction9.

Theorem 8.5 ([Keg]). If a group G is a product of two nilpotent sub-
groups, it is solvable.

Proof. Suppose that G = AB, where A and B are nilpotent, is a min-
imal counterexample; then some prime p ∈ π(A) ∩ π(B) (Theorem 8.1). Let
A0 ∈ Sylp(A) and B0 ∈ Sylp(B). Replacing, if necessary, B by its conjugate,
one may assume that K = 〈A0, B0〉 ≤ P ∈ Sylp(G). Clearly, K ∩A = A0 and
K ∩B = B0 so, since K is factorized (Lemma 8.2), we get K = A0B0. As in
part (i) of the proof of Theorem 8.1, we get A0B

g
0 = Bg0A, all g ∈ G, and this

is a proper subgroup of G. By Remark 8.1, one may assume that AG0 < G. By
induction, G has no nontrivial solvable normal subgroup. Therefore, since, by
the modular law, AG0 A and AG0 B are factorized, we get AG0 A = G = AG0 B.
It follows that p does not divide |G : AG0 | so PG = AG0 . Let A0 ≤ C0 < AG0 ,
where C0 is a maximal p-subgroup of AG0 permutable with all conjugates of
B0. As above, PG = BG0 so AG0 = BG0 ; denote this subgroup by H . It follows
that By0 does not normalizes C0 for some y ∈ H so there exists x ∈ By0 such
that Cx0 6= C0. Set T = 〈C0, C

x
0 〉(> C0). Since T ≤ H is permutable with all

conjugates of B0, it follows from the choice of C0 that T is not a p-subgroup.
Since TBy0 = 〈C0, C

x
0 , B

y
0 〉 = 〈C0, B

y
0 〉 = C0B

y
0 = By0C0 is a p-subgroup, we

get a contradiction.

9. A solvability criterion

The following nice theorem is known in the case where M is solvable.

Theorem 9.1. Let {1} < N be normal in G and let M be a maximal
subgroup of G with MG = {1}. If {1} < T is a minimal normal p-subgroup
of M for some prime p and M ∩ N = {1}, then N is solvable.

Proof.10 Clearly, N is a minimal normal subgroup of G. Since M ≤
NG(T ) < G, we get NG(T ) = M and so NTN(T ) = T 11. It follows that T ∈
Sylp(TN) so N is a p′-subgroup (Theorem 1.1). Let r ∈ π(N). By Theorem
1.1, p does not divide |Sylr(N)| so there exists a T -invariant R ∈ Sylr(N).

Assume that there is another T -invariant R1 ∈ Sylr(N); then R1 = Rx

for some x ∈ N (Theorem 1.1). Hence both T and T x normalize R1 so
〈T, T x〉 ≤ NTN(R1). Note that T, T x ∈ Sylp(TN) so T, T x ∈ Sylp(NTN(R1)).

9Repeating, word for word, the proof of Theorem 8.1, we get the following result (A.N.
Fomin). Let G = AB, where (|A|, |B|) = 1, A = P × L with P ∈ Syl2(G) and B = Q × M

with Q ∈ Sylq(G), q is a prime. Then G is q-solvable.
10I am indebted to Janko who reported me this proof.
11It follows from the classification of finite simple groups, that N is solvable, and we

are done. However, we want to give an elementary proof.
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By Theorem 1.1, T z = T x for some z ∈ NTN(R1). By the modular law,
NTN(R1) = TNN(R1) so z = tx0 for some t ∈ T and x0 ∈ NN(R1). We have
T x = T z = T tx0 = T x0 , and so x0x

−1 ∈ NN(T ) = {1}. Hence x = x0. We

get R1 = Rx = Rx0 so R = R
x−1
0

1 = R1, a contradiction.
Take y ∈ M . Since T normalizes R then T y = T also normalizes Ry. By

the previous paragraph, Ry = R, so M normalizes R. Since M is maximal in
G, we get MR = G so R = N and N is solvable.

Example 9.2. Let G = A×N. where A and N are isomorphic nonabelian
simple groups, and let M be a diagonal subgroup of G. Then M ∼= A is
maximal in G so G = MN, M ∩N = {1} and N is nonsolvable. We also have
MG = {1}.

10. Abelian subgroups of maximal order in the
symmetric group Sn

Now we prove the following

Theorem 10.1.12 Let G ≤ Sn be abelian of maximal order, where n =
k + 3m with k ≤ 4. Then G = A × Z1 × · · · × Zm, where A,Z1, . . . , Zm are
regular of degrees k, 3, . . . , 3 (m times), respectively13.

Lemma 10.2. Let A be a maximal abelian subgroup of G = H1 ×· · ·×Hr.
Then A = (A ∩H1) × · · · × (A ∩Hr).

Proof. Let Ai be the projection of A into Hi, i = 1, . . . , r. Then A ≤
B = A1 × · · · × Ar so A = B since B is abelian and A is maximal abelian.
Since Ai = A ∩Hi for all i, we are done.

Proof of Theorem 10.1. If G is transitive, it is regular of order n since
the G-stabilizer of a point equals {1}. If n > 4, Sn has an abelian subgroup
of order 2(n− 2) > n, a contradiction. Thus, if G is transitive, then n ≤ 4.

Let G be intransitive. Then {1, . . . , n} = Ω1 ∪ · · · ∪Ωr is the partition in
G-orbits, r > 1, soG ≤W = SΩ1×· · ·×SΩr

, where SΩi
is the symmetric group

on Ωi, i = 1, . . . , r. By Lemma 10.2, G = T1 × · · · × Tr, where Ti = G ∩ SΩi

is a regular abelian subgroup of SΩi
. By the previous paragraph, |Ti| ≤ 4.

Assume that |T1| = |T2| = 4. Then SΩ1∪Ω2 has an abelian subgroup B of
order 18 contained in S2 × S3 × S3, and this is a contradiction since then
|G| < |B×T3×· · ·×Tr|. If |T1| = 2 and |T2| = 4, then SΩ1∪Ω2 has an abelian
subgroup B of order 9 contained in S3 × S3, and this is a contradiction since
then |G| < |B × T3 × · · · × Tr|. Similarly, equalities |T1| = |T2| = |T3| = 2 are
impossible.

12Compare with [BM]
13Thus, if not all abelian subgroups of maximal order are conjugate in Sn, then k = 4

and Sn contains exactly two classes of such subgroups.
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11. Characterization of simple groups

Let δ(G) be the minimal degree of a faithful representation of a group
G by permutations. If G ≤ Sδ(G), then G has no one-element orbit. Given
G > {1}, let i(G) = min {|G : H | | H < G}. For G = {1}, we set i(G) = 1.
Then δ(G) ≥ i(G) with equality if G is simple. If H < G is normal, then
i(G/H) ≥ i(G); if, in addition, H ≤ Φ(G), then i(G/H) = i(G). The size of
each non one-element G-orbit is at least i(G). It follows that G ≤ Sδ(G) is
transitive if δ(G) < 2i(G); moreover, in that case the G-stabilizer of a point
is maximal in G.

Theorem 11.1 ([Ber4]). A group G > {1} is simple if and only if δ(G) =
i(G)14.

Proof. If G is simple, then i(G) = δ(G). Now assume that δ(G) = i(G)
but G has a nontrivial normal subgroup N . Let G ≤ Sδ(G) and H the G-
stabilizer of a point; then |G : H | = δ(G), H is maximal in G and G is
transitive. We have HN = G since HG = {1}. Let A ≤ H be minimal such
that G = AN ; then A > {1}. Let A1 be the A-stabilizer of a point moved by
A; then A1 < A and |A : A1| ≤ δ(H) < δ(G) = i(G). By the choice of A, we
have A1N < G so |G : A1N | ≥ i(G) > |A : A1|. On the other hand,

|G : A1N | = |AN : A1N | =
|A||N ||A1 ∩N |
|A ∩N ||A1||N |

= |A : A1|
|A1 ∩N |
|A ∩N | ≤ |A : A1| < i(G),

a final contradiction.

Theorem 11.2 ([Ber4]). If, for a group G, we have δ(G) = i(G)+1, then
one of the following holds:

(a) G ∼= S3.
(b) δ(G) = 2n, G = S · E2n, a semidirect product with kernel E2n, n > 1,

S is a simple group15.

Proof. Let G ≤ SΩ where |Ω| = δ(G).
By Theorem 11.1, G is not simple. Let E be a minimal normal subgroup

of G and let S be the G-stabilizer of a point; then |G : S| = δ(G) < 2i(G) so
G is transitive, S is maximal in G, SG = {1} and G = SE.

(i) Suppose that E is solvable. Then δ(G) = |E| = pn, a power of a prime
p. In that case, S ∩ E = {1}, i(G) = pn − 1 is not a multiple of p so, if H is
a subgroup of index i(G) in G, then E ≤ H . It follows that i(G) = i(S). We

14It follows that if H < G has index i(G) in G, then G/HG is simple. If, in addition,
G is solvable, then H is normal in G.

15If G = AGL(n, 2), n > 2, then i(G) = 2n − 1, δ(G) = 2n so δ(G) = i(G) + 1. The
Frobenius group G = C2n

−1 · E2n with prime 2n − 1 also satisfies δ(G) = i(G) + 1.
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also have CG(E) = E. Therefore, if n = 1, then i(S) = p − 1 is a prime so
p = 3 and G ∼= S3. Next let n > 1.

Assume that S is not simple. Then, by Theorem 11.1, δ(S) ≥ i(S) + 1 =
pn = δ(G), a contradiction. Thus, S is simple.

Let S be solvable. In that case, i(S) = |S| = pn − 1 is a prime number
and so p = 2 since n > 1; then G is a group of part (b).

Now let S be nonabelian simple. Let L < E be of order p. Then NG(L)

is a proper subgroup of G of index ≤ c1(E) = pn−1
p−1 . It follows that pn−1

p−1 ≥
i(S) = pn − 1 so p = 2, and G is a group of part (b).

(ii) Now let E be nonsolvable. Let A ≤ S be minimal such that AE = G.
Then A ∩ E ≤ Φ(A), by Remark 2.4, G/E ∼= A/(A ∩ E) and

δ(A) ≥ i(A) = i(A/(A ∩ E)) = i(G/E) ≥ i(G) = δ(G) − 1 ≥ δ(A),

so there are equalities throughout. It follows that δ(A) = i(A) so A is simple
(Theorem 11.1), i(A) = i(G) = δ(G) − 1 and G = A ·E, a semidirect product
with kernel E.

Let p ∈ π(E) be odd, P ∈ Sylp(E) and N = NG(P ); then G = NE
(Frattini). Let B ≤ N be as small as possible such that BE = G; then
B ∩E = Φ(B) since B/(B ∩ E) ∼= A is simple. It follows that i(B) = i(A)(=
δ(G) − 1 = i(G)). Assume that B ∩ E > {1}. Since δ(B) ≤ δ(G) < 2i(G) =
2i(B), B is transitive; moreover, the B-stabilizer of a point is maximal in B
so contains Φ(B) = B ∩ E > {1}, a contradiction. Thus, B ∩ E = {1}. Let
{1} < P0 ≤ P be a minimal B-invariant subgroup of P . Set K = B · P0.

Assume that CK(P0) > P0; then K = B × P0 and |P0| = p. In that case,
as it easy to see, δ(K) = δ(B) + p > δ(G) (recall that p > 2), a contradiction.

Thus, CK(P0) = P0. Set |P0| = pn. Then, as in (i), c1(P0) = pn−1
p−1 ≥ i(B)

so pn > 2i(B) = 2i(G) > δ(G) since p > 2. Let H < K be such that
|K : H | = i(K)(≤ i(B)). By what has just been proved, H ∩ P0 > {1}. It
follows that HP0 < K so |K : HP0| ≥ i(B), and we conclude that i(K) =
i(B) and P0 < H . It follows that there are at least two K-orbits on Ω so
δ(K) ≥ 2i(K) = 2i(B) = 2i(G) > δ(G), a final contradiction.

12. On a problem of p-group theory

Consider the following
Problem 1. Classify the nonabelian p-groups G possessing a subgroup

Z of order p which contained in the unique abelian subgroup E of type (p, p).
Blackburn [Bla] has posed the following problem. Classify the 2-groups G

possessing an involution which contained in only one subgroup of G of order
4. This problem, a partial case of Problem 1, was solved in [BoJ]. Problem 1
is essentially more difficult.

Theorem 12.1. Let Z be a subgroup of order p of a p-group G such that
there is in G only one abelian subgroup of type (p, p), say E, that contains
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Z. Let G be not a 2-group of maximal class; then G has a normal abelian
subgroup V of type (p, p). Set T = CG(V ). In that case, G has no normal
subgroup of order pp+1 and exponent p and one of the following holds:

(a) Let E 6= V . Then G = Z · T . We have CG(Z) = Z × Q, where
Q = CT (Z) is either cyclic or generalized quaternion.

(b) Now let E = V . Then Ω1(T ) = E. If p > 2, then T is metacyclic. If
t ∈ G−T is an element of order p, then G = 〈t〉·T and CG(t) = 〈t〉×Q,
where Q is either cyclic or generalized quaternion. Next, G has no
subgroup ∼= Ep3 .

Proof. If Z < K ≤ G, then K 6∼= Ep3 .
Assume that G has a normal subgroup H of order pp+1 and exponent

p. By hypothesis, CHZ(Z) ∼= Ep2 so HZ is of maximal class (Lemma J(j)),
contrary to Lemma J(k). Then, by Remark 6.1, G has a normal abelian
subgroup V of type (p, p). Set T = CG(V ).

Suppose that Z is not contained in V ; then E 6= V and |G : T | = p since
Z is not contained in T (otherwise, ZV = Z ×V ∼= Ep3). We have G = Z ·T ,
a semidirect product, and CG(Z) = Z × CT (Z), by the modular law. Next,
CT (Z) has no abelian subgroup of type (p, p) (otherwise, if that subgroup
is R, then Z × R ∼= Ep3). Then, by Remark 6.1, CT (Z) is either cyclic or
generalized quaternion.

Let Z < V so E = V . In that case, Ω1(T ) = V so, if p > 2, then T is
metacyclic (Blackburn; see [Ber3, Theorem 6.1]). Assume that Ep3 ∼= U < G.
Considering U ∩ T , we see that Z < U , a contradiction. Thus, G has no
subgroup ∼= Ep3 . If t ∈ G−T is of order p, then, as above, CG(t) = 〈t〉×CT (t),
where CT (t) is cyclic or generalized quaternion.

The 2-groups G containing an involution t such that CG(t) = 〈t〉 × Q,
where Q is either cyclic or generalized quaternion, are classified in [Jan1,
Jan2]. The p-groups without normal subgroup ∼= Ep3 , are classified for p > 2
by Blackburn (see [Ber5, Theorem 6.1]) and for p = 2 their classification is
reduced to Problem 2, below (see [Jan3]).

Thus, Problem 1 is reduced to the following two outstanding problems:
Problem 2. (Old problem) Classify the 2-groups G with exactly three

involutions.
Problem 3. (Blackburn ) Classify the p-groups G, p > 2, containing a

subgroup Z of order p such that CG(Z) = Z ×Q, where Q is cyclic.
Janko [Jan4] obtained a number of deep results concerning Problem 2. He

reduced this problem to the case where G has a normal metacyclic subgroup
M of index at most 4. It is easy to show that if |G : M | = 2 and G is
nonmetacyclic, then the set G −M has an element x of order 4 so, in this
case, there is a strong hope to obtain complete classification.



SOME BASIC THEOREMS OF FINITE GROUP THEORY 227

13. The order of the automorphism group of an abelian p-group

In this section we find the order of the automorphism group of an abelian
p-group.

Let

B = {x1,1, . . . , x1,α1 , x2,1, . . . , x2,α2 , . . . , xr,1, . . . , xr,αr
},

B1 = {y1,1, . . . , y1,α1 , x2,1, . . . , y2,α2 , . . . , yr,1, . . . , yr,αr
}

be two bases of an abelian p-group G such that

o(xi,j) = o(yi,j) = pei , i = 1, . . . , r, j = 1, . . . , αi.

These bases we call automorphic since there is the φ ∈ Aut(G) such that xφi,j =
yi,j for all i, j. Conversely, each automorphism of G sends one basis in an
automorphic one. The set of bases ofG is partitioned in classes of automorphic
bases. The group Aut(G) acts regularly on each class of automorphic bases.
Therefore, to find the order of Aut(G), it suffices to find the cardinality of
an arbitrary class of automorphic bases. The number of all bases of G equals
M = (pd − 1)(pd − p) . . . (pd − pd−1)|Φ(G)|d, where d = d(G), so M is a
multiple of |Aut(G)|. It is easy to show, and this follows from Theorem 13.1,
that |Aut(G)| = M if and only if G is homocyclic.

Remark 13.1. Let x1, . . . , xd be generators of an abelian p-group G

of rank d. By the product formula,
∏d
i=1 o(xi) ≥ |G|. We claim that,

if
∏d
i=1 o(xi) = |G|, then G = 〈x1〉 × · · · × 〈xd〉. Indeed, we have G =

〈x1〉 . . . 〈xd〉. Using product formula, we get 〈x1〉 ∩ 〈x2, . . . xd〉 = {1} so that
G = 〈x1〉 × 〈x2, . . . xd〉. Now, by induction, 〈x2, . . . , xd〉 = 〈x2〉 × · · · × 〈xd〉
since

∏d
i=2 o(xi) = |G/〈x1〉| = |〈x2, . . . , xd〉|.

In what follows, G is an abelian group of order pm and type (α1 ·
pe1 , . . . , αr · per ), where all αi ≥ 0 and e1 > · · · > er ≥ 1. That group
has exactly αi invariants pei , all i.

Our solution is divided in r steps.

COMPUTATION OF |Aut(G)|
Step 1. First we choose α1 elements of maximal order pe1 . All of them lie

in the set G−T1, where T1 = Ωe1−1(G) (G−T1 is the set of elements of order
pe1 in G). Set f1 = m and |T1| = pt1 . We have f1 − t1 = α1 so |G : T1| = pα1 .

As x1,1 we take any element of the set G−T1 of cardinality |G|− |T1|. As
x1,2 we take any element in the set G−〈x1,1 T1〉 of cardinality |G|−p|T1|. Con-
tinuing so, we take an α1-th element x1,α1 in the set G−〈x1,1, . . . , x1,α1−1, T1〉
of cardinality |G| − pα1−1|T1|. Thus, α1 elements x1,1, . . . , x1,α1 of order pe1

one can choose by

N1 = (pf1 − pt1)(pf1 − p1+t1) . . . (pf1 − pα1−1+t1)

= (pα1 − 1) . . . (pα1 − pα1−1)pα1t1
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ways. By the choice, |〈x1,1, . . . , x1,α1 ,Φ(G)〉/Φ(G)| = pα1 .
Step 2. Now we choose α2 elements x2,1, . . . , x2,α2 of order pe2 in the

set Ωe2(G) − T2, where T2 = Ωe2(Φ(G))Ωe2−1(G) (if an element of order
pe2 generates, modulo Φ(G), together with 〈x1,1, . . . , x1,α1〉 a subgroup of
order pα1+1, it must lie in the set Ωe2(G) − T2). We have |Ωe2(G)| = pf2 ,
where f2 = (α1 + α2)e2 + α3e3 + · · · + αrer and |T2| = pt2 , where t2 =
α1e2 + (e2 − 1)α2 + α3e3 + · · · + αrer so that |Ωe2(G) : T2| = pf2−t2 = pα2 .

As x2,1 we take any element of the set Ωe2(G)−T2 of cardinality pf2 −pt2 .
As x2,2 we take any element in the set Ωe2(G) − 〈x2,1, T2〉 of cardinality
pf2 − pt2+1. Continuing so, we can choose α2 elements x2,1, . . . , x2,α2 of order
pe2 by

N2 = (pf2 − pt2)(pf2 − p1+t2) . . . (pf2 − pα2−1+t2)

= (pα2 − 1) . . . (pα2 − pα2−1)pα2t2

ways. By the choice, |〈x1,1, . . . , x1,α1 , x2,1, . . . , x2,α2 ,Φ(G)〉/Φ(G)| = pα1+α2 .
Step 3. All wanted elements of order pe3 are contained in the set Ωe3(G)−

T3, where T3 = Ωe3(Φ(G))Ωe3−1(G). We have |Ωe3(G)| = pf3 , where f3 =
(α1 + α2 + α3)e3 + α4e4 + · · · + αrer, |T3| = pt3 , where t3 = (α1 + α2)e3 +
(e3 − 1)α3 + α4e4 + · · · + αrer so that |Ωe3(G) : T3| = pf3−t3 = pα3 . Acting
as above, one can choose α3 elements x3,1, . . . , x3,α3 of order pe3 by

N3 = (pf3 − pt3)(pf3 − p1+t3) . . . (pf3 − pα3−1+t3)

= (pα3 − 1) . . . (pα3 − pα3−1)pα3t3

ways. So chosen α1 +α2 +α3 elements generate, modulo Φ(G), the subgroup
of order pα1+α2+α3 .

And so on. Finally,
Step r. At last, we will choose αr wanted elements xr,1, . . . , xr,αr

of order
per . All of them lie in the set Ωer

(G) − Tr, where Tr = Ωer
(Φ(G))Ωer−1(G).

As above, these elements may be chosen by

Nr = (pαr − 1)(pαr − p) . . . (pαr − pαr−1)pαrtr

ways.
The elements
x1,1, . . . , x1,α1 , x2,1, . . . , x2,α2 , . . . , xx,1, . . . , xr,αr

, in view of their choice,
generate G. Since the product of their orders equals |G|, it follows, by Re-
mark 13.1, that they form a basis of G. Thus, |Aut(G)| =

∏r
i=1 Ni so we

get

Theorem 13.1. If G is an abelian p-group of type (α1 · pe1 , . . . , αr · per ),
then

|Aut(G)| = p
∑r

i=1 αiti

r∏

i=1

(pαi − 1)(pαi − p) . . . (pαi − pαi−1),

where ti = (α1 + · · · + αi−1)ei + (ei − 1)αi +
∑r

j=i+1 αjej .
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14. A condition for Φ(G) ≤ Z(G), where G is a p-group, p > 2

In this section we prove the following

Theorem 14.1. For a p-group G, p > 2, the following conditions are
equivalent:

(a) All subgroups of Φ(G) are normal in G.
(b) Φ(G) ≤ Z(G).

Proof. It suffices to show that (a) ⇒ (b). Let G be nonabelian and
|Φ(G)| > p.

Let Φ(G) be cyclic and U a maximal cyclic subgroup of G containing
Φ(G). If |G : U | = p, the result follows from Lemma J(f) so let |G : U | > p.
Let U < T < G, where |T : U | = p. Then Ω1(T ) ∼= Ep2 centralizes Φ(G). If
U = Φ(G), then T is abelian. If |U : Φ(G)| = p, then Φ(G) = Φ(T ) ≤ Z(T )
(Lemma J(f)), whence CG(Φ(G)) ≥ T . Since all such T generate G, we get
Φ(G) ≤ Z(G).

Now let Φ(G) be noncyclic; then Φ(G) is Dedekindian so abelian. Let
Φ(G) = U1 × · · · ×Un, where U1, . . . , Un are cyclic. Working by induction on
|G|, we get [Φ(G), G] ≤ ⋂ni=1 Ui = {1}, completing the proof.

If n > 2, p > 2 and G = 〈a, b | apn

= bp
n−1

= 1, ab = a1+p〉, then
G′ = 〈ap〉 is cyclic so all subgroups of G′ are normal in G but G′ is not
contained in Z(G). Therefore, it is impossible, in Theorem 14.1, to take G′

instead of Φ(G).
Recently Janko [Jan5] classified the p-groups G in which every nonnormal

subgroup is contained in a unique maximal subgroup of G. The original proof
in the case p > 2 is fairly involved. Theorem 14.2 allows us to simplify the
proof essentially.

Theorem 14.2 ([Jan5]). The following conditions for a nonabelian p-
group G, p > 2, are equivalent:

(a) Every nonnormal subgroup is contained in a unique maximal subgroup
of G.

(b) G is minimal nonabelian (see Lemma 16.1).

Proof. If H is a nonnormal subgroup of a minimal nonabelian p-group
G, then HΦ(G) is the unique maximal subgroup of G since d(G) = 2 and H
is not contained in Z(G) = Φ(G). Thus, (b) ⇒ (a).

It remains to prove that (a)⇒ (b). The group G has a nonnormal cyclic
subgroup, say U . By hypothesis, all subgroups of Φ(G) are normal in G so
Φ(G) ≤ Z(G) (Theorem 14.1). We have UΦ(G) < G so UΦ(G) is the unique
maximal subgroup of G containing U since G/Φ(G) is elementary abelian. It
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follows that d(G) = 2. Then Φ(G) = Z(G) has index p2 in G so it is minimal
nonabelian16.

Theorem 14.1 is not true for G = D16. However, we have the following
Supplement to Theorem 14.1. Let G be a 2-group such that all sub-

groups of Φ(G) are normal in G. Then the following conditions are equivalent:

(a) Φ(G) ≤ Z(G).
(b) G has no subgroup of maximal class and order 24.

To prove, it suffices to repeat, word for word, the proof of Theorem 14.1.

15. p-groups with faithful irreducible character of degree pn

has derived length at most n+ 1

In this section we prove the following

Theorem 15.1. If a p-group G has a faithful irreducible character χ of
degree pn, then its derived length dl(G) ≤ n + 1, and this estimate is best
possible.

Proof. We use induction on n. One may assume that n > 0.
Let G have no normal abelian subgroup of type (p, p). Then G is a 2-

group of maximal class, by Remark 6.1; then n = 1, by [Isa2, Theorem 6.15],
and dl(G) = 2 = n+ 1.

Next we assume that G has a normal abelian subgroup R of type (p, p);
then |G : CG(R)| ≤ p so there exists a maximal subgroup M of G such
that R ≤ M ≤ CG(R). By Lemma J(g), the restriction χM of χ to M
is reducible. By Clifford theory, χM = µ1 + · · · + µp, where µ1, . . . , µp are
pairwise distinct irreducible characters of M , all of the same degree pn−1.
We also have

⋂p
i=1 ker(µi) = {1} since χ is faithful. Then, by induction,

dl(M/ ker(µi)) ≤ (n−1) + 1 = n. Since M is isomorphic to a subgroup of the
direct product (M/ ker(µ1)) × · · · × (M/ ker(µp)), we get dl(M) ≤ n. Since
G/M is abelian (of order p), the derived length of G is at most n+ 1.17

It remains to show that G = Σn+1 ∈ Sylp(Spn+1) has derived length
n + 1 and a faithful irreducible character of degree pn. The first assertion
is well known. We have G = H wr Cp, the standard wreath product with
‘passive’ factor H ∼= Σn and ‘active’ factor Cp of order p. In that case,

16Let us prove the following related result. If every minimal nonabelian subgroup is
contained in a unique maximal subgroup of a p-group G, then either (i) d(G) = 2 and Φ(G)
is abelian, or (ii) d(G) = 3 and Φ(G) is contained in Z(G). Indeed, groups from (i) and
(ii) satisfy the hypothesis. Now let d(G) > 2 and G satisfies the hypothesis. Take minimal
nonabelian subgroup H in G. Then HΦ(G) is maximal in G since Φ(H) ≤ Φ(G), and we
conclude that d(G) = 3 since d(H) = 2. If Φ(G) < T < G with |T : Φ(G)| = p, then
T is abelian since T is contained in p + 1 maximal subgroups of G so it has no minimal
nonabelian subgroup. Since such subgroups T generate G and centralize Φ(G), it follows
that Φ(G) is contained in Z(G).

17According to the letter of Ito, he also proved this inequality; his proof is the same.
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the base B = H1 × · · · × Hp of our wreath product has index p in G, and
Hi

∼= H . Let F = H2 × · · · ×Hp and let φ be a faithful irreducible character
of degree pn−1 of B/F ∼= H existing by induction. Set χ = φG and prove
that χ is irreducible and faithful (of degree pn), thereby completing the proof.
Since ker(χ) = ker(φ)G = FG = {1}, the character χ is faithful. Assume,
however, that χ is reducible. Then, by Clifford theory, χ = τ1 + · · · + τp,
where τi(1) = pn−1 for i = 1, . . . , p, hence, by reciprocity, χB = p · φ so
F = ker(φ) ≤ ker(χ) = {1}, a contradiction.

Definition 15.2. A group G is said to be an M∗-group if it satisfies the
following condition. Whenever H is a subnormal subgroup of G and χ is a
nonlinear irreducible character of H, there exists in H a normal subgroup
A of prime index such that χA is reducible. We consider abelian groups as
M∗-groups.

Obviously, subnormal subgroups and epimorphic images of M∗-groups are
M∗-groups so, by induction, M∗-groups are solvable. The p-groups, being M-
groups, are also M∗-groups. The symmetric group S4 is an M-group but not
an M∗-group.

If m is a natural number, then λ(m) denotes the number of prime factors
of m (multiplicities counted). For example, λ(32) = 5, λ(96) = 6.

Supplement to Theorem 15.1.18 Suppose that an M∗-group G has a
faithful irreducible character χ. Then dl(G) ≤ λ(χ(1)) + 1.

Proof. One may assume that G is nonabelian; then λ(χ(1)) = n > 0.
We are working by induction on n. Let T be a normal subgroup of prime index,
say p, such that χT is reducible. Then, by Clifford theory, χT = µ1 + · · ·+µp,
where µ1, . . . , µp are pairwise distinct G-conjugate irreducible characters of
M . We have µi(1) = χ(1)/p so λ(µi(1)) = n − 1 and dl(T/ ker(µi)) ≤ (n −
1) + 1 = n, by induction. It follows that T (n), the n-th derived subgroup of
T , is contained in

⋂p
i=1 ker(µi) = T ∩ ker(χ) = {1}, so dl(T ) ≤ n. Since G/T

is abelian, we get dl(G) ≤ dl(G/T ) + 1 ≤ n+ 1.

16. On groups of order p4

In this section we clear up the subgroup and normal structure of groups
of order p4 using two easy general Lemmas 16.1 and J(j). In particular, we
obtain their classification in the case p = 2.

Lemma 16.1 (Redei). Let G be a minimal nonabelian p-group. Then one
of the following holds:

(a) G = 〈a, b | apm

= bp
m

= 1, ab = a1+pm−1〉, m > 1.
(b) G = 〈a, b, c | apm

= bp
n

= cp = 1, ab = ac, [a, c] = [b, c] = 1〉.
(c) G ∼= Q8.

18The supplement and its proof were inspired by Isaacs’ letter at Jan. 29, 2005.
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Remark 16.1. It is easy to prove that A ∼= B, where A = Q ∗ X and
B = D ∗ Y are groups of order 24 and Q ∼= Q8, D ∼= D8, X ∼= Y ∼= C4. Next,
for p > 2, we have C ∼= D, where C = M ∗U and D = E∗V of order p4, where
M and E are nonabelian of order p3 and exponent p2 and p, respectively (in
our case, Ω1(C) is of order p3 and exponent p and C = Ω1(C) ∗ U so Ω1(C)
is nonabelian, and we get C ∼= D).

Let G be a group of order p4. Then one of the following holds:
(i) G is abelian of one of the following five types: (p4), (p3, p), (p2, p2),

(p2, p, p), (p, p, p, p).
(ii) G is minimal nonabelian. According to Lemma 16.1, there are exactly

three types of such groups and two of them are metacyclic (namely, groups
from Lemma 16.1(a) with {m,n} = {3, 1}, {2, 2} and the nonmetacyclic group
of Lemma 16.1(b) with m = 2, n = 1.

(iii) G is of maximal class (if p = 2, there are exactly three types of such
groups, by Theorem 6.1).

(iv) G = M × C, where M is nonabelian of order p3 and |C| = p (two
types).

(v) G = M ∗Cp2 , where M is nonabelian of order p3 and exponent p (one
type).

Indeed, suppose that G is not such as in parts (i)–(iii). Then it contains
a minimal nonabelian subgroup M of order p3. By Lemma J(j), G = MZ(G).
If Z(G) is noncyclic, then G = M×Cp, and we get two groups from (iv) (there
are two types of nonabelian groups of order p3). Now suppose that Z(G) is
cyclic and M is metacyclic. Then |G′| = p and Φ(G) = G′ = f1(G). For each
p, we get one group, by Remark 16.1. Thus, there are 5+3+2+1 = 11 types
of groups of order p4, which are not of maximal class so there are exactly
11 + 3 = 14 types of groups of order 24 (Theorem 6.1).
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