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DIRECT LIMIT OF MATRIX ORDERED SPACES
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ABSTRACT. In this paper we initiate the study of ordered F-bimodules
as the inductive limit of matrix ordered spaces.

1. INTRODUCTION

Choi and Effros [1] characterized operator systems as a particular type
of matrix ordered spaces. Ruan characterizes operator spaces as a particu-
lar type of matrix normed spaces. In both these cases we consider a ma-
tricial structure on a complex vector space. Pointing out at this structure
B.E.Johnson suggested that “the theory of matricially normed spaces might
be simplified if one instead considered normed modules over the infinite ma-
trix algebra” [5, section 4]. In [5] Effros and Ruan verified this hypothesis for
matrix normed spaces. In this paper we take an initiative to work on this hy-
pothesis in the direction of matrix ordered spaces (c.f. [7, 6]). In section 2, we
recall the characterization of non-degenerate F-bimodules, in terms of induc-
tive limit spaces [5]. We extend the above characterization to a x-structure.
In section 3, we describe the inductive limit of matrix ordered spaces in terms
of ordered F-bimodules and their related properties.

We begin by recalling some definitions and facts which we need in this
paper.

Matricial notions.
Let V be a complex vector space. Let M, (V) denote the set of all n x n
matrices with entries from V. For V = C, we denote M, (C) by M,,. For
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a = [a;;] € M, and v = [v;;] € M (V) we define

n n
Qv = E Q55V5k | o = E Vij Ok
j=1 Jj=1

Then M, (V) is a M,-bimodule for all n € N. In particular M, (V) is a
complex vector space for all n € N. For v € M,,(V),w € M,,(V), we define

v
0

Next, we consider the family {M,,}. For each n,m € N define o, ptm :
M,, — My, given by oy pim(a) = a ® 0p,. Then oy, 4m is a vector space
isomorphism with

vOw= { 3} ] € Mptm (V).

Onntm(3) = Onntm(Q)0n ntm(B)-
Thus we may “identify” M, in M, as a subalgebra for every m € N. More
generally, we may identify M, in the set F of co x co complex matrices, having
entries zero after first n rows and first n columns. Then F may be considered
as the direct or inductive limit of the family {M,}. In this sense

r- Q.

Let e;; denote the co x co matrix with 1 at the (4, j)th entry and 0 elsewhere.
Then the collection {e;;} is called the set of matrix units in F. We write 1,
for E?:l €Cii.

For i,j,k,l € N, we have e;jep = d;e;. Note that for any o € F, there
exist complex numbers «;; such that

a= E a;je;;  ( a finite sum).
g

Thus F is an algebra.
Fora =73, aje;; € F, we define a* = 7, s ajie;j € F. Then a — o
is an involution. In other words, F is a *-algebra.

2. MATRICIAL INDUCTIVE LIMIT OF %-VECTOR SPACES

Let V' be a complex vector space. Consider the family {M,(V)}. For
each n,m € N, define Ty, nym : My (V) — My (V) given by T}, i (v) =
V@ Oy, Oy € My, (V). Then T}, 4, is an injective homomorphism. Let V be
the inductive limit of the directed family {M,,(V'), T\, ntm}. We shall call V
the matricial inductive limit or direct limit of V. The following observations
may be obtained from [5]:

1. V is an F-bimodule.
2. V2V R®F.
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DEFINITION 2.1. Any F-bimodule W is said to be non-degenerate if for
every v € W there exists an € N such that 1,v1,, = v.

It follows from [5] that
PROPOSITION 2.2. V is non-degenerate.

The matricial inductive limit of a complex vector space V may be char-
acterized in the following sense:

THEOREM 2.3. Let W be a non-degenerate F-bimodule. Put W =
e1iWei1. Then W is a complex vector space and VWV is its matricial inductive
limit [5].

COROLLARY 2.4. M, (W)= 1,W1,, for alln € N.

REMARK 2.5. Let V be a complex vector space. Let V be its matricial
inductive limit. Then
() V=Ur, Mp(V) =V QF.
(b) M, (V) =V ® M, for all n € N.

Next we consider the matricial inductive (direct) limit of *-vector spaces.

DEFINITION 2.6. Let W be an F-bimodule. Then a map * : W — W is
called an involution on W if
(1) (v*)" =w
(2) (v+w)* =v* +w*
(3) (aw)* =v*a*, (va)* =a*v* for allve W,a e F.
In this case W is called a * F-bimodule.

THEOREM 2.7. Let V be a x wvector space. Let V denote the matricial
inductive limit of V.. Then V is a nondegenerate x-F-bimodule. Conversely,
let W be a nondegenerate x-F-bimodule. Put W = eqj1Wei1. Then W is a %
vector space and W is the matricial inductive limit of W.

PROOF. First, let V' be a *-vector space and V be the matricial inductive
limit of V. Then by Proposition 2.2, V is a non-degenerate F-bimodule. We
now define a x-structure on V. Let v € V. Then we have v = 3_, ; v;; ® e;; for
some v;; € V. Define v* =3, ,vj; ® e;;. Then v — v* defines an involution
on V so that V is a nondegenerate *-F-bimodule.

Conversely, let W be non-degenerate *-F-bimodule. Put W = 1, W1,,.
Then by Theorem 2.3, we have W = W ® F and it is routine to verify that
W is a x-vector space. o

Put Wy = {w € W| w = w*}. Then we have
COROLLARY 2.8. 1, Wsaln = M, (W), for alln € N.
COROLLARY 2.9. Wyo = oo | Mp(W)sq.
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3. INDUCTIVE LIMIT OF MATRIX ORDERED SPACES

DEFINITION 3.1 (Matrix ordered space). A matriz ordered space is a *
vector space V' together with a cone Mp (V)T in M, (V)sq for alln € N and
with the following property: if v € M, (V)" and v € My, then y*vy €
M, (V)T for any n,m e N.

DEFINITION 3.2 (Ordered F-bimodule). Let V be a %-F-bimodule. Let
V1 be a bimodule cone in Vsq. That is
1. vi,v9 € YVt = V1 + V2 € Vt.
2.veVt,ae F= a*vac V.

Then (V, V") will be called an ordered F-bimodule.

REMARK 3.3. Let V be non-degenerate. Then V,, and consequently V"
are both nondegenerate.

THEOREM 3.4. Let (V,{M,(V)"}) be a matriz ordered space. Let V be
the matricial inductive limit of V. Then (V,V7) is a non-degenerate ordered
F-bimodule, where V* =J.°_ | M,(V)". Conversely, let OV, W) be a non-
degenerate ordered F-bimodule. Put W = 1,W1; and M,(W)* = 1,WT'1,
for alln € N. Then (W,{M,(W)*}) is a matriz ordered space with W+ =
U2, M (W)

PROOF. We prove only the non-trivial part. Let (W, WT) be a non-
degenerate ordered F-bimodule. Then W is a non-degenerate * F-bimodule.
Hence by the Theorem 2.7, W is a * vector space and 1, Wsa1, = My, (W),
for allm € N. Since Wt C Wy,, therefore 1, WT1,, C 1, Ws,1,, for alln € N.
Thus M,,(W)* C M, (W)s, for all n € N'. We show that M, (W) is a cone
in M, (W), for all n € V.

(1) Let u,v € M,(W)*,n € N. Then u = 1,ul,, v = 1,01, for some
4, € WT. Then @ +v € WT as WT is a cone. Thus

u+v=1,(a+0)1, € M, (W)*.
(2) Let a > 0, u € M,,(W)*. Then u = 1,ul,, for some u € W*. Put
apn = v/al,. Then
au = a(lyily,) = aytoa, = 1,(apitian)l, € M,(W)*.

Therefore M,,(W)™" is a cone in M,, (W), for every n € N'. We now show
(W, {M,(W)*}) is a matrix ordered space. Let u € M,,(W)" and o € M,, »,.
Then, v = 1,ul,, for some @ € W+t. Note that 1, = o = «l,, so that
a*l, = o =1,,a". Thus

afua = a*lyul,a = Lya*ual,, € M,(W)*t.

Therefore (W, {M,(W)*}) is a matrix ordered space. By Theorem 2.7 and
its Corollary 2.9, W = U,—; M,,(W) and Wy, = U~ Mp(W)sa. We now
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claim W+ = oo, M,(W)™. M,(W)* = 1,W*1, C WT for all n. There-
fore oo M, (W) CWT. Let w € WH. = w € Wy = oo, Mpy(W)sa
= w € My(W)s, for some p € N. Then 1ywl, = w. Also by defini-
tion 1,wl, € My(W)™*. Therefore w € M,(W)* C (Jo", M,(W)*. Hence

Wt = U, Mo (W) 0

DEFINITION 3.5. Let (V,{M,(V)*}) be a matriz ordered space. Let V
be the matricial inductive limit of V. Set V* = J.—, M, (V). Then the
ordered F-bimodule (V, V) is called the (matricial) inductive limit or direct
limit of the matriz ordered space (V,{M,(V)*}).

We recall the following from [1]:

DEFINITION 3.6. Let (V,{M,(V)*}) be a matriz ordered space. We say
that V' is proper if VT N (=V7T) = {0}.

It is shown in [1] that if V't is proper, then so is M, (V)" for all n. We
extend this idea to ordered F-bimodules.

DEFINITION 3.7. Let (V, V1) be an ordered F-bimodule. We say V7 is
proper if VN (=V1) = {0}.

REMARK 3.8. If (V, V1) is the direct limit of (V,{M,(V)*}) and if VT
is proper then M,, (V)" is proper for each n € N. In fact if v € M,(V)* N
(=M, (V)T), then v € VT N (=VT) = {0}, implies v = 0.

Hence M, (V)" is proper for each n € N.

THEOREM 3.9. Let (V, V) be the direct limit of (V,{M,(V)*}). Then
VT is proper if and only if VT is proper.

PROOF. Let VT be proper. The above remark gives that M, (V)" is
proper for each n € N. In particular, VT is proper.
Conversely, let VT be proper. Let v € V¥ N (=VT) or +v € V. Then

+eqve1 € 611'V+61'1 forall ieN (III)

We show 611'V+61'1 Q V+. By definition V+ = 611V+611. Also €11€1; —
e1i, ei1e11 = €51, €; = e;1 so that e;;VTe;; C VT, for V1 is a bimodule cone.
It follows that

enerVenenn CenVrien =VF.
In other words e1;V T e;; C VT for all i € N. From (I11), we have +ejve;; €
V+ for all i € N. Since V1 is proper therefore e;ve;; = 0 for all i € N. Put
e1vej1 = v for all 4,57 € N. Then v;; =0 for all i € V. Since v € VT C Vy,,
we have

’U;ﬁj = eljv*eil = €1;V€41 = Vy4

for all 7,7 € N. Let 7 # j. Then by a similar argument,

(e1; + e1)(£v)(ein +ej1) € VT
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Also (61'1 + ejl)* = 6;3{1 + 6;1 =e1; + €15- Therefore
611[(€1i + elj)(:lzv)(eil + ejl)]ell S 611V+€11 =VT.
This implies that
i[eliveil + e1ve 1 + erjveqn + eljvejl] S VJr.

Thus +[v;; + v;;] € V. Since VT is proper, we get v;; + v;; = 0. Similarly,
by considering

(611' — elj)(:lzv)(eil — ejl) S VJr,
we get v;; —vj; = 0. Therefore v;; =0 for all ¢, 5 € N. Now for a v € V there
exists a n € N such that 1,v1, = v. It follows that

n
v = € | U E €45
i=1 j=1
n
= €i1€14 | U E €j1€15

Jj=1

1= Il

1

S
Il

ei1(ervejn)er;

=

&
Il
—

|
:Mﬁ

€i1Vi5€15 = 0.

|
:Mﬁ

1,7=1

Hence V7 is proper. O
Now we consider another notion related to order theory.

DEFINITION 3.10. We say V' is generating if given v € V there are
Vg, V1,V2,v3 € VT such that v = 22:0 kv, where 2 = —1.

DEFINITION 3.11. Let (V,V") be an ordered F-bimodule. Then we say
V¥ is generating if given v € V there exist vg,v1,v2,v3 € VT such that v =
22:0 i*vy, where i = —1.

THEOREM 3.12. Let (V, V1) be the direct limit of (V,{M,(V)*}). Then
VT is generating if and only if V' is generating.

PROOF. First, let VT be generating. Let v € V. Then v = 1,01, for some
v € V. Therefore there exists g, ¥1, V2,03 € VT such that 7 = 22:0 i*uy,.
Now 1,91 = 22:0 i*1,951; and Since V* = 1, V11, so that

3 3

v=1,711 = E ikllﬁkll = E ikwk, wp, W1, Wa, W3 € vt
k=0 k=0

where wy = 110;1;. Therefore VT is generating.



DIRECT LIMIT OF MATRIX ORDERED SPACES 309

Conversely, let V' be generating. We show that V7T is generating. Let
v € V. Then there exists a n € N such that 1,v1,, = v. Put e1,ves1 = vys.
Then

n
v = E €r1Urs€ls, Urs € V.

r,s=1

Since V7T is generating there exist v0, vl vZ v3, € VT such that v,.s =

Zi:o ik For every r;s; 1<r,5<n, put

1 _ 0 2
urs - vrs + vrsv

2 _ 1 3
Uss = Ups + Upg-

Then u!

rs?

u2, € V* for every r,s = 1,...,n. Next put

_ 1 2
Uprs = Upg + Upss

for all r,s,1 < r,s < n, and let uy = 225:1 erilrs€l, and us =
oy esilpsers. Then ug,us € VT, Further put

1 ,
vg = Z(U1+U2+U+U)
1 . -
v = Z(ul—i—uQ—w—l—w)
1 ,
vy = Z(ul—i—uQ—U—v)
1 . -
vy = Z(ul—i-ug—i—w—w ).

Then we have v = Ei:o i*v,. We will be done if we can show that v, €

— : — 0 2 S| 3
V. k=0,1,2,3. Since Rev,s = v2, —v2, and Imv,.s = v}, —v2,, 1 <r s <n,

we have ul, + Rev,s € VT and u2, + Imv,s € V7T for all ;s = 1,..,n. Thus

—_

b = —(e11 +e21)(urs + Revys)(ern + e12)

[\)

1
+§(€11 — 621)(uis — Revm)(en — 612) S V+
and

(611 — ’L'€21)(’U,35 —+ Imvm)(eu + ielg)

1

1
2
—|—§(€11 + i€21)(uzs — Imvrs)(ell — i612) (S V+.

It follows that

n

a = Z (67«1 + €n+512)(b + C)(@lr + 62,n+s) € M2n(v)+ C V+-

r,s=1
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Now

Put
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1 n

5[ D (e + enys2)l(en1 + e1)(uty + Revys)(enn + €12)
r,s=1
+(e11 — e21)(ups — Revys)(e11 — e12)

—|—(611 — Z621)(u + Imvrs)(ell =+ i612)

+(611 +ieg)(u2y — Imuys)(e11 — ier2)|(€1r + €2.mts)]

1

5[ Z [(erl + enJrS,l)(u?l«s + Re”m)(elr + el,nJrS)

r,s=1
+(er1 - en+s,1)(u7]:3 - Revrs)(elr - el,n-i—s)
+(6’I"1 - ienJrs,l)(u%s + Imvrs)(elr + iel,n+s)
(

+(er1 + inys, 1)(“?5 — Imu,s)(e1r — iel,n+8)]]

n
E 67‘1 TS + Urs + Urs + Urs)elT

=1
n
+ E €n+s,1 Urs + vrs + vrs + vrs)el n+s

r,s=1
n
2 2001 3
+ § 67“1 rs — Ups T Z(vrs - vrs))elﬁnﬁ*s
r,s=1
n
0 2 2001 3
+ § en-l—s,l(vrs —Ups — Z(/Urs - vrs))elT
r,s=1
n n
g €r1lUrs€1y + E Cn+s,1Urs€ln+s
rs=1 r,s=1
n n
*
+ g €r1Urs€l,n+s + E €n+5,1Vps€C1r-
r,s=1 r,s=1

n n
§ Crr + E €n+ts,sy B = § Crp — E €n+s,sy
r=1 s=1

r=1

n

n n
Y= E Crpr — ] E €n+s,s) 0= E Err +1 § €n+s,s-
r=1 s=1 r=1 s=1

We claim that

vo = —(afa), v1=-(y*ay)

»-lkli—' pl>|>—‘
»JklP—‘ q>|>—~

(8" ap), (6%ad).

U2 =



DIRECT LIMIT OF MATRIX ORDERED SPACES 311

We verify only that vy =

1 (a*ac) and others follow similarly. Now using (11),
we get

araa = (33 erk + 21 €intt) (X ooy €r1trselr + €nts 1Urs€1,nts

+€r1Vr5€1,n45 + Ents,1Vp5€17) (22:1 E€pp + 22:1 €n+q7q>
= ekt [CrE(Er1Urserr)epp + ek (Cnts,1Urs€l nts)epp
+erk(€r10rs€1,n+5)€pp + €hk (€nts,105s€1r)epp)]
+ 2 s kg=1 erk(er1Urserr)entq,q + erk(€nts,1Urs€1nts)entq,q
+ekk(€r1Vrs€1 n+s)entq.q + €kk(€nts,1V55€1r)entq,q)
+ 2 s rpt Elnti(eritrserr)epp + ennpi(€nts,1Urs€1 nts)epp

+el,n+l (erlvrsel,nJrs)epp + €l n+l (enJrs, 1'0:5617")6;0;0]

+ Z:},s,l,qzl [elﬂH‘l(eTluTselr)en-l-q,q + el,n-{-l(en-l-s,lursel,n-i-s)en-i-q,q
+el,n+l(erlvrsel,nJrs)enJrq,q + el,nJrl(enJrs,lv:Selr)enJrq,q]
= E:s,k,pzl 5kT5TpekluTselp + E:s,k,g:l 5kr5sqeklvrs€1q
+ ZZS,I,p:l 5155“76“”:5611) + Z:«Lys,lyq:1 5l558qellu’l‘selq-
That is
(OZ*GOZ) = Z:},szl €r1Urs€ly + Z:},szl €r1Urs€is
+ o em1 Es1UgC1r F D ) €s1Urses
=u; +v+ 0"+ ug.

Hence our claim is proved. Therefore VT is generating.
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