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Abstract. In this paper, new definitions of a fuzzy basis and a fuzzy dimension for a
fuzzy vector space are presented. A fuzzy basis for a fuzzy vector space (E, µ) is a fuzzy
set β on E. The cardinality of a fuzzy basis β is called the fuzzy dimension of (E, µ). The
fuzzy dimension of a finite dimensional fuzzy vector space is a fuzzy natural number. For
a fuzzy vector space, any two fuzzy bases have the same cardinality. If Ẽ1 and Ẽ2 are
two fuzzy vector spaces, then dim(Ẽ1 + Ẽ2) + dim(Ẽ1 ∩ Ẽ2) = dim(Ẽ1) + dim(Ẽ2) and

dim(k̃erf) + dim(ĩmf) = dim(Ẽ) hold without any restricted conditions.
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1. Introduction

After Katsaras and Liu [4] introduced the concept of fuzzy vector spaces, many
scholars investigated its properties and characteristics (see [1, 2, 5, 6, 7], etc). For
a fuzzy vector space, Lowen [5] gave the definition of fuzzy linear independence
which is a direct generalization of normal linear independence. Subsequently P.
Lubczonok [7] introduced another alternative concept of fuzzy linear independence,
and introduced a definition of fuzzy bases which are the bases of corresponding vector
space and satisfy fuzzy linear independence. In this case, the fuzzy bases of fuzzy
vector space are still crisp. At the same time, a concept of dimension for a fuzzy
vector space was introduced. Lowen [5] defined a dimension of the n-dimensional
Euclidean space as an n-tuple. P. Lubczonok [7] defined a fuzzy dimension for all
fuzzy vector spaces as a non-negative real number or infinity, and proved that for
finite dimensional vector spaces Ẽ1 and Ẽ2 the statement

dim(Ẽ1 + Ẽ2) + dim(Ẽ1 ∩ Ẽ2) = dim(Ẽ1) + dim(Ẽ2) (1)

is true under certain conditions.
In this paper, we redefine fuzzy basis of a fuzzy vector space (E, µ) as a fuzzy

set β on E and discuss its properties. Subsequently, by the definition of fuzzy basis,
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we redefine fuzzy dimension of (E, µ), it is the cardinality of a fuzzy basis β. The
fuzzy dimension of a finite dimensional fuzzy vector space is a fuzzy natural number.
For a fuzzy vector space, any two fuzzy bases have the same cardinality. We also
prove that the formulas (1) and dim(ĩmf) + dim(k̃erf) = dim(Ẽ) hold without any
restricted conditions.

2. Preliminaries

For a set X, a fuzzy set A on X is a mapping A : X → [0, 1]. The set of all fuzzy
sets on X are denoted by [0, 1]X . For A ∈ [0, 1]X and a ∈ [0, 1], define

A[a] = {x ∈ X : A(x) > a}, A(a) = {x ∈ X : A(x) > a}.

We often do not distinguish a crisp subset A of X and its characteristic function χA.
The cardinality of a fuzzy set was introduced in [11] and the notion of fuzzy

natural integers was also investigated and developed in [3, 8]. In [10], they were
generalized to an L-fuzzy setting as follows:

Definition 1 (see [10]). Let N denote the set of all natural numbers and let L be
a complete lattice. An L-fuzzy natural integer is an antitone mapping λ : N → L
satisfying

λ(0) = >L,
∧

n∈N
λ(n) = ⊥L,

where >L and ⊥L are the largest element and the smallest element in L, respectively.
The set of all L-fuzzy natural integers is denoted by N(L).

Definition 2 (see [11]). Let A be a fuzzy set, and define a map |A| : N → [0, 1]
such that ∀n ∈ N, |A|(n) =

∨ {
a ∈ (0, 1] : |A[a]| > n

}
. Then |A| ∈ N([0, 1]), which

is called the cardinality of A.

Definition 3 (see [10]). For any λ, µ ∈ N([0, 1]), the addition λ + µ of λ and µ is
defined as follows: for any n ∈ N,

(λ + µ)(n) =
∨

k+l=n

(λ(k) ∧ µ(l)) .

Theorem 1 (see [10]). For any λ, µ ∈ N([0, 1]) and for any a ∈ [0, 1), one has
(λ + µ)(a) = λ(a) + µ(a).

Definition 4 (see [4]). A fuzzy vector space is a pair Ẽ = (E, µ), where E is a
vector space over a field F , and µ : E → [0, 1] is a mapping satisfying µ(kx + ly) ≥
µ(x) ∧ µ(y) for any x, y ∈ E, k, l ∈ F .

If Ẽ = (E, µ) is a fuzzy vector space, define

Ẽ[a] = µ[a] = {x ∈ E : µ(x) > a}, Ẽ(a) = µ(a) = {x ∈ E : µ(x) > a},

then both Ẽ[a] and Ẽ(a) are the subspaces of E [4].
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Definition 5 (see [7]). Let Ẽ1 = (E, µ1) and Ẽ2 = (E,µ2) be two fuzzy vector
spaces on E. The intersection and the sum of Ẽ1 and Ẽ2 are respectively defined to
be Ẽ1 ∩ Ẽ2 = (E, µ1 ∧ µ2) and Ẽ1 + Ẽ2 = (E, µ1 + µ2), where µ1 ∧ µ2 and µ1 + µ2

are respectively defined by

(µ1 ∧ µ2)(x) = µ1(x) ∧ µ2(x)
(µ1 + µ2)(x) =

∨
x=x1+x2

(µ1(x1) ∧ µ2(x2))

=
∨

x1∈E

(µ1(x1) ∧ µ2(x− x1)).

From [7] we know that both Ẽ1 ∩ Ẽ2 and Ẽ1 + Ẽ2 are fuzzy vector spaces.

Theorem 2. For two fuzzy vector spaces Ẽ1 = (E, µ1) and Ẽ2 = (E,µ2), we have
the following results:

(i) For all a ∈ [0, 1], (Ẽ1 ∩ Ẽ2)[a] = (Ẽ1)[a] ∩ (Ẽ2)[a];
(ii) For all a ∈ [0, 1), (Ẽ1 ∩ Ẽ2)(a) = (Ẽ1)(a) ∩ (Ẽ2)(a);
(iii) For any a ∈ [0, 1), (Ẽ1 + Ẽ2)(a) = (Ẽ1)(a) + (Ẽ2)(a).

Proof. By Definition 5, we can easily obtain (i) and (ii). Statement (iii) can be
proved as follows. For any a ∈ [0, 1), we have

x ∈ (Ẽ1 + Ẽ2)(a) ⇔
∨

x1+x2=x
(µ1(x1) ∧ µ2(x2)) > a

⇔ ∃x1, x2 such that x1 + x2 = x and µ1(x1) ∧ µ2(x2) > a
⇔ ∃x1, x2 such that x1 + x2 = x, x1 ∈ (µ1)(a) and x2 ∈ (µ2)(a)

⇔ x ∈ (Ẽ1)(a) + (Ẽ2)(a).

In this paper, we suppose that E is a finite dimensional vector space.

3. A new definition of fuzzy bases

In this section, we shall present a new definition of fuzzy bases for fuzzy vector
spaces.

Let Ẽ = (E, µ) be a fuzzy vector space and dim E = n. Lowen [5] proved that
µ(E) is a finite subset of [0, 1]. It is easy to prove the following lemma.

Lemma 1. If Ẽ = (E, µ) is a fuzzy vector space, then there exists a finite sequence
1 = α0 ≥ α1 > α2 > · · · > αr ≥ 0 such that

(i) If a, b ∈ (αi+1, αi], then µ[a] = µ[b];

(ii) If a ∈ (αi+1, αi] and b ∈ (αi, αi−1], then µ[a] ) µ[b];

(iii) If a, b ∈ [αi+1, αi), then µ(a) = µ(b);

(iv) If a ∈ [αi+1, αi) and b ∈ [αi, αi−1), then µ(a) ) µ(b).
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For a fuzzy vector space Ẽ = (E,µ), by Lemma 1 we can obtain a family of
vector spaces as follows:

{0} ⊆ µ[α1] ( µ[α2] ( · · · ( µ[αr ] ⊆ E. (2)

We shall call (2) the family of irreducible level subspaces of Ẽ = (E, µ). Suppose
that µ[α1] 6= {0}, otherwise we can choose µ[α2]. Let Bα1 be a basis of µ[α1]. We
can obtain a basis Bα2 of µ[α2] by extending Bα1 . Further, we can obtain a basis
Bα3 of µ[α3] by extending Bα2 . Analogously, we can obtain a basis Bαr

of µ[αr] by
extending Bαr−1 . Thus we obtain a sequence

Bα1 ( Bα2 ( Bα3 ( · · · ( Bαr , (3)

where Bα
i

is a basis of µ[α
i
](1 ≤ i ≤ r). Therefore, we can define a fuzzy subset β

of E as follows.

β(x) =
∨
{αi : x ∈ Bαi} . (4)

Then β is called a fuzzy basis of Ẽ corresponding to (3).
The proof of the following theorem is trivial.

Theorem 3. Let β be a fuzzy basis of Ẽ = (E, µ) obtained by (3). Then the following
statements hold:

(i) If a, b ∈ (αi+1, αi], then β[a] = β[b] = Bαi ;

(ii) If a ∈ (αi+1, αi] and b ∈ (αi, αi−1], then β[a] ) β[b];

(iii) If a, b ∈ [αi+1, αi), then β(a) = β(b) = Bαi+1 ;

(iv) If a ∈ [αi+1, αi) and b ∈ [αi, αi−1), then β(a) ) β(b).

Corollary 1. Let β be a fuzzy basis of Ẽ = (E, µ) obtained by (3). Then the
following statements hold:

(i) a ∈ (0, 1], β[a] is a basis of µ[a];
(ii) a ∈ [0, 1), β(a) is a basis of µ(a).

From the above corollary, we can easily obtain the following.

Corollary 2. Let Ẽ = (E, µ) be a fuzzy vector space and let β1 and β2 be two fuzzy
bases of Ẽ. Then the following statements hold:

(i) For any a ∈ (0, 1], |(β1)[a]| = |(β2)[a]|;
(ii) For any a ∈ [0, 1), |(β1)(a)| = |(β2)(a)|;
(iii) |β1| = |β2|.
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4. A new definition of fuzzy dimension

In this section, we redefine the fuzzy dimension of fuzzy vector spaces.
The cardinality of a crisp set A can be regarded as an increasing set of integers

{0, 1, · · · , n}. Such a set is also mathematically equivalent to the integer n. For a
crisp vector space, its dimension was defined by the cardinality of its bases. We can
define analogously the fuzzy dimension of fuzzy vector spaces as follows.

Definition 6. Let Ẽ = (E, µ) be a fuzzy vector space with a fuzzy basis β. Define
dim(Ẽ) = |β|. Then dim(Ẽ) is called the fuzzy dimension of Ẽ = (E,µ).

Theorem 4. Let Ẽ = (E, µ) be a fuzzy vector space with a fuzzy basis β. Then

dim(Ẽ)(n) =
∨{

a ∈ [0, 1) : |β(a)| ≥ n
}

=
∨{

a ∈ [0, 1) : dim
(
Ẽ(a)

)
≥ n

}

Proof. By Corollary 1, we know that dim
(
Ẽ(a)

)
= |β(a)|. For any n ∈ N, let

λ =
∨
{a ∈ [0, 1) : dim

(
Ẽ(a)

)
≥ n}.

Obviously, we have

λ ≤ dim(Ẽ)(n) =
∨{

a ∈ (0, 1] : |β[a]| ≥ n
}

.

In order to show that λ ≥ dim(Ẽ)(n), suppose that dim(Ẽ)(n) 6= 0 and dim(Ẽ)(n) >
b. Then there exists a > b such that |β[a]| ≥ n. In this case, n ≤ |β[a]| ≤ |β(b)| ≤ |β[b]|.
This implies λ =

∨ {
a ∈ [0, 1) : dim(Ẽ)(a) ≥ n

}
≥ b. Thus we have

λ ≥
∨ {

b : 0 ≤ b < dim(Ẽ)(n)
}

= dim(Ẽ)(n).

This completes the proof.

Theorem 5. Let Ẽ = (E, µ) be a fuzzy vector space. Then
(i) For any a ∈ (0, 1], (dim(Ẽ))[a] = dim

(
Ẽ[a]

)
;

(ii) For any a ∈ [0, 1), (dim(Ẽ))(a) = dim
(
Ẽ(a)

)
.

Proof. Let

{0} ⊆ µ[α1] ( µ[α2] ( · · · ( µ[αr] ⊆ E

be the family of irreducible level subspaces of Ẽ = (E,µ).
(i) We know from definition of dim(Ẽ) that dim

(
Ẽ[a]

)
≤

(
dim(Ẽ)

)
[a]

. Now

we need to show that
(
dim(Ẽ)

)
[a]

≤ dim
(
Ẽ[a]

)
. From the definition of fuzzy
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dimension, we have

n ≤
(
dim(Ẽ)

)
[a]
⇒ dim(Ẽ)(n) ≥ a

⇒ ∨{αi : dim(Ẽ[αi]) ≥ n} ≥ a

⇒ ∃αi ≥ a such that n ≤ dim
(
Ẽ[αi]

)

⇒ n ≤ dim
(
Ẽ[αi]

)
≤ dim

(
Ẽ[a]

)
.

Therefore,
(
dim(Ẽ)

)
[a]

= dim
(
Ẽ[a]

)
for any a ∈ (0, 1].

(ii) In order to prove
(
dim(Ẽ)

)
(a)
≤ dim

(
Ẽ(a)

)
. We suppose that

n =
(
dim(Ẽ)

)
(a)

.

Then dim(Ẽ)(n) > a, i.e.,
∨{b ∈ (0, 1] : dim

(
Ẽ[b]

)
≥ n} > a. Hence, there

exists b ∈ (0, 1] such that a < b and n ≤ dim
(
Ẽ[b]

)
. Since Ẽ[b] ⊆ Ẽ(a), thus

n ≤ dim
(
Ẽ(a)

)
Therefore,

(
dim(Ẽ)

)
(a)
≤ dim

(
Ẽ(a)

)
.

In order to show dim
(
Ẽ(a)

)
≤

(
dim(Ẽ)

)
(a)

, take αi > a such that Ẽ(a) = µ[αi].

Then it is easy to see that

dim
(
Ẽ(a)

)
= dim

(
µ[αi]

) ≤
(
dim(Ẽ)

)
[αi]

≤
(
dim(Ẽ)

)
(a)

.

Theorem 6. Let Ẽ1 = (E, µ1) and Ẽ2 = (E,µ2) be two fuzzy vector spaces, then it
holds

dim(Ẽ1 + Ẽ2) + dim(Ẽ1 ∩ Ẽ2) = dim(Ẽ1) + dim(Ẽ2).

Proof. For any a ∈ [0, 1), by Theorem 1, Theorem 2 and Theorem 5 we have
(
dim(Ẽ1 + Ẽ2) + dim(Ẽ1 ∩ Ẽ2)

)
(a)

=
(
dim(Ẽ1 + Ẽ2)

)
(a)

+
(
dim(Ẽ1 ∩ Ẽ2)

)
(a)

= dim
((

Ẽ1 + Ẽ2

)
(a)

)
+ dim

(
(Ẽ1 ∩ Ẽ2)(a)

)

= dim
(
(Ẽ1)(a) + (Ẽ2)(a)

)

+dim
(
(Ẽ1)(a) ∩ (Ẽ2)(a)

)

= dim
(
(Ẽ1)(a)

)
+ dim

(
(Ẽ2)(a)

)

=
(
dim(Ẽ1)

)
(a)

+
(
dim(Ẽ2)

)
(a)

=
(
dim(Ẽ1) + dim(Ẽ2)

)
(a)

Therefore, dim(Ẽ1 + Ẽ2) + dim(Ẽ1 ∩ Ẽ2) = dim(Ẽ1) + dim(Ẽ2).
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Definition 7 (see [2]). Let Ẽ = (E, µ) be a fuzzy vector space and f : E → E a
linear transformation. If for all x ∈ E, µ(f(x)) ≥ µ(x), then f is called a fuzzy
linear transformation on Ẽ = (E, µ).

Lemma 2. Let Ẽ = (E, µ) be a fuzzy vector space and let f be a fuzzy linear
transformation on Ẽ. Then k̃erf = (ker f, µ|ker f ) and ĩmf = (imf, µ|imf ) are two
fuzzy vector spaces.

Proof. It is trivial and it is omitted.

Theorem 7. Let Ẽ = (E,µ) be a fuzzy vector space and let f : E → E be a fuzzy
linear transformation on Ẽ. Then

dim(k̃erf) + dim(ĩmf) = dim(Ẽ)

Proof. By Theorem 1 and Theorem 5 it holds that for all a ∈ [0, 1),
(
dim(ĩmf) + dim(k̃erf)

)
(a)

=
(
dim(ĩmf)

)
(a)

+
(
dim(k̃erf)

)
(a)

= dim
(
(ĩmf)(a)

)
+ dim

(
(k̃erf)(a)

)

= dim
(
Ẽ(a) ∩ imf

)
+ dim

(
Ẽ(a) ∩ ker f

)
.

It is easy to check that f |Ẽ(a)
is a linear transformation on Ẽ(a). Thus we have

(
dim(ĩmf) + dim(k̃erf)

)
(a)

= dim(imf |Ẽ(a)
) + dim(ker f |Ẽ(a)

)

= dim
(
Ẽ(a)

)
=

(
dim(Ẽ)

)
(a)

.

Therefore, dim(k̃erf) + dim(ĩmf) = dim(Ẽ).

Acknowledgement

The authors would like to thank reviewers for their valuable suggestions.

References

[1] K. S.Abdukhalikov, M. S. Tulenbaev, U.U.Umirbarv, On fuzzy bases of vector
spaces, Fuzzy Sets and Systems 63(1994), 201–206.

[2] K. S.Abdukhalikov, The dual of a fuzzy subspace, Fuzzy Sets and Systems 82(1996),
375–381.

[3] D.Dubois, H. Prade, Gradual elements in a fuzzy set, Soft Computing 12(2008),
165–175.

[4] A.K.Katsaras, D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J.
Math. Anal. Appl. 58(1977), 135–146.

[5] R.Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3(1980), 291–310.
[6] G.Lubczonok, V.Murali, On flags and fuzzy subspaces of vector spaces, Fuzzy Sets

and Systems 125(2002), 201–207.



310 F. -G. Shi and C. -EHuang

[7] P. Lubczonok, Fuzzy vector spaces, Fuzzy Sets and Systems 38(1990), 329–343.
[8] D.Rocacher, P.Bosc, The set of fuzzy rational numbers and flexible querying, Fuzzy

Sets and Systems 155(2005), 317–339.
[9] F. -G. Shi, L-fuzzy relation and L-fuzzy subgroup, J. Fuzzy Mathematics 8(2000), 491–

499.
[10] F. -G. Shi, A new approach to the fuzzification of matroids, Fuzzy Sets and Systems

160(2009), 696–705.
[11] L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages,

Comput. Math. Appl. 9(1983), 149–184.


