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Ivan Ivanšić and Leonard R. Rubin

University of Zagreb, Croatia and University of Oklahoma, USA

Abstract. Suppose we are given a function σ : X → K where
X is a paracompact space and K is a simplicial complex, and an open
cover {Uα |α ∈ Γ} of X, so that for each α ∈ Γ, fα : Uα → |K| is a
map that is a selection of σ on its domain. We shall prove that there is a
map f : X → |K| which is a selection of σ. We shall also show that under
certain conditions on such a set of maps or on the complex K, there exists a
σ : X → K with the property that each fα is a selection of σ on its domain
and that there is a selection f : X → |K| of σ. The term selection, as used
herein, will always refer to a map f , i.e., continuous function, having the
property that f(x) ∈ σ(x) for each x in the domain.

1. Introduction

The purpose of this paper is to prove certain selection theorems of the
type “local to global” where the target is a polyhedron. We will apply an
enhanced version from [6] of a method due to E. Michael [5] to pass from
local selections to global ones.

Throughout this paper, map will mean continuous function and if K is a
simplicial complex, then its polyhedron |K| will always have the weak topology
induced by the triangulation K. As in [1] and [5], paracompact spaces are
assumed to be Hausdorff.

Let us recall that if K is a simplicial complex and f : X → |K| and
g : X → |K| are functions, then f is said to be contiguous to g if for each
x ∈ X there exists a simplex τ ∈ K such that f(x), g(x) ∈ τ ; one says that
g is a K-modification of f if for each x ∈ X , whenever f(x) ∈ τ ∈ K, then
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g(x) ∈ τ . When f is contiguous to g, it need not be true that either one of
them is a K-modification of the other. Also contiguity is not an equivalence
relation although it is reflexive and symmetric.

Let σ : X → K be a function where X is a space and K is a simplicial
complex. If {Uα |α ∈ Γ} is an open cover of X and for each α ∈ Γ, fα : Uα →
|K| is a map, then the statement that {fα |α ∈ Γ} is a selection of σ means
that for each α ∈ Γ and x ∈ Uα, fα(x) ∈ σ(x). This is a generalization of the
usual notion of a selection because if Γ = {α} is singleton and Uα = X , then
fα is a selection in the usual sense.

If we consider a family {fα |α ∈ Γ} of maps fα of subsets Uα of X to |K|
(e.g., as above), one may say that the maps fα are “pointwise contiguous in
pairs” if for each x ∈ X and α, β ∈ Γ such that x ∈ Uα ∩Uβ, fα(x) and fβ(x)
lie in a simplex of K.

We now state the main results of this paper, the first of which strength-
ens Theorem 1.2 of [2] by removing the requirement that the space X be
hereditarily normal.

Theorem 1.1. Let X be a paracompact space, K a simplicial complex,
and σ : X → K a function. Suppose that {Uα |α ∈ Γ} is an open cover of X
and {fα : Uα → |K| |α ∈ Γ} is a selection of σ. Then there exists a selection
f : X → |K| of σ.

The term “infinite simplex” is probably not in common use.

Definition 1.2. Let K be a simplicial complex and {τi | i ∈ N} a collec-
tion of simplexes of K such that for each i ∈ N, dim τi = i−1 and τi is a face
of τi+1. Then we shall refer to {τi | i ∈ N} as an infinite simplex of K.

A simplicial complex K contains an infinite simplex if and only if there
is a full subcomplex L of K which has a countably infinite set of vertices.
Although infinite simplexes are not simplicial complexes, the concept is useful
as follows. If we are given a collection {fα |α ∈ Γ} of maps fα of subsets Uα of
X = {0} that is pointwise contiguous in pairs to the polyhedron |K| of the full
complex K(N) whose vertex set is N, there need not be a σ : X → K(N) such
that this collection is a selection for σ. For example, fix an infinite simplex
{τi | i ∈ N} in K(N), and for each i ∈ N, let fi(0) be the barycenter of τi.

The statement that a simplicial complex K contains no infinite simplexes
is equivalent to the statement that each simplex ofK is contained in a principal
simplex, that is, one which is contained in no other simplex of K.

Theorem 1.3. Let X be a paracompact space, K a simplicial complex,
and {Uα |α ∈ Γ} an open cover of X. Suppose that for each α ∈ Γ, there
exists a map fα : Uα → |K| such that if α, β ∈ Γ, then one of the maps
fα|Uα ∩ Uβ and fβ|Uα ∩ Uβ is a K-modification of the other. If either,

(A) : K contains no infinite simplex or,
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(B) : {Uα |α ∈ Γ} is a point-finite open cover of X,

then there exist,

1. σ : X → K such that {fα |α ∈ Γ} is a selection of σ, and

2. a map f : X → |K| such that f is a selection of σ.

The following lemma is an easy consequence of the definitions.

Lemma 1.4. Let K be a simplicial complex, X a space, σ : X → K a
function, {Uα |α ∈ Γ} an open cover of X, and for each α ∈ Γ, fα : Uα → |K|
a map. If {fα |α ∈ Γ} and f : X → |K| are selections of σ, then f |Uα is
contiguous to fα for each α ∈ Γ.

Lemma 1.4 shows that in both Theorem 1.1 and Theorem 1.3, for each
α ∈ Γ, f |Uα is contiguous to fα. It is worth noting (for example, Lemma 4′

of [4]) that this implies that f |Uα ' fα.

2. Lemmas

Let us state Lemma 1.1 of [2] which, as indicated in the latter, follows
from the proof of Lemma 4 of [4].

Lemma 2.1. Let X be a normal space and K a simplicial complex. Let
A ⊂ X be a closed set and V , U ⊂ X open sets such that A ⊂ V ⊂ V ⊂ U .
If h : U → |K| and g : V → |K| are maps such that h|V is contiguous to g,
then there exists a map k : U → |K| such that:

1. k is contiguous to h,

2. k|A = g|A,

3. k|(U \ V ) = h|(U \ V ), and

4. if x ∈ V and h(x), g(x) ∈ σ ∈ K, then k(x) ∈ σ.

Lemma 2.2. Let K be a simplicial complex that has no infinite simplexes
and {xα |α ∈ Γ} be a nonempty subset of |K| such that for each α, β ∈ Γ, at
least one of the following is true:

1. if xα ∈ τ ∈ K, then xβ ∈ τ , or

2. if xβ ∈ τ ∈ K, then xα ∈ τ .

Then there exists a principal simplex σ of K such that {xα |α ∈ Γ} ⊂ σ.

Proof. It is sufficient to find a simplex σ of K such that xα ∈ σ for all
α ∈ Γ. Fix α1 ∈ Γ and let σ1 be the simplex of K such that xα1 ∈ intσ1.
Define Γ1 = {γ ∈ Γ |xγ ∈ σ1}. If Γ1 = Γ, then put σ = σ1, and we are
done. Otherwise, choose α2 ∈ Γ \ Γ1. Let σ2 be the simplex of K such that
xα2 ∈ intσ2. Since xα2 /∈ σ1, then (1) and (2) of the hypothesis show that we
must have xα1 ∈ σ2. But then σ2 intersects the interior of σ1, showing that
σ1 is a face of σ2. Put Γ2 = {γ ∈ Γ |xγ ∈ σ2}. Clearly, Γ1 ⊂ Γ2. If Γ2 = Γ,
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then put σ = σ2, and we are done. If one continues this process, it will end
after a finite number, say n, of steps since K has no infinite simplexes. This
means that Γn = Γ. Designate σ = σn. Our proof is complete.

In case the complex K in Lemma 2.2 contains infinite simplexes, then the
following result can be useful. Its proof can be modelled on the preceding
one.

Lemma 2.3. Let K be a simplicial complex and Σ be a nonempty finite
subset of |K| such that for each x, y ∈ Σ, at least one of the following is true:

1. if x ∈ τ ∈ K, then y ∈ τ , or

2. if y ∈ τ ∈ K, then x ∈ τ .

Then there exists a simplex σ of K such that Σ ⊂ σ.

Recall that a simplicial complex K is called locally finite-dimensional if
for each vertex v of K there exists a nonnegative integer n such that dim τ ≤ n
for each simplex τ of K having v as a vertex.

Corollary 2.4. If K is a locally finite-dimensional simplicial complex,
then K has no infinite simplexes.

The next statement follows from Corollary 2.4 and (A) of Theorem 1.3.

Corollary 2.5. Let X be a paracompact space, K a locally finite-
dimensional simplicial complex, and {Uα |α ∈ Γ} an open cover of X. Sup-
pose that for each α ∈ Γ, there exists a map fα : Uα → |K| such that if α,
β ∈ Γ, then one of the maps fα|Uα ∩Uβ and fβ|Uα ∩ Uβ is a K-modification
of the other. Then there exist,

1. σ : X → K such that {fα |α ∈ Γ} is a selection of σ, and

2. a map f : X → |K| such that f is a selection of σ.

3. Proofs of Theorems

Recall that a collection K of subsets of a space is called discrete if each
point of the space has a neighborhood that intersects at most one element of
the collection. An application of Theorem 1.1.13 of [1] shows that this is true
if and only if the collection of the closures of the elements of K is discrete.

In [6] we observed that Theorem 3.6(a) of E. Michael [5] could be improved
by applying Michael’s Proposition 3.3 in his proof of that theorem. This was
stated as Lemma 1 in [6]. Here it is in a slightly different form (taking into
account the citation from [1] mentioned in the preceding paragraph).

Proposition 3.1. Let X be a paracompact space and G a collection of
subsets of X. Suppose that the following are true:

1. G contains an open cover of X,
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2. if U ∈ G and W is open in U , then W ∈ G,

3. if U , Q are open elements of G, then U ∪Q ∈ G, and

4. if K ⊂ G is a discrete collection of open subsets of X, then
⋃K ∈ G.

Then the entire space X is in G.

We now give our proof of Theorem 1.1.

Proof. Let G be the collection of all open subsets G of X such that
there exists an open neighborhood U of G and a selection h : U → |K| of
σ|U . Our proof will be complete if we show that X ∈ G, and we shall apply
Proposition 3.1 to do this. To obtain (1) of Proposition 3.1, just apply the
shrinking theorem for normal spaces to the open cover {Uα |α ∈ Γ}. Item (2)
is obviously so.

To obtain (3) of Proposition 3.1, suppose that U0 and Q0 are in G. Choose
open sets U , Q of X such that U0 ⊂ U , Q0 ⊂ Q and maps h : U → |K|,
g : Q → |K| so that the pair {h, g} is a selection of the restriction of σ to
U ∪Q. Also let U1, U2, Q1, Q2 be sets open in X such that, U0 ⊂ U1 ⊂ U1 ⊂
U2 ⊂ U2 ⊂ U , and Q0 ⊂ Q1 ⊂ Q1 ⊂ Q2 ⊂ Q2 ⊂ Q.

Put A = U1 ∩Q1 and V = U2 ∩Q2. Apply Lemma 2.1 to the preceding
data and let k : U → |K| be as indicated there. Define a map l : U1∪Q1 → |K|
by,

l(x) =

{
g(x) if x ∈ Q1,
k(x) if x ∈ U1.

An application of (2) of Lemma 2.1 shows that l is a well-defined map.
Let us show that l is a selection of σ|U 1 ∪ Q1. Since x ∈ Q1 implies that
l(x) = g(x) ∈ σ(x), then we only have to consider x ∈ U1 \ Q1. Hence
l(x) = k(x) and x ∈ U . There are two cases.

Case 1. x ∈ U \ V . By (3) of Lemma 2.1, k(x) = h(x) ∈ σ(x).

Case 2. x ∈ V = U2∩Q2 ⊂ U∩Q. Then because of the selection assumption,
h(x), g(x) ∈ σ(x), so by (4) of Lemma 2.1, l(x) = k(x) ∈ σ(x).

Of course this implies that l|U1 ∪ Q1 : U1 ∪ Q1 → |K| is a selection of
σ|U1 ∪ Q1. Surely, U1 ∪ Q1 is an open neighborhood of U0 ∪Q0 = U0 ∪ Q0,
so we have demonstrated that (3) holds true.

At last, (4) of Proposition 3.1 is obtained by a simple application of the
fact that X is collectionwise normal (see, e.g., Theorem 5.1.18 of [1]).

Here is our proof of Theorem 1.3.

Proof. Consider first (A). Let x ∈ X ; put Γx = {α ∈ Γ |x ∈ Uα}.
Suppose that α, β ∈ Γx. Since one of the maps fα|Uα ∩Uβ and fβ |Uα ∩Uβ is
a K-modification of the other, then at least one of the conditions (1), (2) of
Lemma 2.2 is true. In order to obtain σ : X → K, apply Lemma 2.2 to Γx,
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obtaining a principal simplex σ(x) ∈ K such that xα = fα(x) ∈ σ(x) for all
α ∈ Γx. Certainly {fα |α ∈ Γ} is a selection of σ : X → K. The existence of
a map f : X → |K| such that f is a selection of σ follows from Theorem 1.1.

A proof of (B) can be done by the same technique as the preceding, using
Lemma 2.3 in place of Lemma 2.2.

Let us close the paper with a Proposition showing that the infinite simplex
hypothesis in part (A) of Theorem 1.3 cannot be dismissed.

Proposition 3.2. Part (A) of Theorem 1.3 may fail to be true if K
contains infinite simplexes.

Proof. As before, let K(N) be the full complex whose vertex set is N.
Define X to be N with the discrete topology. Then X is a paracompact
space. For each n ∈ N, let τn be the simplex of K(N) whose vertex set is
{k ∈ N | k ≤ n}, and put bn equal the barycenter of τn.

For each n ∈ N, let Un = {1, n} and fn : Un → |K(N)| be given by
fn(t) = bn for all t ∈ Un. Surely, {Un |n ∈ N} is an open cover of X and
for each n ∈ N, fn : Un → |K(N)| is a map. Also, if m, n ∈ N, then
Um ∩ Un = {1}. If m ≤ n and fn(1) = bn lies in a simplex τ of K(N), then
τn is a face of τ and fm(1) = bm lies in a face of τn, so it lies in a face of
τ . Hence, one of fm|Um ∩ Un and fn|Um ∩ Un is a K(N)-modification of the
other. But there is no σ : X → K(N) such that {fn |n ∈ N} is a selection of
σ because no simplex from K(N) contains {fn(1) |n ∈ N}.
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