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FINITE p-GROUPS WITH A UNIQUENESS CONDITION
FOR NON-NORMAL SUBGROUPS

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We determine up to isomorphism all finite p-groups G
which possess non-normal subgroups and each non-normal subgroup is con-
tained in exactly one maximal subgroup of G. For p = 2 this problem was
essentially more difficult and we obtain in that case two new infinite fami-
lies of finite 2-groups.

We consider here only finite p-groups and our notation is standard. It is
easy to see that minimal nonabelian p-groups and 2-groups of maximal class
have the property that each non-normal subgroup is contained in exactly one
maximal subgroup. It turns out that there are two further infinite families
of 2-groups which also have this property. More precisely, we shall prove the
following result which gives a complete classification of such p-groups.

THEOREM 1. Let G be a finite p-group which possesses non-normal sub-
groups and we assume that each non-normal subgroup of G is contained in
exactly one mazimal subgroup. Then one of the following holds:

(a) G is minimal nonabelian;

(b) G is a 2-group of mazximal class;

(c) G = {a,b) is a non-metacyclic 2-group, where a®>" =1, n >3, o(b) =

20r 4, a’=ak, k> =a74, [k,a] =1, k® = k! and we have either:
(c1) 8% € (a®" " a%k) = By, in which case |G| = 272, &(G) =

(a%) x (a%k) = Con—1 x Ca, Z(G) = (a®" ") x (a2k) = E4, and
(a) x (a®k) =2 Can x Cy is the unique abelian mazimal subgroup
of G, or:
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(c2) b2 & (2", a%k) = E4, in which case o(b) = 4, |G| = 2"*3,
B(G) = (a2) x (a2k) x (b?) = Coyn-1 x Cy x Ca, Z(G) = (a2 ') x
(a®k) x (b?) = Fg, and {a) x (a®k) x (b?) =2 Cgn x Cy x Cy is the
unique abelian mazximal subgroup of G.
In any case, G' = (k) = Con-1, a centralizes ®(G), and b inverts each
element of ®(G), and so each subgroup of ®(G) is normal in G;

(d) G = (a,b) is a splitting metacyclic 2-group, where a®>" = b* = 1,
n>3 a =a12% =01, 2z = a?" . Here |G| = 272, &(Q) =
(a%) x (b?) 2 Cyn-1 x Ca, Z(G) = (2) x (b?) 2 By, G' = (a®) =2 Cyn—1,
and (a) x (b?) = Can x Cy is the unique abelian mazimal subgroup of
G. Since a centralizes ®(G) and b inverts each element of ®(G), it
follows that each subgroup of ®(G) is normal in G.

To facilitate the proof of Theorem 1, we prove the following

LEMMA 2 (Y. Berkovich). Let G be a p-group, p > 2, such that all sub-
groups of ®(G) are normal in G. Then ®(G) < Z(G).

ProoFr. By [1, Satz III, 7.12], ®(@) is abelian. Suppose that ®(G) is
cyclic. Let U/®(G) be a subgroup of order p in G/®(G). Assume that U is
nonabelian. Then U 2 Mgy so U = ®(G)Q1(U), where Q; (U) is a normal
subgroup of type (p,p) in G. In that case, Q1(U) centralizes ®(G) so U is
abelian, a contradiction. Let M = {U < G | ®(G) < U, |U : ®(G)| = p}.
Then Cq(®(G)) > (U | U € M) =G so ®(G) < Z(G).

Now let ®(G) be noncyclic. Then ®(G) = Z; x - -- X Zy,, where Z1, ..., Zy
are cyclic and n > 1. By induction on n, ®(G/Z;) < Z(G/Z;) for all i. Let
f € ®(G) and x € G. Then [f,z] € Z1N---NZ, = {1} so f € Z(G). It
follows that ®(G) < Z(G). O

PROOF OF THEOREM 1. Let G be a p-group which possesses non-normal
subgroups and we assume that each non-normal subgroup of G is contained in
exactly one maximal subgroup. In particular, G is nonabelian with d(G) > 2
and so each subgroup of ®(G) must be normal in G. Suppose that ®(G)
is nonabelian. Then p = 2 and ®(G) is Hamiltonian, i.e., ®(G) = Q x E,
where Q = Qg and exp(FE) < 2. But then F is normal in G and ®(G/F) =
®(G)/E = Qs, contrary to a classical result of Burnside. Thus ®(G) is abelian
and each subgroup of ®(G) is G-invariant.

If every cyclic subgroup of G is normal in G, then every subgroup of G
is normal in G, a contradiction. Hence there is a non-normal cyclic subgroup
(a) of G. In that case a € ®(G) but a? € (G) so that (a)®(G) must be the
unique maximal subgroup of G containing (a). It follows that d(G) = 2.

If (G) < Z(G), then each maximal subgroup of G is abelian and so G
is minimal nonabelian which gives the possibility (a) of our theorem.

From now on we assume that ®(G) £ Z(G). Set G = {(a,b). Then
[a,b] # 1 and [a,b] € ®(G). Therefore ([a,d]) is normal in G and G/([a,b])
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is abelian which implies that G’ = ([a,b]) # {1}. If |G'| = p, then the fact
d(G) = 2 forces that G would be minimal nonabelian. But then ®(G) < Z(G),
a contradiction. Hence G is cyclic of order > p2.

(i) First assume p > 2. By Lemma 2, ®(G) < Z(G), a contradiction.

(ii) Now assume p = 2. If ®(G) is cyclic, then (since ®(G) = U1(G)) G
has a cyclic subgroup of index 2. But |G’| > 4 and so G is not isomorphic to
Mass, s > 4, and so G is of maximal class, which gives the possibility (b) of
our theorem. From now on we shall assume that ®(G) is not cyclic.

Set G = {(a,b), k = [a,b], and (z) = Q1((k)) so that G’ = (k), o(k) > 4,
and (z) < Z(G). Since (a?) and (b?) (being contained in ®(G)) are normal
in G, we have ®(G) = (a?)(b?)(k) and so the abelian subgroup ®(G) is a
product of three cyclic subgroups which implies d(®(G)) = 2 or 3.

From [a,b] = k follows a~!(b~1ab) = k and b='(a"1ba) = k! and so

(1) a’® = ak,

(2) b = bkt

From (1) follows (a?)? = (a®)? = (ak)? = akak = a?k®k and so

(3) (a®)® = a®(k°k).

From (2) follows (b%)® = (b%)? = (bk~1)2 = bk~ 1ok~ = b%(k~1)’.k~! and so
(1) (B2)7 = b(kk) L.

We also have
a2 = (a2)b2 = (a2k°k)? = a2k Kk K
and so
(5) kkOk K = 1.
Finally, we compute (using (4))
(ab)? = abab = a®a b b%ab = a®(a" b tab)(b?)*®
a?kb? (kEY) ! = a2b2 (k1)
and so
(6) (ab)? = a®*b?(k~1)°.

Suppose that G/®(G) acts faithfully on (k). In that case o(k) > 23 and we
may choose the generators a,b € G — ®(G) so that k* = k!, k* = kz (where
(z) = Q1((k))). Using (3) and (4) we get (a?)® = a® (and so a? € Z(G)) and
(b%)* = b?k~22. Since k* = k1, we have (k) N (a) < (z). The subgroup (b?)
(being contained in ®(G)) is normal in G and so k=22 € (b?) and k? € (b?)
(since z € (k%)). We have (b) N (k) = (k?) since k* = kz # k and so k & (b).
If b2 € (k?), then (b*)® = b~2 and on the other hand (b*)* = b*k~22z and so
b* = k?z. But b? € (k?) implies b* € (k?), a contradiction. Hence b* & (k?)
and so we can find an element s € (b?) — (k) such that s> = k=2. Then
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(sk)? = s?k? = 1 and so sk is an involution in ®(G) which is not contained in
(k) and therefore sk # 2. But (sk)® = sk® = (sk)z and so (sk) is not normal
in GG, a contradiction.

We have proved that G/®(G) does not act faithfully on (k). Then we
can choose our generator a € G — ®(G) so that k* = k. Using (3) we get
(a?)® = a®k? and so 1 # k2 € (a?) since (a?) is normal in G. From (5) we get
(k?)® = k=2, Suppose that (k?) = (a2?). Then we get a=2 = (a?)® = a%k? and
so k? = a4, a contradiction. We have obtained:

(7)
=k, (a®)b =a?k?, (K*)® = k™2, {1} # (k*) < (a®), o(a) =2", n > 3.

Suppose that k* = kz. Then (5) and (7) imply &* = 1 and so k* = kz =
kE~!. It follows that we have to analyze the following three possibilities for
the action of b on (k): k* = k12 with o(k) > 23, kb =k, and k* = k1.

(iil) Suppose k® = k=12 with o(k) > 23. Then (4) gives (b?)* = b?z and
so z € (b?) (since (b?) is normal in G) and (z) < (b?) because b ¢ Z(G).
Since (by (7)) (k%) < (a?) and o(k?) > 4, it follows o(a?) > 23 and

(z) = (k) = N ({(a) = () < Z(G).

From o(a?) > 23, k? € (a%), o(k?) > 4, and (k?)* = k=2 follows (a?)? = a=2z¢
(e =0,1) and Cya2y(b) = (2) so that (a®) N (b?) = (z). Let v be an element
of order 4 in (a2) so that v2 =z and v* = v™! = vz. Let s be an element
of order 4 in (b?) so that s?> = z. We have (vs)? = v?s? = 1 and so vs is an
involution in ®(G) — (a) but (vs)’ = v~ls = (vs)z, a contradiction.

(ii2) Suppose k® = k so that (5) and (7) imply k* = 1 and k% = 2.
Then (4) and (7) imply (b?)¢ = b2z and (a?)® = a%2. Also, (z) < (a?) and
(z) < (b?) since (a?) and (b?) are normal in G, a® ¢ Z(G) and b* ¢ Z(G).
If a®> € (b?), then a® € Z(G) and if b € (a?), then b* € Z(G). This is
a contradiction. Hence D = (a?) N (b?) > (z) and D is a proper subgroup
of (a?) and (b?). Because of the symmetry, we may assume o(a) > o(b) so
that |(a?)/D| > |(b*)/D| = 2%, u > 1. We set (b*)?" = d so that D = (d).
We may choose an element a’ € (a?) — D such that (a’)?" = d~'. Then
(a’b?)?" =1 and (a’b?) = Cyu with (a’b?) N D = {1}. On the other hand,
(a'b?)* = ' (b*)* = (a’b?)z, where z € D, a contradiction.

(ii3) Finally, suppose k* = k~!. From (4) follows (b?)* = b? and so
v’ € Z(G). By (7), (a®)® = a®k?, (k?) < (a?), and so o(a?) > 4. Also,
(a%k)® = a®k, (a®k)® = (a*k?)k~! = a®k, and so o’k € Z(G).

(ii3a) First assume k ¢ (a?). We investigate for a moment the special
case o(k) = 4, where k2 = 2, (z) = Q1 ((k)) = Q1 ({a)) and (a?)® = a2z
If o(a?) > 4, then take an element v of order 4 in (a%) so that v? = 2
and v* = v. In that case (vk:) = v2k? = 1 and so vk is an involution in
®(G) — (a?) and (vk)® = vk~! = (vk)z a contradiction. Hence o(a?) = 4,
at =z, k> =z2=a"% (a®)® = a®z = a2, (a? k) is an abelian group of type



FINITE p-GROUPS WITH A UNIQUENESS CONDITION 239

(4,2) acted upon invertingly by b, and a2k is a central involution in G. Now

suppose o(k) > 8. In that case o(k?) > 4, k? € (a%), o(a?®) > 8, and b inverts

(k%), which implies (a?)® = a=22¢, ¢ = 0,1. On the other hand, (a?)* = a?k?

and so k% = a=*z¢. Let v be an element of order 4 in (a*) so that v? = z and
b ! = pz. Then we compute:

V=0
(a®vk)? = a'2k? = 2T, (a®vk)’ = * K20 k! = (a®vk)z.

If € = 1, then a?vk is an involution in ®(G) — (a?) and (a?vk) is not normal
in G. Thus, € =0, (a?)® = a2, k2 = a™*, a?k is an involution in ®(G) — (a?)
and b inverts each element of (a?, k) = (a®) x (a?k), where o’k € Z(G).

We have proved that in any case k2 = a™*, o(a?) > 4, o(k) > 4, and b
inverts each element of the abelian group (a2, k) = (a?) x (a2k), where a®k is
an involution contained in Z(G).

It remains to determine b? € Z(G). Suppose o(b?) > 4 and let (s) be a
cyclic subgroup of order 4 in (b?) so that s € Z(G). Obviously, s & (a?, k)
since Z(G) N {a? k) = (2) x (a®k) = E4. Let v be an element of order 4 in
(a?) so that v2 = z and v* = v~ = vz. We have:

(vs)’ = v 's = (vs)z and (vs)? = v*s* = 252

If s> = 2, then vs is an involution in ®(G) — (a? k) and vs ¢ Z(G), a
contradiction. Hence s? # z so that (v,s) = (v) x (s) = Cy x C4. But
(vs)? = (vs)z, (vs)? = 25 # z, and so (vs) is not normal in G, a contradiction.
It follows that o(b?) < 2. Hence we have either b* € (z,a%k), ®(G) = (a? k) =
(a?) x (ak), and we have obtained the possibility (c1) of our theorem or
b? is an involution in ®(G) — (a?, k), ®(G) = (a®) x {(a®k) x (b?), and we
have obtained the possibility (c2) of our theorem. Note that in both cases a
centralizes ®(G) and b inverts each element of ®(G).

(ii3b) We assume k € (a?). Since o(k) > 4, k* = k~!, (a) is normal
in G, o(a) > 8, and b induces on (a) an automorphism of order 2, we get
a’ = a=12¢ € = 0,1, where (z) = Q1((a)) = Q;({(k)). On the other hand, (1)
gives a® = ak and so k = a=22¢ which gives G’ = (k) = (a?) = Con-—1, where
o(a) =2",n>3,and z = a2

Since ®(G) = (a?,b?) and ®(G) is noncyclic, we have b* ¢ (a?) and we
know that b2 € Z(G). Suppose o(b?) > 4 and let s be an element of order 4 in
(b?). Let v be an element of order 4 in (a?) so that v? = z and v* = v~! = vz.

Then

1 2 2.2 2

(vs)’ = v ls = (vs)z and (vs)? = v?s® = 25

If s? = 2, then vs is an involution in ®(G) — (a?) and vs ¢ Z(G), a contra-
diction. Hence s? # z so that (v,s) = (v) x (s) 2 Cy x C4. But {vs) is not
normal in G, a contradiction. Hence b? is an involution in ®(G) — (a?) and so
®(G) = (a?) x (b?) =2 Cyn-1 x Cy and Z(G) = (2) x (b?) = E,. Also note that
a centralizes ®(G) and b inverts each element of ®(G). We have obtained the
possibility (d) of our theorem. O
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