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ABSTRACT. Suppose we are given a function o : X — K where
X is a paracompact space and K is a simplicial complex, and an open
cover {Uy | € T} of X, so that for each a € T, fo : Ua — |K]| is a
map that is a selection of o on its domain. We shall prove that there is a
map f : X — |K| which is a selection of 0. We shall also show that under
certain conditions on such a set of maps or on the complex K, there exists a
o : X — K with the property that each f, is a selection of o on its domain
and that there is a selection f : X — |K| of 0. The term selection, as used
herein, will always refer to a map f, i.e., continuous function, having the
property that f(z) € o(z) for each z in the domain.

1. INTRODUCTION

The purpose of this paper is to prove certain selection theorems of the
type “local to global” where the target is a polyhedron. We will apply an
enhanced version from [6] of a method due to E. Michael [5] to pass from
local selections to global ones.

Throughout this paper, map will mean continuous function and if K is a
simplicial complex, then its polyhedron |K | will always have the weak topology
induced by the triangulation K. As in [1] and [5], paracompact spaces are
assumed to be Hausdorff.

Let us recall that if K is a simplicial complex and f : X — |K| and
g : X — |K]| are functions, then f is said to be contiguous to g if for each
x € X there exists a simplex 7 € K such that f(z), g(z) € 7; one says that
g is a K-modification of f if for each x € X, whenever f(z) € 7 € K, then
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g(x) € 7. When f is contiguous to g, it need not be true that either one of
them is a K-modification of the other. Also contiguity is not an equivalence
relation although it is reflexive and symmetric.

Let 0 : X — K be a function where X is a space and K is a simplicial
complex. If {U, | € T'} is an open cover of X and foreach o €T, f, : Uy —
|K| is a map, then the statement that {f,|a € '} is a selection of o means
that for each a € I and x € Uy, fo(x) € o(z). This is a generalization of the
usual notion of a selection because if I' = {a} is singleton and U, = X, then
fa is a selection in the usual sense.

If we consider a family {f, | o € T'} of maps f, of subsets U, of X to | K]
(e.g., as above), one may say that the maps f, are “pointwise contiguous in
pairs” if for each z € X and «, 8 € I' such that z € U, NUg, fa(z) and fa(z)
lie in a simplex of K.

We now state the main results of this paper, the first of which strength-
ens Theorem 1.2 of [2] by removing the requirement that the space X be
hereditarily normal.

THEOREM 1.1. Let X be a paracompact space, K a simplicial complex,
and o : X — K a function. Suppose that {U, |« € T} is an open cover of X
and {fo : Uy — |K||a € T'} is a selection of o. Then there exists a selection
f: X —=|K| of o.

The term “infinite simplex” is probably not in common use.

DEFINITION 1.2. Let K be a simplicial complez and {7;|i € N} a collec-
tion of simplexes of K such that for eachi € N, dim1; =i—1 and 7; is a face
of Tit1. Then we shall refer to {7;|i € N} as an infinite simplex of K.

A simplicial complex K contains an infinite simplex if and only if there
is a full subcomplex L of K which has a countably infinite set of vertices.
Although infinite simplexes are not simplicial complexes, the concept is useful
as follows. If we are given a collection {f, | @ € T'} of maps f, of subsets U, of
X = {0} that is pointwise contiguous in pairs to the polyhedron | K| of the full
complex K (N) whose vertex set is N, there need not be a o : X — K (N) such
that this collection is a selection for o. For example, fix an infinite simplex
{7 |7 € N} in K(N), and for each i € N, let f;(0) be the barycenter of 7.

The statement that a simplicial complex K contains no infinite simplexes
is equivalent to the statement that each simplex of K is contained in a principal
simplex, that is, one which is contained in no other simplex of K.

THEOREM 1.3. Let X be a paracompact space, K a simplicial complex,
and {Uy | € T} an open cover of X. Suppose that for each o € T, there
exists a map fo : Uy — |K| such that if o, 8 € T, then one of the maps
falUa NUs and fglUa NUp is a K-modification of the other. If either,

(A) : K contains no infinite simplez or,



A LOCAL TO GLOBAL SELECTION THEOREM 341

(B): {Ua| €T} is a point-finite open cover of X,
then there exist,
1. 0: X — K such that {fo|a € T'} is a selection of o, and

2. amap f: X — |K| such that f is a selection of o.
The following lemma is an easy consequence of the definitions.

LEMMA 1.4. Let K be a simplicial complex, X a space, 0 : X — K a
function, {Uy | € T'} an open cover of X, and for each o € T, fo : Uy — |K]|
a map. If {fo|la € T} and f : X — |K]| are selections of o, then f|Uy, is
contiguous to fo for each a € T'. O

Lemma 1.4 shows that in both Theorem 1.1 and Theorem 1.3, for each
a €T, f|U, is contiguous to f,. It is worth noting (for example, Lemma 4’
of [4]) that this implies that f|U, ~ fa.

2. LEMMAS

Let us state Lemma 1.1 of [2] which, as indicated in the latter, follows
from the proof of Lemma 4 of [4].

LEMMA 2.1. Let X be a normal space and K a simplicial complex. Let
A C X be a closed set and V, U C X open sets such that ACV CcV Cc U.
Ifh:U — |K| and g : V — |K| are maps such that h|V is contiguous to g,
then there exists a map k : U — |K| such that:

1. k is contiguous to h,

2. k|A=g|A,

3. kE|(U\V)=h|(U\V), and

4. if x €V and h(z), g(z) € 0 € K, then k(z) € 0. O

LEMMA 2.2. Let K be a simplicial complex that has no infinite simplexes
and {xo | € T} be a nonempty subset of | K| such that for each o, B €T, at
least one of the following is true:

1. ifeqa €T €K, thenazg €T, or

2. ifzgeTE K, then xo €T.
Then there exists a principal simplex o of K such that {z,|a €T} Co.

ProOF. It is sufficient to find a simplex o of K such that z, € ¢ for all
a €T Fix ag € I' and let o7 be the simplex of K such that z,, € into;.
Define I't = {y € T'|z, € 01}. I Ty =T, then put ¢ = o1, and we are
done. Otherwise, choose aga € '\ T'1. Let o3 be the simplex of K such that
Zas, € intog. Since x4, ¢ o1, then (1) and (2) of the hypothesis show that we
must have z,, € o2. But then oy intersects the interior of o1, showing that
o1 is a face of oo, Put I'y = {y € I' |2y € 02}. Clearly, I'y CT'y. If I'y =T,
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then put ¢ = o9, and we are done. If one continues this process, it will end
after a finite number, say n, of steps since K has no infinite simplexes. This
means that I';, = I'. Designate ¢ = o,,. Our proof is complete. O

In case the complex K in Lemma 2.2 contains infinite simplexes, then the
following result can be useful. Its proof can be modelled on the preceding
one.

LEMMA 2.3. Let K be a simplicial compler and ¥ be a nonempty finite
subset of |K| such that for each x, y € ¥, at least one of the following is true:

1. ifrere K, thenyer, or

2. ifyete K, thenz €.
Then there exists a simplex o of K such that ¥ C o. O

Recall that a simplicial complex K is called locally finite-dimensional if
for each vertex v of K there exists a nonnegative integer n such that dim= <n
for each simplex 7 of K having v as a vertex.

COROLLARY 2.4. If K is a locally finite-dimensional simplicial complex,
then K has no infinite simplezes. O

The next statement follows from Corollary 2.4 and (A) of Theorem 1.3.

COROLLARY 2.5. Let X be a paracompact space, K a locally finite-
dimensional simplicial complex, and {U, |a € T} an open cover of X. Sup-
pose that for each o € T, there exists a map fo : Uy — |K| such that if «,
B €T, then one of the maps fo|Ua NUg and f3|Uqy NUg is a K-modification
of the other. Then there exist,

1. 0: X — K such that {fo|a € T'} is a selection of o, and
2. amap f: X — |K| such that f is a selection of o. O

3. PROOFS OF THEOREMS

Recall that a collection K of subsets of a space is called discrete if each
point of the space has a neighborhood that intersects at most one element of
the collection. An application of Theorem 1.1.13 of [1] shows that this is true
if and only if the collection of the closures of the elements of C is discrete.

In [6] we observed that Theorem 3.6(a) of E. Michael [5] could be improved
by applying Michael’s Proposition 3.3 in his proof of that theorem. This was
stated as Lemma 1 in [6]. Here it is in a slightly different form (taking into
account the citation from [1] mentioned in the preceding paragraph).

PROPOSITION 3.1. Let X be a paracompact space and G a collection of
subsets of X. Suppose that the following are true:

1. G contains an open cover of X,
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2. if U €G and W is open in U, then W € G,
3. if U, Q are open elements of G, then UUQ € G, and

4. if K C G is a discrete collection of open subsets of X, then | JK € G.
Then the entire space X is in G. O

We now give our proof of Theorem 1.1.

PROOF. Let G be the collection of all open subsets G of X such that
there exists an open neighborhood U of G and a selection h : U — |K]| of
o|U. Our proof will be complete if we show that X € G, and we shall apply
Proposition 3.1 to do this. To obtain (1) of Proposition 3.1, just apply the
shrinking theorem for normal spaces to the open cover {U, | € T'}. Item (2)
is obviously so.

To obtain (3) of Proposition 3.1, suppose that Uy and Qo are in G. Choose
open sets U, Q of X such that Uy C U, Q, C Q and maps h : U — |K],
g : Q@ — |K]| so that the pair {h,g} is a selection of the restriction of o to
UUQ. Also let Uy, Us, Q1, Q2 be sets open in X such that, Uy C Uy C Uy C
UpCUsCU,and Qy CQ1 CQ; CQ2CQy CQ.

Put A=U;NQ, and V = Uy N Q2. Apply Lemma 2.1 to the preceding
data and let k : U — | K| be as indicated there. Define amap!: U;UQ; — |K]|
by,

_ [ 9(@) ifze@y,
He) = { k(z) ifxeU;.

An application of (2) of Lemma 2.1 shows that [ is a well-defined map.
Let us show that [ is a selection of ¢|U; U Q,. Since x € @, implies that
() = g(x) € o(x), then we only have to consider z € U; \ Q. Hence
l(x) = k(x) and « € U. There are two cases.

Case 1. x € U\V. By (3) of Lemma 2.1, k(x) = h(z) € o(x).

Case 2. © €V =UsNQ2 C UNQ. Then because of the selection assumption,
h(z), g(z) € o(x), so by (4) of Lemma 2.1, I(z) = k(x) € o(x).

Of course this implies that {|U; U Qq : U; U Q1 — |K]| is a selection of
o|Uy U Q. Surely, U; U Q; is an open neighborhood of Uy U Qg = Uy U Qy,
so we have demonstrated that (3) holds true.

At last, (4) of Proposition 3.1 is obtained by a simple application of the
fact that X is collectionwise normal (see, e.g., Theorem 5.1.18 of [1]). O

Here is our proof of Theorem 1.3.

PRrROOF. Consider first (A). Let z € X; put 'y, = {a € T'|z € U,}.
Suppose that «, 8 € I';. Since one of the maps fo|Us NUg and fg|Us NUp is
a K-modification of the other, then at least one of the conditions (1), (2) of
Lemma 2.2 is true. In order to obtain ¢ : X — K, apply Lemma 2.2 to I',,
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obtaining a principal simplex o(z) € K such that z, = fo(z) € o(x) for all
a €Ty, Certainly {fq |« € T'} is a selection of o : X — K. The existence of
amap f: X — |K| such that f is a selection of ¢ follows from Theorem 1.1.

A proof of (B) can be done by the same technique as the preceding, using
Lemma 2.3 in place of Lemma 2.2. O

Let us close the paper with a Proposition showing that the infinite simplex
hypothesis in part (A) of Theorem 1.3 cannot be dismissed.

PROPOSITION 3.2. Part (A) of Theorem 1.3 may fail to be true if K
contains infinite simplexes.

PROOF. As before, let K (N) be the full complex whose vertex set is N.
Define X to be N with the discrete topology. Then X is a paracompact
space. For each n € N| let 7, be the simplex of K(N) whose vertex set is
{k € N |k < n}, and put b, equal the barycenter of 7,,.

For each n € N, let U, = {1,n} and f, : U, — |K(N)| be given by
fu(t) = by, for all t € Uy,. Surely, {U,|n € N} is an open cover of X and
for each n € N, f, : U, — |K(N)| is a map. Also, if m, n € N, then
UnNU, ={1}. If m <n and f,(1) = b, lies in a simplex 7 of K(N), then
T, is a face of 7 and f,,(1) = b, lies in a face of 7,, so it lies in a face of
7. Hence, one of f,,|U,, N U, and f,|Uy NU, is a K(N)-modification of the
other. But there is no o : X — K(N) such that {f,|n € N} is a selection of
o because no simplex from K (N) contains {f,(1)|n € N}. O
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