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Abstract. The aim of this paper is to answer an open problem posed by M. B. Villarino
[arXiv:0707.3950v2]. We also introduce a new accurate approximation formula for big
factorials.
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1. Introduction

Maybe one of the most known and most used formula for approximation of big
factorials is the Stirling’s formula

n! ∼
√

2πnn+ 1
2 e−n = σn.

It was first discovered by the French mathematician Abraham de Moivre (1667-
1754) (with a missing constant), then the English mathematician James Stirling
(1692-1770) found the constant

√
2π.

The Stirling’s formula has important applications in many branches of science,
being satisfactory in probability theory, statistical physiscs, or mechanics, while in
pure mathematics more accurate approximations are required. In fact, the Stirling’s
formula is the first approximation of the following series

n! ∼
√

2πnn+ 1
2 e−n

(
1 +

1
12n

+
1

288n2
− 139

51840n3
− 571

2488320n4
+ ...

)
.

For details see [1, p. 257].
The gamma function Γ is defined for x > 0, by

Γ (x) =
∫ ∞

0

tx−1e−tdt

and it is a natural extension of the factorial function, since Γ (n + 1) = n!, for all
n = 1, 2, 3, ... . The factorial and gamma function are related with the harmonic
sum
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Hn = 1 +
1
2

+
1
3

+ ... +
1
n

in the sense we describe next. The digamma function ψ defined as the logarithmic
derivative of the gamma function

ψ (x) =
d

dx
(ln Γ (x)) =

Γ′ (x)
Γ (x)

,

satisfies the recurrence relation

ψ (x + 1) = ψ (x) +
1
x

;

thus, implying the formula ψ (n) = Hn−1−γ, where γ = 0.577215664901532... is the
Euler-Mascheroni constant.

In 1755, the Swiss mathematician Leonhard Euler (1707-1783) found the asymp-
totic expansion for Hn,

Hn ∼ ln n + γ −
∞∑

k=1

Bk

nk
,

where Bk denotes the kth Bernoulli number [1, p. 804]. Ramanujan [3, p. 521] found
the asymptotic expansion of Hn into powers of the reciprocal of the nth triangular
number m = n(n+1)

2 . Precisely, as n approaches infinity,

Hn ∼ 1
2

ln (2m) + γ +
1

12m
− 1

120m2
+

1
630m3

− 1
1680m4

+
1

2310m5
− ... .

M. B. Villarino finishes his work [22] with the remark that it would be interesting
to develop an expansion for n! into powers of m, that is, a new Stirling expansion
of the form

n! ∼
√

2πn
(n

e

)n
(

1 +
∞∑

k=1

ak

mk

)
. (1)

Motivated by this fact, in this paper we try to introduce a new method for construct-
ing such a series. Until now, we were able to give the first term of that expansion.
More precisely, we propose the approximation

n! ∼
√

2πn
(n

e

)n

e
1
12

(
π2
6 −

∑n−1
k=1

1
k2

) (
1− 1

48m

)
= µn, (2)

which gives better results than Stirling’s formula and other known results. As it fol-
lows from our study, a performant series (1) can be constructed only if an additional
factor of the form

exp

(
1
12

(
π2

6
−

n−1∑

k=1

1
k2

))

is considered.
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2. The results

In what follows, we need the following result, which is a measure of the rate of
convergence.

Lemma 1. If (λn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

nk(λn − λn+1) = l ∈ R, (3)

with k > 1, then there exists the limit:

lim
n→∞

nk−1λn =
l

k − 1
. (4)

Limit (4) offers the rate of convergence of the sequence (λn)n≥1 and we can see
that the sequence (λn)n≥1 converges faster to zero, as the value k satisfying (3) is
greater. This Lemma was first used by Mortici [6–20] for constructing asymptotic
expansions, or to accelerate some convergences. For proof and other details, see,
e.g., [7], or [8].

First, let us define the sequence (λn)n≥1 by the Stirling’s approximation

n! =
√

2πn
(n

e

)n

exp λn. (5)

We have

λn − λn+1 =
(

n +
1
2

)
ln

(
1 +

1
n

)
− 1

and from routine calculations we obtain limn→∞ n2 (λn − λn+1) = 1
12 . By applying

Lemma 1, the sequence (λn)n≥1 converges to zero as n−1.
Now, if we are interested in constructing an approximation of the form (1), then

we expect that already the first approximation

n! ∼
√

2πn
(n

e

)n (
1 +

a

m

)
(6)

is much better than the Stirling’s formula. In our language introduced here, we ask
that the sequence (ωn)n≥1 defined by

n! =
√

2πn
(n

e

)n (
1 +

a

m

)
exp ωn (7)

should be faster convergent to zero than the sequence (λn)n≥1 , that is, it should
converge to zero faster than n−1.

From (7), we deduce that

ωn − ωn+1 =
(

n +
1
2

)
ln

(
1 +

1
n

)
− 1 + ln

1 + 2a
(n+1)(n+2)

1 + 2a
n(n+1)

or, using computer software,

ωn − ωn+1 =
1

12n2
−

(
4a +

1
12

)
1
n3

+
(

12a +
3
40

)
1
n4

+ O

(
1
n5

)
. (8)
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We have limn→∞ n2 (ωn − ωn+1) = 1
12 . From Lemma 1, limn→∞ nωn = 1

12 , in-
dependently of the value a, and consequently, approximation (6) cannot be made
better than the Stirling’s formula. In other words, a series of the form (1) cannot
be constructed in the background we present later.

We can improve the rate of convergence by annihilating the term 1
12n2 . After a

careful analysis, we introduce a class of approximations of the form

n! ∼
√

2πn
(n

e

)n

e
1
12

(
π2
6 −

∑n−1
k=1

1
k2

) (
1 +

a

m

)
, (9)

with m = n(n+1)
2 and a ∈ R. Let us define the sequence (τn)n≥1 by

n! =
√

2πn
(n

e

)n

e
1
12

(
π2
6 −

∑n−1
k=1

1
k2

) (
1 +

a

m

)
exp τn, (10)

associated with the approximation formula (9). Now we are in the position to state
the following

Theorem 1. Let

n! =
√

2πn
(n

e

)n
[
1 +

2a

n (n + 1)

]
exp

[
1
12

(
π2

6
−

n−1∑

i=1

1
i2

)
+ τn

]

for n ∈ N. Then

lim
n→∞

(
n2τn

)
= −

(
2a +

1
24

)
6= 0

for a 6= − 1
48 and

lim
n→∞

(
n3τn

)
= − 7

120

for a = − 1
48 .

Proof. From (10), we have

τn − τn+1 =
(

n +
1
2

)
ln

(
1 +

1
n

)
− 1 + ln

1 + 2a
(n+1)(n+2)

1 + 2a
n(n+1)

− 1
12n2

,

or, again using a computer software,

τn − τn+1 = −
(

4a +
1
12

)
1
n3

+
(

12a +
3
40

)
1
n4

+ O

(
1
n5

)
.

Now (i) follows immediately from Lemma 1. In case a = − 1
48 , we obtain

τn − τn+1 = − 7
40n4

+ O

(
1
n5

)
,

which justifies the statement (ii).
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This Theorem 1 shows that the best approximation of the form (9) is (2), which
is obtained for a = − 1

48 . The corresponding asymptotic formula

n! ∼
√

2πn
(n

e

)n
[
1 +

2a

n (n + 1)

]
exp

[
1
12

(
π2

6
−

n−1∑

i=1

1
i2

)]
, n →∞

is better than some known results. Some works about the approximating n!, gamma
and related functions investigate this problem from the viewpoint of inequalities and
logarithmically complete monotonicity. See, for example [6–21].

3. Conclusions

Some of slightly more accurate approximation formula than Stirling’s result, are the
following:

n! ∼
√

2π

(
n + 1/2

e

)n+1/2

(W. Burnside [4]). (11)

n! ∼
√

2π

e

(
n + 1

e

)n+1/2

(C. Mortici [6]). (12)

Better results were recently established by N. Batir [2]

n! ∼
√

2πnn+1e−n

√
n− 1/6

(13)

and R. W. Gosper [5]

n! ∼
√

2π

(
n +

1
6

) (n

e

)n

= γn. (14)

The best approximations of (11)-(14) is the Gosper’s formula (14). The following
numerical computations show the great superiority of our new formula (2) over the
Gosper’s formula (14). For the sake of completeness, we also consider the Stirling’s
approximation n! ∼ σn.

n! n!− σn n!− γn µn − n!
10 30104 239. 18 197.55
25 5. 161 5× 1022 1. 688 3× 1020 5.628× 1019

50 5. 064 7× 1061 8. 362× 1058 1.399× 1058

100 7. 773 9× 10154 6. 447 9× 10151 5.4047× 10150

200 3. 285 4× 10371 1. 365 7× 10368 5.7298× 10366

500 2. 033 4× 101130 3. 385 8× 101126 5.6857× 101124

1000 3. 353 1× 102563 2. 792 9× 102559 2.3455× 102557
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