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Abstract. Suppose K is a closed convex subset of a real reflexive Banach space E which
has a uniformly Gâteaux differentiable norm and every nonempty closed convex bounded
subset of E has the fixed point property for nonexpansive mappings. We prove a strong
convergence theorem for an m−accretive mapping from K to E. The results in this paper
are different from the corresponding results in [8] and they improve the corresponding
results in [6, 14].
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1. Introduction and preliminaries

Let E be a real Banach space and E∗ its dual space. Let J denote the normalized
duality mapping from E into 2E∗ defined by J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 =
‖f‖2}, where 〈·, ·〉 denotes a generalized duality pairing between E and E∗. It is
well-known that if E∗ is strictly convex, then J is sing-valued. In the sequel, we
shall denote the single-valued normalized duality mapping by j.

Definition 1. T : K → K is said to be a nonexpansive mapping, if ∀ x, y ∈ K,
‖Tx− Ty‖ ≤ ‖x− y‖. The set of fixed points for T is denoted by F (T ) = {x ∈ K :
Tx = x}.
Definition 2. An operator A (possibly multivalued) with domain D(A) and range
R(A) in E is called accretive mapping, if ∀ xi ∈ D(A) and yi ∈ Axi(i=1,2), there
exists j(x2 − x1) ∈ J(x2 − x1) such that 〈y2 − y1, j(x2 − x1)〉 ≥ 0. Especially, an
accretive operator A is called m-accretive if R(I + rA) = E for all r > 0.

For each r > 0, if A is m−accretive, then Jr := (I + rA)−1 is a nonexpansive
single-valued mapping from R(I + rA) to D(A) and F (Jr) = N(A), where N(A) =
{x ∈ D(A) : Ax = 0}.

Iterative techniques for approximating zeros of accretive mappings have been
studied by various authors (see, e.g., [3, 4, 6, 12, 14, 16], etc.), using a famous Mann
iteration method, Ishikawa iteration method, and many other iteration methods such
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as viscosity approximation method [3] and steepest descent approximation method
[11].

Recently, T.H. Kim and H.K. Xu [6] and H.K. Xu [14] studied the sequence
generated by

xn+1 = αnu + (1− αn)Jrnxn, (1)

where x0 ∈ E, Jrn
= (I + rnA)−1, αn ∈ [0, 1] and obtained the following Theorem 1

and Theorem 2, respectively:

Theorem 1 (see [6], Theorem 2). Assume that E is a uniformly smooth Banach
space and A is an m−accretive operator in E such that N(A) 6= ∅. Let{xn} be
defined by (1). Suppose {αn} and {rn} satisfy the conditions:

(i) αn → 0, Σ∞n=0αn = ∞, Σ∞n=0|αn+1 − an| < ∞,

(ii) rn ≥ ε > 0 , Σ∞n=0

∣∣∣1− rn−1
rn

∣∣∣ < ∞.

Then {xn} converges strongly to a zero of A.

Theorem 2 (see, e.g. [14] ). Suppose that E is a uniformly smooth Banach space.
Suppose that A is an m-accretive operator in E such that C = D(A) is convex.
Assume

(i) αn → 0, Σ∞n=1αn = ∞, Σ∞n=1|αn+1 − αn| < ∞,

(ii) rn ≥ ε > 0, Σ∞n=1|rn+1 − rn| < ∞.

Then {xn} converges strongly to a point in N(A).

Inspired and motivated by the iterative sequences (1), Qin and Su [8] gave the
following iterative sequences:

{
yn = βnxn + (1− βn)Jrnxn,
xn+1 = αnu + (1− αn)yn,

(2)

where u ∈ K is an arbitrary (but fixed) element in K and sequences {αn} in (0,1),
{βn} in [0,1]. Then they obtained a strong convergence theorem as following:

Theorem 3 (see, e.g. [8]). Assume that E is a uniformly smooth Banach space
and A is an m−accretive operator in E such that N(A) 6= ∅. Given a point u ∈ K
and given sequences {αn}∞n=0, {βn}∞n=0 in [0,1], suppose that {αn}∞n=0, {βn}∞n=0 and
{rn}∞n=0 satisy the conditions:

(i) Σ∞n=0αn = ∞, αn → 0;

(ii) rn ≥ ε for all n and βn ∈ [0, a), for some a ∈ (0, 1);

(iii) Σ∞n=0|αn+1 − αn| < ∞, Σ∞n=0|βn+1 − βn| < ∞, Σ∞n=1|rn − rn−1| < ∞.

Let {xn}∞n=0 be the composite process defined by (2). Then {xn}∞n=0 converges
strongly to a zero of A.
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Let

αn =
{

0, if n = 2k
1
n , if n = 2k − 1,

βn =
{

0, if n = 2k
1
2 + 1

n+1 , if n = 2k − 1,
rn =

{
1
2 , if n = 2k
1
4 , if n = 2k − 1,

where k is some positive integer. Obviously, the coefficient αn, βn and rn do not
satisfy condition (iii) of Theorem 3 and conditions (i-ii) of Theorem 1. Hence, if we
can remove condition (iii) of Theorem 3, then the coefficient αn, βn and rn have a
more extensively applicable scope.

Using the technique in [15, 5], algorithm (2) is analyzed from a new perspective
in this paper, then a strong convergence theorem is obtained in the framework of
real reflexive Banach spaces E with uniformly Gâteaux differentiable norms and
condition (iii) of Theorem 3 is substituted by a new condition which is 0 < a ≤
βn ≤ b < 1 and rn ≥ ε > 0 for all n, limn→∞ |rn+1 − rn| = 0. At the same time,
our proof is more simpler than that of Theorem 3 and our theorem also improves
and extends Theorem 1 and Theorem 2 to more general real Banach spaces with
uniformly Gâteaux differentiable norms.

In what follows, we shall make use of the following Lemmas.

Lemma 1 (see [2]). Let E be a real normed linear space and J the normalized
duality mapping on E; then for each x, y ∈ E and j(x + y) ∈ J(x + y), we have
‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Lemma 2 (Suzuki, see [9]). Let {xn} and {yn} be bounded sequences in a Banach
space E and let {βn} be a sequence in [0,1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn

< 1. Suppose xn+1 = βnyn+(1−βn)xn for all integers n ≥ 0 and lim supn→∞(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0, then limn→∞ ‖yn − xn‖ = 0.

Lemma 3 (see [13]). Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

if (i) αn∈ [0, 1],
∑

αn =∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0,
∑

γn<∞, then an→0,
as n→∞.

Lemma 4 (see [7]). Let K be a nonempty closed convex subset of a reflexive Ba-
nach space E which has uniformly Gâteaux differentiable norms and T : K → K a
nonexpansive mapping with F (T ) 6= ∅. Suppose that every nonempty closed convex
bounded subset of E has the fixed point property for nonexpansive mappings. Then
there exists a continuous path t → zt, 0 < t < 1, satisfying zt = tu + (1− t)Tzt, for
arbitrary but fixed u ∈ K, which converges to a fixed point of T .

Lemma 5 (see [1, 8]). For λ > 0 and µ > 0 and x ∈ E,

Jλx = Jµ

(µ

λ
x +

(
1− µ

λ

)
Jλx

)
.
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2. Main results

Throughout this paper, suppose that

(a) E is a real reflexive Banach space E which has uniformly Gâteaux differentiable
norms;

(b) K is a nonempty closed convex subset of E;

(c) every nonempty closed bounded convex subset of E has the fixed point property
for nonexpansive mappings.

Theorem 4. Let A : K → E be an m−accretive mapping with N(A) 6= ∅. For
given u, x0 ∈ K, let {xn} be generated by the algorithm (2). If αn ∈ [0, 1], {βn},
{rn} satisfy the following conditions:

(i) αn → 0, Σ∞n=0αn = ∞,

(ii) 0 < a ≤ βn ≤ b < 1; (iii) lim
n→∞

|rn+1 − rn| = 0, rn ≥ ε > 0,

then {xn} converges strongly to a zero of A.

Proof. We know that F (Jrn) = N(A) 6= ∅ and Jrn is nonexpansive. Let p ∈ F (Jrn),
it follows from (2)

‖yn − p‖ ≤ ‖xn − p‖, ‖xn+1 − p‖ ≤ αn‖u− p‖+ (1− αn)‖xn − p‖,

which yields that ‖xn − p‖ ≤ max{‖x0 − p‖, ‖u− p‖}. Hence, {xn} is bounded and
so is {yn}.

Now, we shall show ‖xn+1 − xn‖ → 0 as n →∞. For the purpose, let γn = 1−
(1− αn)βn, yn = xn+1−xn+γnxn

γn
, i.e. yn = αnu+(1−αn)(1−βn)Jrnxn

γn
, then

yn+1 − yn =
(

αn+1

γn+1
− αn

γn

)
u +

(1− αn+1)(1− βn+1)Jrn+1xn+1

γn+1

− (1− αn)(1− βn)Jrnxn

γn

=
(

αn+1

γn+1
− αn

γn

)
u +

(1− αn)(1− βn)(Jrn+1xn+1 − Jrnxn)
γn

(3)

+
(

αn(1− (1− αn+1)βn+1)− αn+1(1− βn(1− αn))
γn+1γn

)
Jrn+1xn+1.
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It follows from (3) and Lemma 5 that

‖yn+1−yn‖ ≤
∣∣∣∣
αn+1

γn+1
−αn

γn

∣∣∣∣ ‖u‖+
(1−βn)‖Jrn+1xn+1−Jrn

xn‖
γn

+
αn+αn+1

γn+1γn
‖Jrn+1xn+1‖

≤
‖Jrn+1xn+1− Jrn+1xn + Jrn( rn

rn+1
xn + (1− rn

rn+1
)Jrn+1xn)−Jrnxn‖

γn

×(1−βn)+
αn+αn+1

γn+1γn
(‖Jrn+1xn+1‖+ ‖u‖)

≤
(1−βn)(‖xn+1− xn‖+ |1− rn

rn+1
|M0)

γn

+
αn+αn+1

γn+1γn
(‖Jrn+1xn+1‖+ ‖u‖). (4)

where ‖Jrn+1xn −xn‖ ≤ M0. By (i-iii) and boundedness of {xn}, from (4) we get
that

lim sup
n→∞

{‖yn+1−yn‖ − ‖xn+1−xn‖} ≤ 0. (5)

Based on Lemma 2 and (5), we have lim
n→∞

‖yn − xn‖=0, which implies lim
n→∞

‖xn+1

−xn‖=0. Since ‖xn+1− yn‖ = αn‖u− yn‖ → 0 as n →∞, then ‖xn− yn‖ → 0 and

‖xn − Jrnxn‖ =
1

1− βn
‖xn − yn‖ → 0 as n →∞. (6)

Take a fixed number r such that 0 < r < ε, from Lemma 5 we obtain

‖Jrnxn − Jrxn‖ =
∥∥∥∥Jr

(
r

rn
xn +

(
1− r

rn

)
Jrnxn

)
− Jrxn

∥∥∥∥ ≤ ‖xn − Jrnxn‖,

which implies that

‖xn − Jrxn‖ ≤ ‖xn − Jrnxn‖+ ‖Jrnxn − Jrxn‖ ≤ 2‖xn − Jrnxn‖ → 0 as n →∞.

Let zt denote the fixed point of contraction mapping Ht given by

Htx = tu + (1− t)Jrx, x ∈ E, ∀ t ∈ (0, 1).

Then, using Lemma 1, we have

‖zt − xn‖2 = ‖t(u− xn) + (1− t)(Jrzt − xn)‖2
≤ (1− t)2‖Jrzt − xn‖2 + 2t〈u− xn, j(zt − xn)〉
≤ (1− t)2(‖Jrzt − Jrxn‖+ ‖Jrxn − xn‖)2

+2t〈u− zt + zt − xn, j(zt − xn)〉
≤ (1 + t2)‖zt − xn‖2 + ‖Jrxn − xn‖(2‖zt − xn‖+ ‖Jrxn − xn‖)

+2t〈u− zt, j(zt − xn)〉,
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hence,

〈u− zt, j(xn − zt)〉 ≤ t

2
‖zt − xn‖2 +

‖Jrxn − xn‖
2t

(2‖zt − xn‖+ ‖Jrxn − xn‖),

let n →∞ in the last inequality, then we obtain

lim sup
n→∞

〈u− zt, j(xn − zt)〉 ≤ t

2
M,

where M > 0 is a constant such that‖zt − xn‖2 ≤ M for all t ∈ (0, 1) and n ≥ 0.
Now letting t → 0+, then we have that

lim sup
t→0+

lim sup
n→∞

〈u− zt, j(xn − zt)〉 ≤ 0.

Thus , for ∀ ε > 0, there exists a positive number δ′ such that for any t ∈ (0, δ′),

lim sup
n→∞

〈u− zt, j(xn − zt)〉 ≤ ε

2
.

On the other hand, by Lemma 4 we have zt → p ∈ F (Jrn
) = N(A) as t → 0+.

In addition, j is norm-to-weak∗ uniformly continuous on bounded subsets of E, so
there exists δ′′ > 0 such that, for any t ∈ (0, δ′′), we have

|〈u−p, j(xn − p)〉−〈u−zt, j(xn − zt)〉| ≤ |〈u−p, j(xn − p)〉−〈u− p, j(xn−zt)〉|
+|〈u− p, j(xn − zt)〉 − 〈u− zt, j(xn − zt)〉|

≤ ‖u− p‖‖j(xn − p)− j(xn − zt)‖
+‖ zt − p‖‖xn − zt‖

<
ε

2
.

Taking δ = min{δ′, δ′′}, for t ∈ (0, δ), we have that

〈u− p, j(xn − p)〉 ≤ 〈u− zt, j(xn − zt)〉+
ε

2
.

Hence,
lim sup

n→∞
〈u− p, j(xn − p)〉 ≤ ε, where ε > 0 is arbitrary,

which yields that

lim sup
n→∞

〈u− p, j(xn − p)〉 ≤ 0. (7)

Now we prove that {xn} converges strongly to p. It follows from Lemma 1 and 2
that

‖xn+1 − p‖2 = ‖αn(u− p) + (1− αn)(yn − p)‖2
≤ (1− αn)‖yn − p‖2 + 2αn〈u− p, j(xn+1 − p)〉
≤ (1− αn)‖xn − p‖2 + 2αn〈u− p, j(xn+1 − p)〉 (8)

By condition (i) and Lemma 3, {xn} converges strongly to p. The proof is complete.
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Remark 1. If E is uniformly smooth, then E is reflexive and has a uniformly
Gâteaux differentiable norm with the property that every nonempty closed and bound-
ed subset of E has the fixed point property for nonexpansive mappings (see Remark
3.5 of [16]). Thus, if E in Theorem 4 is a real uniformly smooth Banach space, then
Theorem 4 is true, too.

Using the proof method of Theorem 4, we may improve Theorem 1 and Theorem 2
as follows:

Theorem 5. Let A : K → E be an m−accretive mapping with N(A) 6= ∅. Let{xn}
be defined by (1). Suppose {αn} and {rn} satisfy the conditions:

(i) limn→∞ αn = 0 and Σ∞n=0αn = ∞,

(ii) rn ≥ ε > 0, limn→∞ |rn+1 − rn| = 0, rn < rn+1.

Then {xn} converges strongly to a zero of A.

Proof. By using the proof method of Theorem 4, we can also obtain that {xn} is
bounded. Now, we shall show ‖xn+1−xn‖ → 0 as n →∞. For the purpose, let γn =
1 − δ, 0 < δ < 1

2

(
1− rn

rn+1

)
, yn = xn+1−xn+γnxn

γn
, i.e. yn = αnu+(1−αn)Jrnxn−δxn

1−δ ,
then

yn+1−yn =
αn+1u− αnu

1− δ
+

(1− αn+1)Jrn+1xn+1

1− δ
− (1− αn)Jrnxn

1− δ

+
δ

1− δ
(xn − xn+1) (9)

=
(αn+1−αn)(u−Jrnxn)+(1−αn+1)(Jrn+1xn+1−Jrnxn)+ δxn−δxn+1

1− δ
.

It follows from (9) and Lemma 5 that

‖yn+1−yn‖ ≤
αn+1 + αn

1− δ
‖u− Jrnxn‖+

‖Jrn+1xn+1−Jrnxn‖
1− δ

+
δ

1− δ
‖xn+1−xn‖

=
αn+1 + αn

1− δ
‖u−Jrnxn‖+ δ

1− δ
‖xn+1−xn‖

+

∥∥∥Jrn

(
rn

rn+1
xn+1+(1− rn

rn+1
)Jrn+1xn+1

)
−Jrn

xn

∥∥∥
1− δ

≤ αn+1 + αn

1− δ
‖u−Jrnxn‖

+
(δ+ rn

rn+1
)‖xn+1− xn‖+ (1− rn

rn+1
)‖Jrn+1xn+1−xn‖

1− δ
,

which implies that

‖yn+1 − yn‖ − ‖xn+1−xn‖ ≤ αn+1 + αn

1− δ
‖u− Jrnxn‖ (10)

+
(1− rn

rn+1
)‖Jrn+1xn+1 − xn‖

1− δ
.
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By condition (i-ii) and boundedness of {xn}, from (10) we get that

lim sup
n→∞

{‖yn+1−yn‖ − ‖xn+1−xn‖} ≤ 0. (11)

Based on Lemma 2 and (11), we have lim
n→∞

‖yn−xn‖=0, which implies lim
n→∞

‖xn+1−
xn‖=0. Since ‖xn+1 − Jrnxn‖ = αn‖u− Jrnxn‖ → 0 as n →∞, then

‖xn − Jrnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Jrnxn‖ → 0 as n →∞. (12)

The rest of the argument is similar to the corresponding part of Theorem 4 and so
it is omitted. This completes the proof of Theorem 5.

Remark 2. From Remark 1, if E is uniformly smooth, then Theorem 5 is true.
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